Skip to content
2000
Volume 18, Issue 4
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Infections caused by pathogenic bacteria are a major health concern throughout the world. There is a great need to develop novel antibacterial agents with new mechanisms of action. Lipopolysaccharides (LPS) are the main component of the outer membrane of Gram-negative bacteria, serving as a permeability barrier, which protects the bacteria from many antibiotics. The UDP-3-O-(R-3- hydroxyacyl)-N-acetylglucosamine deacetylase (LpxC), a Zn2+-dependent enzyme, catalyzes the first irreversible step of the biosynthesis of lipid A, the hydrophobic membrane anchor of LPS being essential for cell viability. Additionally, it shares no sequence or structural homology with any mammalian proteins. Therefore, it may become a novel target for the new drugs against Gram-negative bacteria. Thus, research on LpxC inhibitors as new antibacterial agents has become an attractive field in the development of the novel antibiotic therapy of Gram-negative bacteria. In this review, we will summarize the recent progress in the structure and catalytic mechanism of LpxC and the research and development of LpxC inhibitors.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/1389557516666161013120253
2018-03-01
2025-10-19
Loading full text...

Full text loading...

/content/journals/mrmc/10.2174/1389557516666161013120253
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test