Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882

Abstract

Antimicrobial Resistance (AMR) poses a critical threat to global health, contributing to increased morbidity, mortality, and substantial economic burden. This review highlights the profound clinical and financial consequences of infections caused by multidrug-resistant (MDR) bacteria. Of particular concern is the escalation of bacterial resistance linked to the indiscriminate use of antibiotics during the COVID-19 pandemic, which could lead to increased mortality rates. Additionally, this article emphasizes the significance of Antimicrobial Stewardship (AMS), which is a healthcare strategy aiming to encourage, develop, monitor, and assess the sensible use of antimicrobials in order to protect their long-term success. Consequently, it highlights the value and effects of an Antimicrobial Stewardship Program (ASP) in combating resistance and protecting global health.

Furthermore, the necessity of adopting a holistic “One Health” approach, an integrative, multisectoral strategy, is discussed as essential in addressing the growing AMR crisis. The review advocates for evidence-based policies that support the “One Health” framework, enhance immunization programs, educate healthcare professionals, and raise public awareness about AMR. This article provides a comprehensive overview of the scale, consequences, and potential solutions to AMR, urging collaborative efforts across sectors and stringent measures to combat this global health challenge.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882352704250127093311
2024-01-01
2025-09-28
Loading full text...

Full text loading...

/deliver/fulltext/nemj/5/1/NEMJ-5-E02506882352704.html?itemId=/content/journals/nemj/10.2174/0102506882352704250127093311&mimeType=html&fmt=ahah

References

  1. SifriZ. ChokshiA. CennimoD. HorngH. Global contributors to antibiotic resistance.J. Glob. Infect. Dis.2019111364210.4103/jgid.jgid_110_1830814834
    [Google Scholar]
  2. DeliaS.C. Practice. Misuse of antibiotics and the dissemination of antibiotic resistant bacteria in the community.MCAST J. Appl. Res. Pract.2020419110610.5604/01.3001.0014.4400
    [Google Scholar]
  3. ChenJ. SidibiA.M. ShenX. DaoK. MaigaA. XieY. HeskethT. Lack of antibiotic knowledge and misuse of antibiotics by medical students in Mali: A cross-sectional study.Expert Rev. Anti Infect. Ther.202119679780410.1080/14787210.2021.185773133251896
    [Google Scholar]
  4. MallahN. OrsiniN. FigueirasA. TakkoucheB. ControlI. Education level and misuse of antibiotics in the general population: A systematic review and dose–response meta-analysis.Antimicrob. Resist. Infect. Control20221112410.1186/s13756‑022‑01063‑535115030
    [Google Scholar]
  5. MurrayC.J.L. IkutaK.S. ShararaF. SwetschinskiL. AguilarR.G. GrayA. HanC. BisignanoC. RaoP. WoolE. JohnsonS.C. BrowneA.J. ChipetaM.G. FellF. HackettS. Haines-WoodhouseG. HamadaniK.B.H. KumaranE.A.P. McManigalB. AchalapongS. AgarwalR. AkechS. AlbertsonS. AmuasiJ. AndrewsJ. AravkinA. AshleyE. BabinF-X. BaileyF. BakerS. BasnyatB. BekkerA. BenderR. BerkleyJ.A. BethouA. BielickiJ. BoonkasidechaS. BukosiaJ. CarvalheiroC. Castañeda-OrjuelaC. ChansamouthV. ChaurasiaS. ChiurchiùS. ChowdhuryF. DonatienC.R. CookA.J. CooperB. CresseyT.R. Criollo-MoraE. CunninghamM. DarboeS. DayN.P.J. LucaD.M. DokovaK. DramowskiA. DunachieS.J. BichD.T. EckmannsT. EibachD. EmamiA. FeaseyN. Fisher-PearsonN. ForrestK. GarciaC. GarrettD. GastmeierP. GirefA.Z. GreerR.C. GuptaV. HallerS. HaselbeckA. HayS.I. HolmM. HopkinsS. HsiaY. IregbuK.C. JacobsJ. JarovskyD. JavanmardiF. JenneyA.W.J. KhoranaM. KhusuwanS. KissoonN. KobeissiE. KostyanevT. KrappF. KrumkampR. KumarA. KyuH.H. LimC. LimK. LimmathurotsakulD. LoftusM.J. LunnM. MaJ. ManoharanA. MarksF. MayJ. MayxayM. MturiN. Munera-HuertasT. MusichaP. MusilaL.A. Mussi-PinhataM.M. NaiduR.N. NakamuraT. NanavatiR. NangiaS. NewtonP. NgounC. NovotneyA. NwakanmaD. ObieroC.W. OchoaT.J. Olivas-MartinezA. OlliaroP. OokoE. Ortiz-BrizuelaE. OunchanumP. PakG.D. ParedesJ.L. PelegA.Y. PerroneC. PheT. PhommasoneK. PlakkalN. Ponce-de-LeonA. RaadM. RamdinT. RattanavongS. RiddellA. RobertsT. RobothamJ.V. RocaA. RosenthalV.D. RuddK.E. RussellN. SaderH.S. SaengchanW. SchnallJ. ScottJ.A.G. SeekaewS. SharlandM. ShivamallappaM. Sifuentes-OsornioJ. SimpsonA.J. SteenkesteN. StewardsonA.J. StoevaT. TasakN. ThaiprakongA. ThwaitesG. TigoiC. TurnerC. TurnerP. Doornv.H.R. VelaphiS. VongpradithA. VongsouvathM. VuH. WalshT. WalsonJ.L. WanerS. WangrangsimakulT. WannapinijP. WozniakT. SharmaY.T.E.M.W. YuK.C. ZhengP. SartoriusB. LopezA.D. StergachisA. MooreC. DolecekC. NaghaviM. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis.Lancet20223991032562965510.1016/S0140‑6736(21)02724‑035065702
    [Google Scholar]
  6. MorrisonL. ZembowerT.R. Antimicrobial resistance.Gastrointest. Endosc. Clin. N. Am.202030461963510.1016/j.giec.2020.06.00432891221
    [Google Scholar]
  7. MajumderM.A.A. RahmanS. CohallD. BharathaA. SinghK. HaqueM. HilaireG.S.M. Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health.Infect. Drug Resist.2020134713473810.2147/IDR.S29083533402841
    [Google Scholar]
  8. SagaT. YamaguchiK.J.J. History of antimicrobial agents and resistant bacteria.Japan Med. Assoc. J.2009522103108
    [Google Scholar]
  9. StefaniS. ChungD.R. LindsayJ.A. FriedrichA.W. KearnsA.M. WesthH. MacKenzieF.M. Meticillin-resistant Staphylococcus aureus (MRSA): Global epidemiology and harmonisation of typing methods.Int. J. Antimicrob. Agents201239427328210.1016/j.ijantimicag.2011.09.03022230333
    [Google Scholar]
  10. Velazquez-MezaM.E. Galarde-LópezM. Carrillo-QuirózB. Alpuche-ArandaC.M. Antimicrobial resistance: One health approach.Vet. World202215374374910.14202/vetworld.2022.743‑74935497962
    [Google Scholar]
  11. KnightG.M. GloverR.E. McQuaidC.F. OlaruI.D. GallandatK. LeclercQ.J. FullerN.M. WillcocksS.J. HasanR. Kleefv.E. ChandlerC.I.R. Antimicrobial resistance and COVID-19: Intersections and implications.eLife202110e6413910.7554/eLife.6413933588991
    [Google Scholar]
  12. GhoshS. BornmanC. ZaferM.M. Antimicrobial resistance threats in the emerging covid-19 pandemic: Where do we stand?J. Infect. Pub. Health.202114555556010.1016/j.jiph.2021.02.01133848884
    [Google Scholar]
  13. LaiC.C. ChenS.Y. KoW.C. HsuehP.R. Increased antimicrobial resistance during the COVID-19 pandemic.Int. J. Antimicrob. Agents202157410632410.1016/j.ijantimicag.2021.10632433746045
    [Google Scholar]
  14. KhoujaT. MitsantisukK. TadrousM. SudaK.J. Global consumption of antimicrobials: Impact of the WHO global action plan on antimicrobial resistance and 2019 coronavirus pandemic (COVID-19).J. Antimicrob. Chemother.20227751491149910.1093/jac/dkac02835178565
    [Google Scholar]
  15. MahmoudiHJGh Bacterial co-infections and antibiotic resistance in patients with COVID-19.GMS Hyg. Infect. Cont.202015Doc35
    [Google Scholar]
  16. ObeidatH. El-nasserZ. AmarinZ. QablanA. GharaibehF. The impact of COVID-19 pandemic on healthcare associated infections: A teaching hospital experience.Medicine (Baltimore)202310215e3348810.1097/MD.000000000003348837058033
    [Google Scholar]
  17. DespotovicA. MilosevicB. CirkovicA. VujovicA. CucanicK. CucanicT. StevanovicG. The impact of COVID-19 on the profile of hospital-acquired infections in adult intensive care units.Antibiotics20211010114610.3390/antibiotics1010114634680727
