Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882
side by side viewer icon HTML

Abstract

Introduction

Despite significant advancements in COVID-19 treatment and prevention, immunocompromised individuals, particularly those with hematological malignancies, remain at high risk for severe infection and suboptimal vaccine response. Pre-exposure prophylaxis strategies for these vulnerable populations have been limited. Monoclonal antibodies, proteins designed to target specific antigens, offer a promising preventive solution for individuals unable to mount a sufficient immune response to vaccination. However, there is a critical unmet need to establish clear patient selection criteria for pre-exposure prophylaxis with monoclonal antibodies in these groups. This consensus statement explores recent research to address this gap, outlining profiles of patients most likely to benefit from monoclonal antibody-based prophylaxis.

Methodology

The consensus statement was developed through a rigorous process, utilizing a pre-Delphi search method and a modified Delphi technique to gather expert opinions. This approach ensured a comprehensive and informed consensus among experts in the field. Initially, nine distinct patient categories requiring pre-exposure prophylaxis with monoclonal antibodies were identified. Through iterative rounds of expert feedback, discussion, and refinement, these nine categories were expanded and subdivided into twelve more specific groups of hematological malignancies and immunocompromised disorders. This refinement aimed to better capture the diverse patient profiles requiring prophylaxis, providing a more detailed framework for the targeted administration of monoclonal antibodies.

Results

The study resulted in the panel members agreeing on nine categories for the use of monoclonal antibodies in COVID-19 prevention for high-risk patients. Achieving consensus among experts is crucial as it reflects the collective validation of evidence-based recommendations that can be reliably applied in clinical practice. A 100% agreement was reached for HIV and AIDS, underscoring the unanimous recognition of the vulnerability of this group to severe COVID-19 outcomes. Similarly, 96% agreement was reached for patients on immunomodulatory drugs (IMiDs), and 90.5% for those with hematological diseases, highlighting strong expert support for prophylaxis in these categories. Immunodeficiencies and renal conditions garnered 86% agreement, indicating broad, although slightly more varied, expert consensus on these groups. Lastly, 80% of the panel supported patients with solid organ cancer, liver conditions, rare neurological disorders, and severe life-limiting neuro-disabilities, reflecting recognition of their elevated risk despite more diverse opinions for these categories.

Conclusion

This consensus statement offers healthcare professionals in the UAE a clear, evidence-based framework for the use of monoclonal antibodies in preventing COVID-19 among patients with hematological malignancies and immunocompromised conditions. By outlining specific patient categories, the statement provides a practical guide that enables clinicians to make informed decisions about pre-exposure prophylaxis, ensuring that high-risk individuals receive timely and appropriate protection. The consensus not only enhances the ability of healthcare providers to identify and prioritize at-risk populations, but also optimizes patient outcomes by streamlining preventive measures in clinical practice. In addition, these findings lay the groundwork for future research and the development of standardized protocols, ultimately improving the management of vulnerable populations in the ongoing fight against COVID-19.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882347591250115073949
2024-01-01
2025-09-30
Loading full text...

Full text loading...

/deliver/fulltext/nemj/5/1/NEMJ-5-E02506882347591.html?itemId=/content/journals/nemj/10.2174/0102506882347591250115073949&mimeType=html&fmt=ahah

