Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2665-976X
  • E-ISSN: 2665-9778

Abstract

Introduction

Molybdenum dioxide (MoO) is attractive due to its applications in optical, electrical, and new energy fields. However, due to the poor conductivity, pure MoO possesses inferior photocatalytic activity because of the strong recombination between photogenerated electrons and holes.

Methods

One of the methods to overcome this shortage is to enable nanostructured MoO to be composited with highly conductive materials like carbon fibers. Herein, we fabricate an interesting C fibers@C-MoO nanoparticle core-shell composite by heat treating Polyacrylonitrile (PAN) fibers covered with PAN and MoO powder in Ar gas, in which the PAN carbonize into conductive carbon in a heating process and meanwhile, the emitting reducing gases transform MoO to conducting MoO submicron-particles. Under simulated sunlight irradiation, the photocatalytic removal rate for rhodamine B, phenol, and KCrO on such composite are 11.28, 5.15, and 6.19 times those on commercial MoO powder, respectively.

Results

The prepared composite presents excellent photocatalytic performance and outstanding stability for degrading various environmental pollutants in water, which will be a good solar-driven photocatalyst candidate for the degradation of toxic chemicals in industrial wastewater for environmental remediation.

Conclusion

Furthermore, this simple preparation strategy represents an easily operated, low-cost, and environmentally friendly solution for industrial production.

Loading

Article metrics loading...

/content/journals/photocat/10.2174/012665976X288652240106123813
2024-01-26
2025-10-01
Loading full text...

Full text loading...

