Skip to content
2000
Volume 22, Issue 17
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Alzheimer's disease (AD) is an intricate neurodegenerative disease with chronic and progressive development whose typical neuropathological features encompass senile plaques and neurofibrillary tangles, respectively formed by the extracellular deposition of amyloid-beta (Aβ) and the intracellular accumulation of hyperphosphorylated tau protein in the brain, particularly in limbic and cortical regions. The pathological changes are considered to be caused by the loss of Aβ and tau protein clearance mechanisms under pathological conditions, which leads to an imbalance between the rates of clearance and production. Consequently, the main strategies for treating AD aim to reduce the production of Aβ and hyperphosphorylated tau protein in the brain, inhibit their accumulation, or accelerate their clearance. Although drugs utilizing these therapeutic strategies have been studied successively, their therapeutic effects have generally been less than ideal. Fortunately, recent advances have been made in clearance strategies for these abnormally expressed proteins, including immunotherapies and nanomedicines targeting Aβ or tau, which could represent an important breakthrough for treating AD. Here, we review recent development of the strategies for the removal of abnormal proteins and provide new ideas and methods for treating AD.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/1389557522666220214092824
2022-09-01
2025-09-02
Loading full text...

Full text loading...

/content/journals/mrmc/10.2174/1389557522666220214092824
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test