    [Google Scholar]
  18. ZeshanB. KarobariM.I. AfzalN. SiddiqA. BashaS. BasheerS.N. PeeranS.W. MustafaM. DaudN.H.A. AhmedN. YeanC.Y. NooraniT.Y. The usage of antibiotics by COVID-19 patients with comorbidities: The risk of increased antimicrobial resistance.Antibiotics20211113510.3390/antibiotics1101003535052912
    [Google Scholar]
  19. CarusoP MaiorinoMI MaceraM SignorielloG CastellanoL ScappaticcioL Antibiotic resistance in diabetic foot infection: How it changed with COVID-19 pandemic in a tertiary care center.Diabet. Res. Clin. Pract.2021175108797
    [Google Scholar]
  20. NorrbyS. NordC. FinchR. Lack of development of new antimicrobial drugs: A potential serious threat to public health.Lancet Infect. Dis.20055211511910.1016/S1473‑3099(05)70086‑415680781
    [Google Scholar]
  21. ChengG. DaiM. AhmedS. HaoH. WangX. YuanZ. Antimicrobial drugs in fighting against antimicrobial resistance.Front. Microbiol.2016747010.3389/fmicb.2016.0047027092125
    [Google Scholar]
  22. ChengG. HaoH. XieS. WangX. DaiM. HuangL. YuanZ. Antibiotic alternatives: The substitution of antibiotics in animal husbandry?Front. Microbiol.2014521710.3389/fmicb.2014.0021724860564
    [Google Scholar]
  23. ChahineE.B. DoughertyJ.A. ThornbyK.A. GuirguisE.H. Antibiotic approvals in the last decade: Are we keeping up with resistance?Ann. Pharmacother.202256444146210.1177/1060028021103139034259076
    [Google Scholar]
  24. AndreiS. DrocG. StefanG. FDA approved antibacterial drugs: 2018-2019.Discoveries201974e10210.15190/d.2019.1532309620
    [Google Scholar]
  25. World Health Organization BJWHOGSwitzerlandNo time to wait: Securing the future from drug-resistant infections.2019
    [Google Scholar]
  26. DuvalR.E. GrareM. DemoréB. Fight against antimicrobial resistance: We always need new antibacterials but for right bacteria.Molecules20192417315210.3390/molecules2417315231470632
    [Google Scholar]
  27. LiuY.Y. WangY. WalshT.R. YiL.X. ZhangR. SpencerJ. DoiY. TianG. DongB. HuangX. YuL.F. GuD. RenH. ChenX. LvL. HeD. ZhouH. LiangZ. LiuJ.H. ShenJ. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study.Lancet Infect. Dis.201616216116810.1016/S1473‑3099(15)00424‑726603172
    [Google Scholar]
  28. DolejskaM. PapagiannitsisC.C. Plasmid-mediated resistance is going wild.Plasmid2018999911110.1016/j.plasmid.2018.09.01030243983
    [Google Scholar]
  29. MillanS.A. Evolution of plasmid-mediated antibiotic resistance in the clinical context.Trends Microbiol.2018261297898510.1016/j.tim.2018.06.00730049587
    [Google Scholar]
  30. SkovR.L. MonnetD.L. Plasmid-mediated colistin resistance (mcr-1 gene): Three months later, the story unfolds.Euro. Surveill.20162193015510.2807/1560‑7917.ES.2016.21.9.3015526967914
    [Google Scholar]
  31. RezaN. GeradaA. StottK.E. HowardA. SharlandM. HopeW. Challenges for global antibiotic regimen planning and establishing antimicrobial resistance targets: Implications for the WHO Essential Medicines List and AWaRe antibiotic book dosing.Clin. Microbiol. Rev.2024372e00139-2310.1128/cmr.00139‑2338436564
    [Google Scholar]
  32. RiceL.B. Antimicrobial stewardship and antimicrobial resistance.Med. Clin. North Am.2018102580581810.1016/j.mcna.2018.04.00430126572
    [Google Scholar]
  33. WhiteA. HughesJ.M. Critical importance of a one health approach to antimicrobial resistance.EcoHealth201916340440910.1007/s10393‑019‑01415‑531250160
    [Google Scholar]
  34. WrightG.D. Antibiotic adjuvants: Rescuing antibiotics from resistance.Trends Microbiol.2016241186287110.1016/j.tim.2016.06.00927430191