References

  1. HussainM.M. WangJ. BibiI. ShahidM. NiaziN.K. IqbalJ. MianI.A. ShaheenS.M. BashirS. ShahN.S. HinaK. RinklebeJ. Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae.J. Hazard. Mater.202140312402710.1016/j.jhazmat.2020.12402733265048
    [Google Scholar]
  2. StreetsD.G. DevaneM.K. LuZ. BondT.C. SunderlandE.M. JacobD.J. All-time releases of mercury to the atmosphere from human activities.Environ. Sci. Technol.20114524104851049110.1021/es202765m22070723
    [Google Scholar]
  3. FujishimaA. RaoT.N. TrykD.A. Titanium dioxide photocatalysis.J. Photochem. Photobiol. Photochem. Rev.20001112110.1016/S1389‑5567(00)00002‑2
    [Google Scholar]
  4. TrykD.A. FujishimaA. HondaK. Recent topics in photoelectrochemistry: Achievements and future prospects.Electrochim. Acta20004515-162363237610.1016/S0013‑4686(00)00337‑6
    [Google Scholar]
  5. SanthoshC. VelmuruganV. JacobG. JeongS.K. GraceA.N. BhatnagarA. Role of nanomaterials in water treatment applications: A review.Chem. Eng. J.20163061116113710.1016/j.cej.2016.08.053
    [Google Scholar]
  6. ShiY. GuoB. CorrS.A. ShiQ. HuY.S. HeierK.R. ChenL. SeshadriR. StuckyG.D. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity.Nano Lett.20099124215422010.1021/nl902423a19775084
    [Google Scholar]
  7. RajeswariJ. KishoreP.S. ViswanathanB. VaradarajanT.K. One-dimensional MoO2 nanorods for supercapacitor applications.Electrochem. Commun.200911357257510.1016/j.elecom.2008.12.050
    [Google Scholar]
  8. XieX. LinL. LiuR.Y. JiangY.F. ZhuQ. XuA.W. The synergistic effect of metallic molybdenum dioxide nanoparticle decorated graphene as an active electrocatalyst for an enhanced hydrogen evolution reaction.J. Mater. Chem. A Mater. Energy Sustain.20153158055806110.1039/C5TA00622H
    [Google Scholar]
  9. NamvarF. Mortazavi-DerazkolaS. Salavati-NiasariM. Preparation and characterization of novel HgO/MoO2 nanocomposite by ultrasound-assisted precipitation method to enhance photocatalytic activity.J. Mater. Sci. Mater. Electron.20172843151315810.1007/s10854‑016‑5903‑5
    [Google Scholar]
  10. JiH. FeiT. ZhangL. YanJ. FanY. HuangJ. SongY. ManY. TangH. XuH. LiH. Synergistic effects of MoO2 nanosheets and graphene-like C3N4 for highly improved visible light photocatalytic activities.Appl. Surf. Sci.20184571142115010.1016/j.apsusc.2018.06.134
    [Google Scholar]
  11. LiaoL. WangS. XiaoJ. BianX. ZhangY. ScanlonM.D. HuX. TangY. LiuB. GiraultH.H. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction.Energy Environ. Sci.20147138739210.1039/C3EE42441C
    [Google Scholar]
  12. SunY. HuX. LuoW. HuangY. Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries.ACS Nano2011597100710710.1021/nn201802c21823572
    [Google Scholar]
  13. LiuY. TianL. TanX. LiX. ChenX. Synthesis, properties, and applications of black titanium dioxide nanomaterials.Sci. Bull.201762643144110.1016/j.scib.2017.01.03436659287
    [Google Scholar]
  14. TianJ. ZhangH. LiZ. Synthesis of double-layer nitrogen-doped microporous hollow carbon@MoS2/MoO2 nanospheres for supercapacitors.ACS Appl. Mater. Interfaces20181035295112952010.1021/acsami.8b0853430110538
    [Google Scholar]
  15. WuJ.Z. LiX.Y. ZhuY.R. YiT.F. ZhangJ.H. XieY. Facile synthesis of MoO2/CNTs composites for high-performance supercapacitor electrodes.Ceram. Int.20164279250925610.1016/j.ceramint.2016.03.027
    [Google Scholar]
  16. Marques NetoJ. BellatoC. de SouzaC. da SilvaR. RochaP. Synthesis, characterization and enhanced photocatalytic activity of iron oxide/carbon nanotube/Ag-doped TiO2 nanocomposites.J. Braz. Chem. Soc.2017282301231210.21577/0103‑5053.20170081
    [Google Scholar]
  17. JiX. HerleP.S. RhoY. NazarL.F. Carbon/MoO2 composite based on porous semi-graphitized nanorod assemblies from in situ reaction of tri-nlock polymers.Chem. Mater.200719337438310.1021/cm060961y
    [Google Scholar]
  18. ZhouL. WuH.B. WangZ. LouX.W.D. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries.ACS Appl. Mater. Interfaces20113124853485710.1021/am201351z22077330