References

  1. PuiC.H. EvansW.E. Acute lymphoblastic leukemia.N. Engl. J. Med.1998339960561510.1056/NEJM1998082733909079718381
    [Google Scholar]
  2. KoebelC.M. VermiW. SwannJ.B. ZerafaN. RodigS.J. OldL.J. SmythM.J. SchreiberR.D. Adaptive immunity maintains occult cancer in an equilibrium state.Nature2007450717190390710.1038/nature0630918026089
    [Google Scholar]
  3. TangL. HuangZ. MeiH. HuY. Immunotherapy in hematologic malignancies: Achievements, challenges and future prospects.Signal Transduct. Target. Ther.20238130610.1038/s41392‑023‑01521‑537591844
    [Google Scholar]
  4. ArmitageJ.O. GascoyneR.D. LunningM.A. CavalliF. Non-Hodgkin lymphoma.Lancet20173901009129831010.1016/S0140‑6736(16)32407‑228153383
    [Google Scholar]
  5. EichenauerD.A. EngertA. AndréM. FedericoM. IllidgeT. HutchingsM. LadettoM. Hodgkin’s lymphoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up.Ann. Oncol.201425Suppl. 3iii70iii7510.1093/annonc/mdu18125185243
    [Google Scholar]
  6. MenssenA.J. WalterM.J. Genetics of progression from MDS to secondary leukemia.Blood20201361506010.1182/blood.201900094232430504
    [Google Scholar]
  7. WangH.W. BalakrishnaJ.P. PittalugaS. JaffeE.S. Diagnosis of Hodgkin lymphoma in the modern era.Br. J. Haematol.20191841455910.1111/bjh.1561430407610
    [Google Scholar]
  8. BlairA. WhiteD.W. Leukemia cell types and agricultural practices in Nebraska.Arch. Environ. Health198540421121410.1080/00039896.1985.105459204051575
    [Google Scholar]
  9. BurmeisterL.F. LierS.F.V. IsacsonP. LF Leukemia and farm practices in Iowa.Am. J. Epidemiol.1982115572072810.1093/oxfordjournals.aje.a1133547081203
    [Google Scholar]
  10. TalibovM. AuvinenA. WeiderpassE. HansenJ. MartinsenJ.I. KjaerheimK. TryggvadottirL. PukkalaE. Occupational solvent exposure and adult chronic lymphocytic leukemia: No risk in a population-based case-control study in four Nordic countries.Int. J. Cancer201714161140114710.1002/ijc.3081428571111
    [Google Scholar]
  11. MukkamallaS.K.R. Chronic lymphocytic leukemia.2017Available from: https://www.cancer.gov/types/leukemia/patient/cll-treatment-pdq#:~:text=Chronic%20lymphocytic%20leukemia%20(CLL)%20is,white%20blood%20cells%2C%20and%20platelets.
    [Google Scholar]
  12. MafraA. LaversanneM. GospodarowiczM. KlingerP. De Paula SilvaN. PiñerosM. Steliarova-FoucherE. BrayF. ZnaorA. Global patterns of non-Hodgkin lymphoma in 2020.Int. J. Cancer202215191474148110.1002/ijc.3416335695282
    [Google Scholar]
  13. ZhangN. WuJ. WangQ. LiangY. LiX. ChenG. MaL. LiuX. ZhouF. Global burden of hematologic malignancies and evolution patterns over the past 30 years.Blood Cancer J.20231318210.1038/s41408‑023‑00853‑337193689
    [Google Scholar]
  14. CaiW. ZengQ. ZhangX. RuanW. Trends analysis of non-hodgkin lymphoma at the national, regional, and global level, 1990–2019: Results from the global burden of disease study 2019.Front. Med. (Lausanne)2021873869310.3389/fmed.2021.73869334631756
    [Google Scholar]
  15. HashmiS. Hematological Malignancies in the UAE Cancer Care in the United Arab EmiratesSpringerSingapore202410.1007/978‑981‑99‑6794‑0_38
    [Google Scholar]
  16. MuhsenI.N. GaleanoS. NiederwieserD. KohM.B.C. LjungmanP. MachadoC.M. Kharfan-DabajaM.A. de la CamaraR. KoderaY. SzerJ. RasheedW. CesaroS. HashmiS.K. SeberA. AtsutaY. SalehM.F.M. SrivastavaA. StyczynskiJ. AlrajhiA. AlmaghrabiR. AbidM.B. ChemalyR.F. GergisU. BrissotE. El FakihR. RichesM. MikulskaM. WorelN. WeisdorfD. GreinixH. CordonnierC. AljurfM. Endemic or regionally limited parasitic and fungal infections in haematopoietic stem-cell transplantation recipients: A worldwide network for blood and marrow transplantation (wbmt) review.lancet haematol.2023104e295e30510.1016/S2352‑3026(23)00031‑536990624
