Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882

Abstract

Introduction

Osteoporosis is a bone condition that disrupts bone structure, reduces its strength, and increases the risk of fractures. While osteoporosis is commonly recognized as a disorder affecting the elderly, it can also develop in younger adults and be accompanied by other disorders. Screening individuals and diagnosing those at higher risk of osteoporosis early may significantly reduce the likelihood of complications and associated costs.

Objective

Serum biochemical factors are rather easily measured and accessible, making them valuable as predictive indicators for the prognosis and early diagnosis of osteoporosis. However, there is not enough evidence about possible relationships between these factors and osteoporosis in different bones.

Methods

In this descriptive cross-sectional study, we analyzed osteoporotic indices, including bone marrow density (BMD), T-score, Z-score, and standardized BMD, in a large population of individuals at risk of osteoporosis. We then investigated potential relationships between biochemical values and osteoporosis indices in the evaluated subjects. The collected data were analyzed using the Kruskal-Wallis test and Spearman correlation coefficient methods.

Results

A total of 1104 patients were enrolled, with 87.7% being female and 12.3% male. The mean age of the patients was 56.48 ± 11.62 ( ± SE) years. Among them, 251 patients had normal bone density, while 556 patients had osteopenia, and 270 patients had osteoporosis. The Kruskal-Wallis analysis demonstrated that serum levels of Calcium (=0.014), Phosphorus ( =0.002), and Vitamin D3 ( =0.045) were positively associated with the risk of osteoporosis, whereas serum albumin ( =0.005) and Alkaline phosphatase ( =0.002) levels were negatively associated. Additionally, the Spearman correlation coefficient showed a negative association between hemoglobin levels and BMD in both the spine ( =0.046) and femur ( =0.049).

Conclusion

Serum levels of biochemical factors may serve as primary predictive markers for the early diagnosis of individuals at higher risk of osteoporosis and bone fractures. In addition to factors involved in calcium homeostasis, serum levels of albumin and hemoglobin are also associated with BMD scores and the development of osteoporosis.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882303034240726061322
2024-01-01
2025-10-16
Loading full text...

Full text loading...

/deliver/fulltext/nemj/5/1/NEMJ-5-E02506882303034.html?itemId=/content/journals/nemj/10.2174/0102506882303034240726061322&mimeType=html&fmt=ahah