    [Google Scholar]
  35. BernalP. Molina-SantiagoC. DaddaouaA. LlamasM.A. Antibiotic adjuvants: Identification and clinical use.Microb. Biotechnol.20136544544910.1111/1751‑7915.1204423445397
    [Google Scholar]
  36. LauCSM ChamberlainRS Probiotics are effective at preventing Clostridium difficile-associated diarrhea: A systematic review and meta-analysis.Int. J. Gen. Med.201692737
    [Google Scholar]
  37. OhlC.A. LutherV.P. Antimicrobial stewardship for inpatient facilities.J. Hosp. Med.20116S1Suppl. 1S4S1510.1002/jhm.88121225949
    [Google Scholar]
  38. DoronS. DavidsonL.E. Antimicrobial stewardship. Mayo Clinic Proceedings.New YorkElsevier2011
    [Google Scholar]
  39. EwersT. KnoblochM.J. SafdarN. Safdar NJCTOiID. Antimicrobial stewardship: The role of the patient.Curr. Treat. Options Infect. Dis.2017919210310.1007/s40506‑017‑0106‑z
    [Google Scholar]
  40. JonesA.S. IsaacR.E. PriceK.L. PlunkettA.C. Plunkett ACJPq, safety. Impact of positive feedback on antimicrobial stewardship in a pediatric intensive care unit: A quality improvement project.Pediatr. Qual. Saf.201945e20610.1097/pq9.000000000000020631745509
    [Google Scholar]
  41. KakiR. ElligsenM. WalkerS. SimorA. PalmayL. DanemanN. Impact of antimicrobial stewardship in critical care: A systematic review.J. Antimicrob. Chemother.20116661223123010.1093/jac/dkr13721460369
    [Google Scholar]
  42. MorrisA.M. Antimicrobial stewardship programs: Appropriate measures and metrics to study their impact.Curr. Treat. Options Infect. Dis.20146210111210.1007/s40506‑014‑0015‑325999798
    [Google Scholar]
  43. NathwaniD. VargheseD. StephensJ. AnsariW. MartinS. CharbonneauC. Value of hospital antimicrobial stewardship programs [ASPs]: A systematic review.Antimicrob. Resist. Infect. Control2019813510.1186/s13756‑019‑0471‑030805182
    [Google Scholar]
  44. Magnano San LioR. FavaraG. MaugeriA. BarchittaM. AgodiA. Agodi AJIjoer, health p. How antimicrobial resistance is linked to climate change: An overview of two intertwined global challenges.Int. J. Environ. Res. Public Health2023203168110.3390/ijerph2003168136767043
    [Google Scholar]
  45. MacFaddenD.R. McGoughS.F. FismanD. SantillanaM. BrownsteinJ.S. Antibiotic resistance increases with local temperature.Nat. Clim. Chang.20188651051410.1038/s41558‑018‑0161‑630369964
    [Google Scholar]
  46. HayesC. EleyC. BrownC. SyedaR. VerlanderN.Q. HannM. McNultyC. Improving educator’s knowledge and confidence to teach infection prevention and antimicrobial resistance.Health Educ. J.202180213114410.1177/0017896920949597
    [Google Scholar]
  47. OrganizationW.H. Health workers’ education and training on antimicrobial resistance: Curricula guide.Geneva, SwitzerlandWorld Health Organization2019
    [Google Scholar]
  48. Rogers Van KatwykS. JonesS.L. HoffmanS.J. Mapping educational opportunities for healthcare workers on antimicrobial resistance and stewardship around the world.Hum. Resour. Health2018161910.1186/s12960‑018‑0270‑3
    [Google Scholar]
  49. MajumderM.A.A. SinghK. HilaireM.G.S. RahmanS. SaB. HaqueM. Haque MJEroa-it. Tackling antimicrobial resistance by promoting antimicrobial stewardship in medical and allied health professional curricula.Exp. Rev. Anti. Infect. Ther.202018121245125810.1080/14787210.2020.179663832684048
    [Google Scholar]
  50. MaillardJ.Y. BloomfieldS.F. CourvalinP. EssackS.Y. GandraS. GerbaC.P. RubinoJ.R. ScottE.A. Reducing antibiotic prescribing and addressing the global problem of antibiotic resistance by targeted hygiene in the home and everyday life settings: A position paper.Am. J. Infect. Cont.20204891090109910.1016/j.ajic.2020.04.01132311380
    [Google Scholar]