    [Google Scholar]
  17. Al-ShamsiH.O. The state of cancer care in the United Arab Emirates in 2022.Clin. Pract.202212695598510.3390/clinpract1206010136547109
    [Google Scholar]
  18. HassanI.B. IslamS.I.A.M. AlizadehH. KristensenJ. KambalA. SondayS. BernseenR.M.D. Acute leukemia among the adult population of United Arab Emirates: An epidemiological study.Leuk. Lymphoma20095071138114710.1080/1042819090291918419557635
    [Google Scholar]
  19. PatelM.K. BergeriI. BreseeJ.S. CowlingB.J. CrowcroftN.S. FahmyK. HirveS. KangG. KatzM.A. LanataC.F. L’Azou JacksonM. JoshiS. LipsitchM. MwendaJ.M. NogaredaF. OrensteinW.A. OrtizJ.R. PebodyR. SchragS.J. SmithP.G. SrikantiahP. SubissiL. ValencianoM. VaughnD.W. VeraniJ.R. Wilder-SmithA. FeikinD.R. Evaluation of post-introduction COVID-19 vaccine effectiveness: Summary of interim guidance of the World Health Organization.Vaccine202139304013402410.1016/j.vaccine.2021.05.09934119350
    [Google Scholar]
  20. BachireddyP. BurkhardtU.E. RajasagiM. WuC.J. Haematological malignancies: At the forefront of immunotherapeutic innovation.Nat. Rev. Cancer201515420121510.1038/nrc390725786696
    [Google Scholar]
  21. RucinskaM. NawrockiS. COVID-19 pandemic: Impact on cancer patients.MDPI202212470
    [Google Scholar]
  22. AgratiC. BartoliniB. BordoniV. LocatelliF. CapobianchiM.R. Di CaroA. CastillettiC. IppolitoG. Emerging viral infections in immunocompromised patients: A great challenge to better define the role of immune response.Front. Immunol.202314114787110.3389/fimmu.2023.114787136969202
    [Google Scholar]
  23. PaneM. BertiB. CapassoA. CorattiG. VaroneA. D’AmicoA. MessinaS. MassonR. SansoneV.A. DonatiM.A. AgostoC. BrunoC. RicciF. PiniA. GagliardiD. FilostoM. CortiS. LeoneD. PalermoC. OnesimoR. De SanctisR. RicciM. BitettiI. SframeliM. DosiC. AlbamonteE. TicciC. BrolattiN. BertiniE. FinkelR. MercuriE. PeraM.C. BravettiC. PiastraM. GenoveseO. CicalaG. ForcinaN. CarnicellaS. StancaG. SacchiniM. CatterucciaM. TosiM. CutreraR. CherchiC. ChiariniM.B. SalminF. PedemonteM. GovoniA. MizzoniI. MorandoS. ZaninR. RolleE. SalomonE. GiannottaM. ScarpiniG. ToscanoA. GittoE. MateriaR. D’AlessandroR. ITASMAc group Onasemnogene abeparvovec in spinal muscular atrophy: Predictors of efficacy and safety in naïve patients with spinal muscular atrophy and following switch from other therapies.EClinicalMedicine20235910199710.1016/j.eclinm.2023.10199737197706
    [Google Scholar]
  24. WhitakerH.J. TsangR.S.M. ByfordR. AndrewsN.J. SherlockJ. Sebastian PillaiP. WilliamsJ. ButtonE. CampbellH. SinnathambyM. VictorW. AnandS. LinleyE. HewsonJ. DArchangeloS. OtterA.D. EllisJ. HobbsR.F.D. HowsamG. ZambonM. RamsayM. BrownK.E. de LusignanS. AmirthalingamG. Lopez BernalJ. Pfizer-BioNTech and Oxford AstraZeneca COVID-19 vaccine effectiveness and immune response amongst individuals in clinical risk groups.J. Infect.202284567568310.1016/j.jinf.2021.12.04434990709
    [Google Scholar]
  25. SaccoK.A. AbrahamR.S. Consequences of B-cell-depleting therapy: Hypogammaglobulinemia and impaired B-cell reconstitution.Immunotherapy201810871372810.2217/imt‑2017‑017829569510
    [Google Scholar]
  26. LevinM.J. Safety of AZD7442 (Tixagevimab/Cilgavimab) for post-exposure Prophylaxis of COVID-19: Final analysis of the STORM CHASER phase 3 study.Open Forum Infect Dis.202310Suppl 2ofad500.1190
    [Google Scholar]
  27. BerryJ.D. Rational monoclonal antibody development to emerging pathogens, biothreat agents and agents of foreign animal disease: The antigen scale.Vet. J.2005170219321110.1016/j.tvjl.2004.04.02116129340