References

  1. SalariN. GhasemiH. MohammadiL. BehzadiM. RabieeniaE. ShohaimiS. MohammadiM. The global prevalence of osteoporosis in the world: A comprehensive systematic review and meta-analysis.J. Orthop. Surg. Res.202116160910.1186/s13018‑021‑02772‑033397415
    [Google Scholar]
  2. LoS.S.T. Prevalence of osteoporosis in elderly women in Hong Kong.Osteoporos. Sarcopenia202173929710.1016/j.afos.2021.09.00134632111
    [Google Scholar]
  3. CurtisE.M. HarveyN.C. CooperC. The burden of osteoporosis.Osteoporosis: A lifecourse epidemiology approach to skeletal health.CRC Press201812010.1201/9781351234627‑1
    [Google Scholar]
  4. SözenT. ÖzışıkL. Calik BasaranN. An overview and management of osteoporosis.Eur. J. Rheumatol.201741465610.5152/eurjrheum.2016.04828293453
    [Google Scholar]
  5. CareyJ.J. DelaneyM.F. T-Scores and Z-Scores.Clin. Rev. Bone Miner. Metab.20108311312110.1007/s12018‑009‑9064‑4
    [Google Scholar]
  6. MorinS. LeslieW.D. Manitoba Bone Density Program High bone mineral density is associated with high body mass index.Osteoporos. Int.20092071267127110.1007/s00198‑008‑0797‑619034375
    [Google Scholar]
  7. FuggleN.R. CurtisE.M. WardK.A. HarveyN.C. DennisonE.M. CooperC. Fracture prediction, imaging and screening in osteoporosis.Nat. Rev. Endocrinol.201915953554710.1038/s41574‑019‑0220‑831189982
    [Google Scholar]
  8. GregsonC.L. CompstonJ.E. New national osteoporosis guidance—implications for geriatricians.Age Ageing2022514afac04410.1093/ageing/afac04435403198
    [Google Scholar]
  9. Rashki kemmakA. ReazpourA. JahangiriR. NikjooS. FarabiH. SoleimanpourS. Economic burden of osteoporosis in the world: A systematic review.Med. J. Islam. Repub. Iran20203415410.47176/mjiri.34.15433437750
    [Google Scholar]
  10. GolobA.L. LayaM.B. Osteoporosis.Med. Clin. North Am.201599358760610.1016/j.mcna.2015.01.01025841602
    [Google Scholar]
  11. LeeJ. VasikaranS. Current recommendations for laboratory testing and use of bone turnover markers in management of osteoporosis.Ann. Lab. Med.201232210511210.3343/alm.2012.32.2.10522389876
    [Google Scholar]
  12. RyanC.S. PetkovV.I. AdlerR.A. Osteoporosis in men: The value of laboratory testing.Osteoporos. Int.20112261845185310.1007/s00198‑010‑1421‑020936403
    [Google Scholar]
  13. PouresmaeiliF. Kamali DehghanB. KamareheiM. Yong MengG. A comprehensive overview on osteoporosis and its risk factors.Ther. Clin. Risk Manag.2018142029204910.2147/TCRM.S13800030464484
    [Google Scholar]
  14. MallucheH.H. DavenportD.L. CantorT. Monier-FaugereM.C. Bone mineral density and serum biochemical predictors of bone loss in patients with CKD on dialysis.Clin. J. Am. Soc. Nephrol.2014971254126210.2215/CJN.0947091324948144
    [Google Scholar]
  15. PolzonettiV. PucciarelliS. VincenzettiS. PolidoriP. Dietary intake of vitamin d from dairy products reduces the risk of osteoporosis.Nutrients2020126174310.3390/nu1206174332532150
    [Google Scholar]
  16. AkkawiI. ZmerlyH. Osteoporosis: Current concepts.Joints20186212212710.1055/s‑0038‑166079030051110
    [Google Scholar]
  17. ClynesM.A. HarveyN.C. CurtisE.M. FuggleN.R. DennisonE.M. CooperC. The epidemiology of osteoporosis.Br. Med. Bull.2020133110511732282039
    [Google Scholar]
  18. ShevrojaE. CafarelliF.P. GuglielmiG. HansD. DXA parameters, trabecular bone score (TBS) and bone mineral density (BMD), in fracture risk prediction in endocrine-mediated secondary osteoporosis.Endocrine2021741202810.1007/s12020‑021‑02806‑x34245432
    [Google Scholar]
  19. NielsenB.R. AndersenH.E. HaddockB. HovindP. SchwarzP. SuettaC. Prevalence of muscle dysfunction concomitant with osteoporosis in a home-dwelling Danish population aged 65–93 years - The copenhagen sarcopenia study.Exp. Gerontol.202013811097410.1016/j.exger.2020.11097432464171
    [Google Scholar]
  20. LiuC. KuangX. LiK. GuoX. DengQ. LiD. Effects of combined calcium and vitamin D supplementation on osteoporosis in postmenopausal women: A systematic review and meta-analysis of randomized controlled trials.Food Funct.20201112108171082710.1039/D0FO00787K33237064
    [Google Scholar]
  21. WadeS.W. StraderC. FitzpatrickL.A. AnthonyM.S. O’MalleyC.D. Estimating prevalence of osteoporosis: Examples from industrialized countries.Arch. Osteoporos.20149118210.1007/s11657‑014‑0182‑324847682