  51. BoccabellaL. PalmaE.G. AbenavoliL. ScarlataG.G.M. BoniM. IaniroG. SantoriP. TackJ.F. ScarpelliniE. Post-coronavirus disease 2019 pandemic antimicrobial resistance.Antibiotics202413323310.3390/antibiotics1303023338534668
    [Google Scholar]
  52. MallickJS NairP AbbewET DeunV.A Acquired bedaquiline resistance during the treatment of drug-resistant tuberculosis: A systematic review.J. Antimicro. Resist.202242dlac029
    [Google Scholar]
  53. NguyenT.V.A. AnthonyR.M. BañulsA.L. NguyenT.V.A. VuD.H. AlffenaarJ.W.C. Bedaquiline resistance: Its emergence, mechanism, and prevention.Clin. Infect. Dis.201866101625163010.1093/cid/cix99229126225
    [Google Scholar]
  54. IarikovD. WasselR. FarleyJ. NambiarS. Nambiar SJId, therapy. Adverse events associated with fosfomycin use: Review of the literature and analyses of the FDA adverse event reporting system database.Infect. Dis. Ther.20154443345810.1007/s40121‑015‑0092‑826437630
    [Google Scholar]
  55. LimL.M. LyN. AndersonD. YangJ.C. MacanderL. JarkowskiA.III ForrestA. BulittaJ.B. TsujiB.T. Resurgence of colistin: A review of resistance, toxicity, pharmacodynamics, and dosing.Pharmacotherapy201030121279129110.1592/phco.30.12.127921114395
    [Google Scholar]
  56. PokharelS. AdhikariB. Antimicrobial resistance and over the counter use of drugs in Nepal.J. Glob. Health202010101036010.7189/jogh.10.01036032566152
    [Google Scholar]
  57. World Health Organization (WHO). Global research agenda for antimicrobial resistance in human health.2023Available from: https://www.who.int/publications/m/item/global-research-agenda-for-antimicrobial-resistance-in-human-health
  58. VázquezR. Rivero-BucetaV. Campod.R. Poblete-CastroI. HerenciasC. Editorial: Advanced technologies in bioengineering to fight antimicrobial resistance.Front. Bioeng. Biotechnol.202311118246310.3389/fbioe.2023.118246337051273
    [Google Scholar]
  59. Martin-LoechesI. DaleG.E. TorresA. Murepavadin: A new antibiotic class in the pipeline.Expert Rev. Anti Infect. Ther.201816425926810.1080/14787210.2018.144102429451043
    [Google Scholar]
  60. Díez-AguilarM. EkkelenkampM. MorosiniM.I. HuertasN. Campod.R. ZamoraJ. FluitA.C. TunneyM.M. ObrechtD. BernardiniF. CantónR. Anti-biofilm activity of murepavadin against cystic fibrosis Pseudomonas aeruginosa isolates.J. Antimicrob. Chemother.202176102578258510.1093/jac/dkab22234283223
    [Google Scholar]
  61. WheelerN.E. PriceV. Cunningham-OakesE. TsangK.K. NunnJ.G. MidegaJ.T. AnjumM.F. WadeM.J. FeaseyN.A. PeacockS.J. JauneikaiteE. BakerK.S. Innovations in genomic antimicrobial resistance surveillance.Lancet Microbe.2023412e1063e107010.1016/S2666‑5247(23)00285‑937977163
    [Google Scholar]
  62. LinD.M. KoskellaB. LinH.C. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance.World J. Gastrointest. Pharmacol. Ther.20178316217310.4292/wjgpt.v8.i3.16228828194
    [Google Scholar]
  63. GórskiA. MiędzybrodzkiR. WęgrzynG. Jończyk-MatysiakE. BorysowskiJ. Weber-DąbrowskaB. Phage therapy: Current status and perspectives.Med. Res. Rev.202040145946310.1002/med.2159331062882
    [Google Scholar]
  64. SuhG.A. LodiseT.P. TammaP.D. KniselyJ.M. AlexanderJ. AslamS. BartonK.D. BizzellE. TottenK.M.C. CampbellJ.L. ChanB.K. CunninghamS.A. GoodmanK.E. Greenwood-QuaintanceK.E. HarrisA.D. HesseS. MaressoA. NussenblattV. PrideD. RybakM.J. SundZ. Duinv.D. TyneV.D. PatelR. Considerations for the use of phage therapy in clinical practice.Antimicrob. Agents Chemother.2022663e02071-2110.1128/aac.02071‑2135041506
    [Google Scholar]
  65. ChowdhuryA.S. CallD.R. BroschatS.L. PARGT: A software tool for predicting antimicrobial resistance in bacteria.Sci. Rep.20201011103310.1038/s41598‑020‑67949‑932620856