    [Google Scholar]
  28. Richard HobbsF. Efficacy and pharmacokinetics of AZD7442 (Tixagevimab/Cilgavimab) for treatment of mild-to-moderate COVID-19: 15-month final analysis of the TACKLE trial.Infect Dis Ther.2023133521533
    [Google Scholar]
  29. LevinM.J. UstianowskiA. ThomasS. TempletonA. YuanY. SeegobinS. HoulihanC.F. Menendez-PerezI. PollettS. ArendsR.H. BeavonR. DeyK. GarbesP. KellyE.J. KohG.C.K.W. IvanovS. NearK.A. SharbaughA. StreicherK. PangalosM.N. EsserM.T. AZD7442 (tixagevimab/cilgavimab) for post-exposure prophylaxis of symptomatic coronavirus disease 2019.Clin. Infect. Dis.20237671247125610.1093/cid/ciac89936411267
    [Google Scholar]
  30. SprangerJ. HombergA. SonnbergerM. NiederbergerM. Reporting guidelines for Delphi techniques in health sciences: A methodological review.Z. Evid. Fortbild. Qual. Gesundhwes.202217211110.1016/j.zefq.2022.04.02535718726
    [Google Scholar]
  31. OconA.J. OconK.E. BattagliaJ. LowS.K. NeupaneN. SaeedH. JamshedS. MustafaS.S. Real-world effectiveness of tixagevimab and cilgavimab (Evusheld) in patients with hematological malignancies.J. Hematol. (Brossard)202211621021510.14740/jh106236632574
    [Google Scholar]
  32. LevinM.J. UstianowskiA. De WitS. LaunayO. AvilaM. TempletonA. YuanY. SeegobinS. ElleryA. LevinsonD.J. AmberyP. ArendsR.H. BeavonR. DeyK. GarbesP. KellyE.J. KohG.C.K.W. NearK.A. PadillaK.W. PsachouliaK. SharbaughA. StreicherK. PangalosM.N. EsserM.T. PROVENT Study Group Intramuscular AZD7442 (tixagevimab–cilgavimab) for prevention of COVID-19.N. Engl. J. Med.2022386232188220010.1056/NEJMoa211662035443106
    [Google Scholar]
  33. StarkeyT. IonescuM.C. TilbyM. LittleM. BurkeE. FittallM.W. KhanS. LiuJ.K.H. PlattJ.R. MewR. TripathyA.R. WattsI. WilliamsS.T. AppannaN. Al-HajjiY. BarnardM. BennyL. BurnettA. BytyciJ. CattellE.L. ChengV. ClarkJ.J. EastlakeL. GerrandK. GhafoorQ. GrumettS. Harper-WynneC. KahnR. LeeA.J.X. LomasO. LydonA. MckenzieH. KinlochE. LamE. MurphyG. RhodesM. RobinsonK. PanneerselvamH. PascoeJ.S. PatelG. PatelV. PotterV.A. RandleA. RiggA.S. RobinsonT.M. RoylanceR. RoquesT.W. RozmanowskiS. RouxR.L. ShahK. SheehanR. SintlerM. SwarupS. TaylorH. TillettT. TuthillM. WilliamsS. YingY. BeggsA. IvesonT. LeeS.M. MiddletonG. MiddletonM. ProtheroeA. FowlerT. JohnsonP. LeeL.Y.W. NCRI Consumer Forum A population-scale temporal case–control evaluation of COVID-19 disease phenotype and related outcome rates in patients with cancer in England (UKCCP).Sci. Rep.20231311132710.1038/s41598‑023‑36990‑937491478
    [Google Scholar]
  34. AghaM.E. Suboptimal response to coronavirus disease 2019 messenger RNA vaccines in patients with hematologic malignancies: A need for vigilance in the postmasking era.Open Forum Infect Dis.202187ofab35310.1093/ofid/ofab353
    [Google Scholar]
  35. TilbyM. National clinical expert consensus statement.
    [Google Scholar]
  36. OtinianoA. van de WyngaertZ. BrissotE. DuleryR. GozlanJ. DaguenelA. Abi AadY. RicardL. StockerN. BanetA. BonninA. AlsulimanT. MarjanovicZ. SchnurigerA. CoppoP. LegrandO. LacombeK. MohtyM. MalardF. Tixagevimab/cilgavimab for Omicron SARS-CoV-2 infection in patients with haematologic diseases.Bone Marrow Transplant.202358334034210.1038/s41409‑022‑01894‑136481838
    [Google Scholar]
  37. SaadA. de LimaM. AnandS. BhattV.R. BookoutR. ChenG. CourielD. Di StasiA. El-JawahriA. GiraltS. GutmanJ. HoV. HorwitzM. HsuJ. JuckettM. DabajaM.K. LorenA.W. MeadeJ. MielcarekM. MoreiraJ. NakamuraR. NietoY. RoddyJ. SatyanarayanaG. SchroederM. TanC.R. TzachanisD. BurnsJ.L. PluchinoL.A. Hematopoietic cell transplantation, version 2.2020, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.202018559963410.6004/jnccn.2020.002132519831