    [Google Scholar]
  22. ChenP. LiZ. HuY. Prevalence of osteoporosis in China: A meta-analysis and systematic review.BMC Public Health2016161103910.1186/s12889‑016‑3712‑727716144
    [Google Scholar]
  23. ZarowitzB.J. ChengL.I. AllenC. O’SheaT. StolshekB. Osteoporosis prevalence and characteristics of treated and untreated nursing home residents with osteoporosis.J. Am. Med. Dir. Assoc.201516434134810.1016/j.jamda.2015.01.07325726417
    [Google Scholar]
  24. AkiyamaS. TanakaT. UdakaJ. InagakiN. KumagaeY. ChazonoM. MatsuokaT. SaitoM. Factors affecting spine–femur discordance in the percentage of young adult mean on dual-energy X-ray absorptiometry in the elderly population: A retrospective study.BMC Musculoskelet. Disord.20222317610.1186/s12891‑022‑05015‑335062924
    [Google Scholar]
  25. CozzolinoM. DussoA.S. SlatopolskyE. Role of calcium-phosphate product and bone-associated proteins on vascular calcification in renal failure.J. Am. Soc. Nephrol.200112112511251610.1681/ASN.V1211251111675430
    [Google Scholar]
  26. ShakerJ.L. DeftosL. Calcium and phosphate homeostasis.Endotext South Dartmouth (MA)2018
    [Google Scholar]
  27. LundeA.V. Barrett-ConnorE. MortonD.J. Serum albumin and bone mineral density in healthy older men and women: The rancho bernardo study.Osteoporos. Int.19988654755110.1007/s00198005009710326059
    [Google Scholar]
  28. AfshinniaF. WongK.K. SundaramB. AckermannR.J. PennathurS. Hypoalbuminemia and osteoporosis: Reappraisal of a controversy.J. Clin. Endocrinol. Metab.2016101116717510.1210/jc.2015‑321226600169
    [Google Scholar]
  29. XiuS. ChhetriJ.K. SunL. MuZ. WangL. Association of serum prealbumin with risk of osteoporosis in older adults with type 2 diabetes mellitus: A cross-sectional study.Ther. Adv. Chronic Dis.20191010.1177/204062231985736131223465
    [Google Scholar]
  30. Kragh-HansenU. VorumH. Quantitative analyses of the interaction between calcium ions and human serum albumin.Clin. Chem.199339220220810.1093/clinchem/39.2.2028432006
    [Google Scholar]
  31. SchwartzG.G. TretliS. KlugM.G. RobsahmT.E. Women who develop ovarian cancer show an increase in serum calcium and a decrease in serum albumin. A longitudinal study in the Janus Serum Bank Cohort.Gynecol. Oncol.2020159126426910.1016/j.ygyno.2020.07.00632723677
    [Google Scholar]
  32. CuiR. ZhaoZ. FeiZ. LiY. GaoW. Anemia is related to osteoporosis in Chinese type 2 diabetic patients.Arch. Osteoporos.202116116110.1007/s11657‑021‑01030‑434716464
    [Google Scholar]
  33. XiuS. MuZ. SunL. ZhaoL. FuJ. Hemoglobin level and osteoporosis in Chinese elders with type 2 diabetes mellitus.Nutr. Diabetes20221211910.1038/s41387‑022‑00198‑z35414128
    [Google Scholar]
  34. KaradagF. CildagO. YurekliY. GurgeyO. Should COPD patients be routinely evaluated for bone mineral density?J. Bone Miner. Metab.200321424224612811630
    [Google Scholar]
  35. FujimotoH. FujimotoK. UedaA. OhataM. Hypoxemia is a risk factor for bone mass loss.J. Bone Miner. Metab.199917321121610.1007/s00774005008710757682
    [Google Scholar]
  36. Baraldi-JunkinsC.A. BeckA.C. RothsteinG. Hematopoiesis and cytokines. Relevance to cancer and aging.Hematol. Oncol. Clin. North Am.20001414561, viii10.1016/S0889‑8588(05)70277‑X10680071
    [Google Scholar]
  37. ShahenV.A. GerbaixM. KoeppenkastropS. LimS.F. McFarlaneK.E. NguyenA.N.L. PengX.Y. WeissN.B. Brennan-SperanzaT.C. Multifactorial effects of hyperglycaemia, hyperinsulinemia and inflammation on bone remodelling in type 2 diabetes mellitus.Cytokine Growth Factor Rev.20205510911810.1016/j.cytogfr.2020.04.00132354674
    [Google Scholar]
  38. ShiozawaY. TaichmanR.S. Elucidating which cell erythropoietin targets in bone.Nat. Rev. Endocrinol.201511526326410.1038/nrendo.2015.3225752274
    [Google Scholar]
  39. SinghD.K. WinocourP. FarringtonK. Erythropoietic stress and anemia in diabetes mellitus.Nat. Rev. Endocrinol.20095420421010.1038/nrendo.2009.1719352318
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882303034240726061322
Loading
/content/journals/nemj/10.2174/0102506882303034240726061322
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Bone marrow density; Femur; Kruskal-Wallis test; Osteoporosis; Serum albumin; Spine; Vitamin D3
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test