    [Google Scholar]
  66. ImchenM. MoopantakathJ. KumavathR. BarhD. TiwariS. GhoshP. AzevedoV. Current trends in experimental and computational approaches to combat antimicrobial resistance.Front. Genet.20201156397510.3389/fgene.2020.56397533240317
    [Google Scholar]
  67. TunstallT. PortelliS. PhelanJ. ClarkT.G. AscherD.B. FurnhamN. Combining structure and genomics to understand antimicrobial resistance.Comput. Struct. Biotechnol. J.2020183377339410.1016/j.csbj.2020.10.01733294134
    [Google Scholar]
  68. PiddockL.J.V. Teixobactin, the first of a new class of antibiotics discovered by iChip technology?J. Antimicrob. Chemother.201570102679268010.1093/jac/dkv17526089440
    [Google Scholar]
  69. LloydD.G. SchofieldB.J. GoddardM.R. TaylorE.J. Chemotherapy. De novo resistance to Arg10-teixobactin occurs slowly and is costly.Antimicrob. Agents Chemother.2020651e01152-2010.1128/AAC.01152‑2033046494
    [Google Scholar]
  70. DeepikaJ ShettyAC Deciphering teixobactin resistance mechanisms in enterococcus faecalis through integrated rna-seq and hub genes identification.Res. Sq. Platform.202416
    [Google Scholar]
  71. MicoliF. BagnoliF. RappuoliR. SerrutoD. The role of vaccines in combatting antimicrobial resistance.Nat. Rev. Microbiol.202119528730210.1038/s41579‑020‑00506‑333542518
    [Google Scholar]
  72. NIHR Global Health Research Unit on Genomic Surveillance of AMR Whole-genome sequencing as part of national and international surveillance programmes for antimicrobial resistance: A roadmap.BMJ Glob. Health2020511e00224410.1136/bmjgh‑2019‑00224433239336
    [Google Scholar]
  73. GordonN.C. PriceJ.R. ColeK. EverittR. MorganM. FinneyJ. KearnsA.M. PichonB. YoungB. WilsonD.J. LlewelynM.J. PaulJ. PetoT.E.A. CrookD.W. WalkerA.S. GolubchikT. Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing.J. Clin. Microbiol.20145241182119110.1128/JCM.03117‑1324501024
    [Google Scholar]
  74. McDermottP.F. TysonG.H. KaberaC. ChenY. LiC. FolsterJ.P. AyersS.L. LamC. TateH.P. ZhaoS. Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella.Antimicrob. Agents Chemother.20166095515552010.1128/AAC.01030‑1627381390
    [Google Scholar]
  75. SutradharI. ChingC. DesaiD. SuprenantM. BriarsE. HeinsZ. KhalilA.S. ZamanM.H. Computational model to quantify the growth of antibiotic-resistant bacteria in wastewater.mSystems202163e00360-2110.1128/mSystems.00360‑2134100640
    [Google Scholar]
  76. CampV.P.J. HaslamD.B. PorolloA. Porollo AJIjoms. Bioinformatics approaches to the understanding of molecular mechanisms in antimicrobial resistance.Int. J. Mol. Sci.2020214136310.3390/ijms2104136332085478
    [Google Scholar]
  77. DarbandiA. AbdiM. DashtbinS. YaghoubiS. SholehM. KouhsariE. DarbandiT. GhanavatiR. TaheriB. Antibody–antibiotic conjugates: A comprehensive review on their therapeutic potentials against bacterialinfections.J. Clin. Lab. Anal.20243810e2507110.1002/jcla.2507138867639
    [Google Scholar]
  78. VitielloA. RezzaG. SilenziA. SalzanoA. AliseM. BoccellinoM.R. PonzoA. ZoviA. SabbatucciM. Therapeutic strategies to combat increasing rates of multidrug resistant pathogens.Pharm. Res.20244181557157110.1007/s11095‑024‑03756‑539107513
    [Google Scholar]
  79. El-KafrawyS.A. AbbasA.T. OelkrugC. TahoonM. EzzatS. ZumlaA. AzharE.I. IgY antibodies: The promising potential to overcome antibiotic resistance.Front. Immunol.202314106535310.3389/fimmu.2023.106535336742328
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882352704250127093311
Loading
/content/journals/nemj/10.2174/0102506882352704250127093311
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test