    [Google Scholar]
  38. AngotziF. PetrellaM. BernoT. BinottoG. BonettoG. BrancaA. CarraroM. CavarettaC.A. CelliniA. D’AmoreF. ForlaniL. GianeselloI. GurrieriC. ImbergamoS. LessiF. MarocciaA. MazzettoF. PavanL. PezoneS. PiazzaF. PravatoS. RuoccoV. ScapinelloG. VianelloF. ZambelloR. ZattaI. ZolettoS. PadoanA. TrentinL. VisentinA. Tixagevimab/Cilgavimab as pre-exposure prophylaxis against SARS-CoV-2 in patients with hematological malignancies.Front. Oncol.202313121275210.3389/fonc.2023.121275237427126
    [Google Scholar]
  39. OwenC. RobinsonS. ChristofidesA. SehnL.H. A Canadian perspective: Monoclonal antibodies for pre-and post-exposure protection from COVID-19 in vulnerable patients with hematological malignancies.Curr. Oncol.20222963940394910.3390/curroncol2906031535735424
    [Google Scholar]
  40. Múñez-RubioE. Calderón-ParraJ. Gutiérrez-VillanuevaA. Fernández-CruzA. Ramos-MartínezA. Clinical experience in the treatment of COVID-19 with monoclonal antibodies in solid organ transplant recipients.Rev. Esp. Quimioter.202336Suppl 1Suppl. 1252810.37201/req/s01.07.202337997867
    [Google Scholar]
  41. El KarouiK. De VrieseA.S. COVID-19 in dialysis: Clinical impact, immune response, prevention, and treatment.Kidney Int.2022101588389410.1016/j.kint.2022.01.02235176326
    [Google Scholar]
  42. SinghS. KhanA. Clinical characteristics and outcomes of coronavirus disease 2019 among patients with preexisting liver disease in the United States: A multicenter research network studyGastroenterol.20201592768771
    [Google Scholar]
  43. PerreaultG. ChingC. NobelY.R. COVID-19 in patients with liver disease and liver transplant: Clinical implications, prevention, and management.Therap. Adv. Gastroenterol.2023161756284823118858610.1177/1756284823118858637521085
    [Google Scholar]
  44. BoekelL. SteenhuisM. HooijbergF. BestenY.R. van KempenZ.L.E. KummerL.Y. van DamK.P.J. StalmanE.W. VogelzangE.H. CristianawatiO. KeijzerS. VidarssonG. VoskuylA.E. WieskeL. EftimovF. van VollenhovenR. KuijpersT.W. van HamS.M. TasS.W. KillesteinJ. BoersM. NurmohamedM.T. RispensT. WolbinkG. Antibody development after COVID-19 vaccination in patients with autoimmune diseases in the Netherlands: A substudy of data from two prospective cohort studies.Lancet Rheumatol.2021311e778e78810.1016/S2665‑9913(21)00222‑834396154
    [Google Scholar]
  45. GoulenokT. DelavalL. DeloryN. FrançoisC. PapoT. DescampsD. FerréV.M. SacréK. Pre-exposure anti-SARS-CoV-2 monoclonal antibodies in severely immunocompromised patients with immune-mediated inflammatory diseases.Lancet Rheumatol.202247e458e46110.1016/S2665‑9913(22)00099‑635434653
    [Google Scholar]
  46. AmeratungaR. LonghurstH. SteeleR. LehnertK. LeungE. BrooksA.E.S. WoonS.T. Common variable immunodeficiency disorders, T-cell responses to SARS-CoV-2 vaccines, and the risk of chronic COVID-19.J. Allergy Clin. Immunol. Pract.20219103575358310.1016/j.jaip.2021.06.01934182162
    [Google Scholar]
  47. LiJ.Z. GandhiR.T. Realizing the potential of anti–SARS-CoV-2 monoclonal antibodies for COVID-19 management.JAMA2022327542742910.1001/jama.2021.1999435029644
    [Google Scholar]
  48. FocosiD. CasadevallA. A critical analysis of the use of cilgavimab plus tixagevimab monoclonal antibody cocktail (Evusheld™) for COVID-19 prophylaxis and treatment.Viruses2022149199910.3390/v1409199936146805
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882347591250115073949
Loading
/content/journals/nemj/10.2174/0102506882347591250115073949
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test