    [Google Scholar]
  19. LuoW. HuX. SunY. HuangY. Electrospinning of carbon-coated MoO2 nanofibers with enhanced lithium-storage properties.Phys. Chem. Chem. Phys.20111337167351674010.1039/c1cp22184a21850323
    [Google Scholar]
  20. GuS. QinM. ZhangH. MaJ. WuH. QuX. Facile solution combustion synthesis of MoO 2 nanoparticles as efficient photocatalysts.CrystEngComm201719436516652610.1039/C7CE01611E
    [Google Scholar]
  21. JiangJ. YangW. WangH. ZhaoY. GuoJ. ZhaoJ. BeidaghiM. GaoL. Electrochemical performances of MoO2/C nanocomposite for sodium ion storage: An insight into rate dependent charge/discharge mechanism.Electrochim. Acta201724037938710.1016/j.electacta.2017.04.103
    [Google Scholar]
  22. LiuB. ZhaoX. TianY. ZhaoD. HuC. CaoM. A simple reduction process to synthesize MoO2/C composites with cage-like structure for high-performance lithium-ion batteries.Phys. Chem. Chem. Phys.201315228831883710.1039/c3cp44707c23646353
    [Google Scholar]
  23. XieQ. ZhengX. WuD. ChenX. ShiJ. HanX. ZhangX. PengG. GaoY. HuangH. High electrical conductivity of individual epitaxially grown MoO2 nanorods.Appl. Phys. Lett.2017111909350510.1063/1.5001183
    [Google Scholar]
  24. DillonA.C. MahanA.H. DeshpandeR. ParillaP.A. JonesK.M. LeeS-H. Metal oxide nano-particles for improved electrochromic and lithium-ion battery technologies.Thin Solid Films2008516579479710.1016/j.tsf.2007.06.177
    [Google Scholar]
  25. BozhkoS.I. WalsheK. TulinaN. WallsB. LübbenO. MurphyB.E. BozhkoV. ShvetsI.V. Surface modification on MoO2+x/Mo(110) induced by a local electric potential.Sci. Rep.201991621610.1038/s41598‑019‑42536‑930996282
    [Google Scholar]
  26. ShenZ. ZhaoZ. QianJ. PengZ. FuX. Synthesis of WO 3-x nanomaterials with controlled morphology and composition for highly efficient photocatalysis.J. Mater. Res.20163181065107610.1557/jmr.2016.106
    [Google Scholar]
  27. XiQ. LiuJ. WuZ. BiH. LiZ. ZhuK. ZhuangJ. ChenJ. LuS. HuangY. QianG. In-situ fabrication of MoO3 nanobelts decorated with MoO2 nanoparticles and their enhanced photocatalytic performance.Appl. Surf. Sci.201948042743710.1016/j.apsusc.2019.03.009
    [Google Scholar]
  28. BowkerM. CarleyA.F. HouseM. Contrasting the behaviour of MoO3 and MoO2 for the oxidation of methanol.Catal. Lett.20081201-2343910.1007/s10562‑007‑9255‑x
    [Google Scholar]
  29. QianJ. ZhaoZ. ShenZ. ZhangG. PengZ. FuX. Oxide vacancies enhanced visible active photocatalytic W 19 O 55 NMRs via strong adsorption.RSC Advances20166108061806910.1039/C5RA23655J
    [Google Scholar]
  30. HuangH. LiuK. ChenK. ZhangY. ZhangY. WangS. Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation.J. Phys. Chem. C201411826143791438710.1021/jp503025b
    [Google Scholar]
  31. Gil-GonzálezE. PerejónA. Sánchez-JiménezP.E. Medina-CarrascoS. KupčíkJ. ŠubrtJ. CriadoJ.M. Pérez-MaquedaL.A. Crystallization kinetics of nanocrystalline materials by combined x-ray diffraction and differential scanning calorimetry experiments.Cryst. Growth Des.20181853107311610.1021/acs.cgd.8b00241
    [Google Scholar]
  32. DingR. WuY. ChenY. ChenH. WangJ. ShiY. YangM. Catalytic hydrodeoxygenation of palmitic acid over a bifunctional Co-doped MoO 2/CNTs catalyst: An insight into the promoting effect of cobalt.Catal. Sci. Technol.2016672065207610.1039/C5CY01575H
    [Google Scholar]
  33. ZhouE. WangC. ZhaoQ. LiZ. ShaoM. DengX. LiuX. XuX. Facile synthesis of MoO2 nanoparticles as high performance supercapacitor electrodes and photocatalysts.Ceram. Int.20164222198220310.1016/j.ceramint.2015.10.008
    [Google Scholar]
  34. YangL. LiuL. ZhuY. WangX. WuY. Preparation of carbon coated MoO2 nanobelts and their high performance as anode materials for lithium ion batteries.J. Mater. Chem.20122226131481315210.1039/c2jm31364b
    [Google Scholar]
  35. KhaembalD.N. NevilleA. MorinalA. A methodology for Raman characterisation of MoDTC tribofilmsand its application in investigating the influence of surfacechemistry on friction performance of MoDTC lubricants.Tribol. Lett.201559117
    [Google Scholar]
  36. ShiM.M. BaoD. LiS-J. WulanB-R. YanJ-M. JiangQ. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution.Adv. Energy Mater.2018821180012410.1002/aenm.201800124
    [Google Scholar]
  37. LiZ. BommierC. ChongZ.S. JianZ. SurtaT.W. WangX. XingZ. NeuefeindJ.C. StickleW.F. DolgosM. GreaneyP.A. JiX. Mechanism of Na-Ion storage in hard carbon anodes revealed by heteroatom doping.Adv. Energy Mater.2017718160289410.1002/aenm.201602894
    [Google Scholar]
  38. LiuY. ZhangH. OuyangP. LiZ. One-pot hydrothermal synthesized MoO2 with high reversible capacity for anode application in lithium ion battery.Electrochim. Acta201310242943510.1016/j.electacta.2013.03.195
    [Google Scholar]
  39. KimM.A. JangD. TejimaS. Cruz-SilvaR. JohH.I. KimH.C. LeeS. EndoM. Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization.Sci. Rep.2016612298810.1038/srep2298827004752
    [Google Scholar]
  40. WangS. ChenZ.H. MaW.J. MaQ.S. Influence of heat treatment on physical-chemical properties of PAN-based carbon fiber.Ceram. Int.200632329129510.1016/j.ceramint.2005.02.014
    [Google Scholar]
  41. KimY. HwangH.M. WangL. KimI. YoonY. LeeH. Solar-light photocatalytic disinfection using crystalline/amorphous low energy bandgap reduced TiO2.Sci. Rep.2016612521210.1038/srep2521227121120
    [Google Scholar]
  42. PhorL. Ankush; Suman; Malik, J.; Sharma, S.; Sonia; Chaudhary, V.; Rani, G.M.; Kumar, A.; Kumar, P.; Chahal, S. Magnetically separable NiZn-ferrite/CeO2 nanorods/CNT ternary composites for photocatalytic removal of organic pollutants.J. Mol. Liq.202339012306410.1016/j.molliq.2023.123064
    [Google Scholar]
  43. MousaviM. Habibi-YangjehA. AbitorabiM. Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation.J. Colloid Interface Sci.201648021823110.1016/j.jcis.2016.07.02127442149
    [Google Scholar]
  44. SingK.S.W. EverettD.H. HaulR.A.W. MoscouL. PierottiR.A. RouquerolJ. SiemieniewskaT. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984).Pure Appl. Chem.198557460361910.1351/pac198557040603
    [Google Scholar]
  45. QianJ. ZhaoZ. ShenZ. ZhangG. PengZ. FuX. A large scale of CuS nano-networks: Catalyst-free morphologically controllable growth and their application as efficient photocatalysts.J. Mater. Res.201530243746375610.1557/jmr.2015.373
    [Google Scholar]
  46. WangZ. LuoH. LinR. LeiH. YuanY. ZhuZ. LiX. MaiW. Theoretical calculation guided electrocatalysts design: Nitrogen saturated porous Mo2C nanostructures for hydrogen production.Appl. Catal. B201925711789110.1016/j.apcatb.2019.117891
    [Google Scholar]
  47. OjhaM. DeepaM. Molybdenum selenide nanotubes decorated carbon net for a high performance supercapacitor.Chem. Eng. J.201936877278310.1016/j.cej.2019.03.002
    [Google Scholar]
  48. YueX. YiS. WangR. ZhangZ. QiuS. A novel architecture of dandelion-like Mo 2 C/TiO 2 heterojunction photocatalysts towards high-performance photocatalytic hydrogen production from water splitting.J. Mater. Chem. A Mater. Energy Sustain.2017521105911059810.1039/C7TA02655B
    [Google Scholar]
  49. JingX. PengX. SunX. ZhouW. WangW. WangS. Design and synthesis of Mo2C/MoO3 with enhanced visible-light photocatalytic performance for reduction of Cr (VI) and degradation of organic pollutants.Mater. Sci. Semicond. Process.201910026226910.1016/j.mssp.2019.05.004
    [Google Scholar]
  50. WeiW. TianQ. SunH. LiuP. ZhengY. FanM. ZhuangJ. Efficient visible-light-driven photocatalytic H2 evolution over MoO2-C/CdS ternary heterojunction with unique interfacial microstructures.Appl. Catal. B202026011815310.1016/j.apcatb.2019.118153
    [Google Scholar]
/content/journals/photocat/10.2174/012665976X288652240106123813
Loading
/content/journals/photocat/10.2174/012665976X288652240106123813
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test