Skip to content
2000
image of Stress Granules: Novel Regulators of Programmed Cell Death

Abstract

Stress granules (SGs) are membraneless cytoplasmic condensates formed through liquid-liquid phase separation (LLPS) in response to diverse cellular stressors. These dynamic macromolecular complexes serve as critical signaling hubs that orchestrate adaptive responses by sequestering translationally stalled mRNAs, RNA-binding proteins, and key signaling molecules. Substantial evidence implicates SGs in the pathogenesis of numerous disorders, where they dysregulate essential cellular pathways, including stress-induced cell death cascades. While regulated cell death constitutes a physiological process vital for tissue homeostasis, aberrant or excessive cell death represents a pathogenic driver in neurodegeneration, ischemic injuries, autoimmune disorders, infectious diseases, and oncological pathologies. Consequently, deciphering the molecular governance of cell death holds great potential for developing novel therapeutics. Although proteomic analyses reveal that SGs sequester multiple cell death regulators, the precise mechanisms through which these components modulate death pathways remain incompletely resolved. This review systematically examines the causal relationships between SGs dynamics and major cell death modalities, including apoptosis, necroptosis, pyroptosis, and ferroptosis. By synthesizing recent advances in SG biology and cell death regulation, we elucidate how stress-adapted SG proteomes functionally contribute to death pathway activation or suppression. This mechanistic synthesis not only resolves current controversies regarding SGs’ function in different cell death models but also identifies targetable vulnerabilities at the SGs-death pathway interface, offering innovative frameworks for treating SGs-associated pathologies.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575415756251008112135
2025-11-04
2025-12-20
Loading full text...

Full text loading...

References

  1. Jain S. Wheeler J.R. Walters R.W. Agrawal A. Barsic A. Parker R. ATPase-Modulated stress granules contain a diverse proteome and substructure. Cell 2016 164 3 487 498 10.1016/j.cell.2015.12.038 26777405
    [Google Scholar]
  2. Buchan J.R. mRNP granules. RNA Biol. 2014 11 8 1019 1030 10.4161/15476286.2014.972208 25531407
    [Google Scholar]
  3. Anderson P. Kedersha N. RNA granules: Post-transcriptional and epigenetic modulators of gene expression. Nat. Rev. Mol. Cell Biol. 2009 10 6 430 436 10.1038/nrm2694 19461665
    [Google Scholar]
  4. Mahboubi H. Stochaj U. Cytoplasmic stress granules: Dynamic modulators of cell signaling and disease. Biochim. Biophys. Acta Mol. Basis Dis. 2017 1863 4 884 895 10.1016/j.bbadis.2016.12.022 28095315
    [Google Scholar]
  5. Buchan J.R. Parker R. Eukaryotic stress granules: The ins and outs of translation. Mol. Cell 2009 36 6 932 941 10.1016/j.molcel.2009.11.020 20064460
    [Google Scholar]
  6. Strasser A. Vaux D.L. Cell death in the origin and treatment of cancer. Mol. Cell 2020 78 6 1045 1054 10.1016/j.molcel.2020.05.014 32516599
    [Google Scholar]
  7. Elmore S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007 35 4 495 516 10.1080/01926230701320337 17562483
    [Google Scholar]
  8. Favaloro B. Allocati N. Graziano V. Di Ilio C. De Laurenzi V. Role of apoptosis in disease. Aging 2012 4 5 330 349 10.18632/aging.100459 22683550
    [Google Scholar]
  9. Glick D. Barth S. Macleod K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol. 2010 221 1 3 12 10.1002/path.2697 20225336
    [Google Scholar]
  10. Mizushima N. Levine B. Cuervo A.M. Klionsky D.J. Autophagy fights disease through cellular self-digestion. Nature 2008 451 7182 1069 1075 10.1038/nature06639 18305538
    [Google Scholar]
  11. Nixon R.A. Yang D.S. Autophagy failure in Alzheimer’s disease—locating the primary defect. Neurobiol. Dis. 2011 43 1 38 45 10.1016/j.nbd.2011.01.021 21296668
    [Google Scholar]
  12. Bertheloot D. Latz E. Franklin B.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell. Mol. Immunol. 2021 18 5 1106 1121 10.1038/s41423‑020‑00630‑3 33785842
    [Google Scholar]
  13. Yuan J. Amin P. Ofengeim D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat. Rev. Neurosci. 2019 20 1 19 33 10.1038/s41583‑018‑0093‑1 30467385
    [Google Scholar]
  14. Hu B. Shi D. Lv X. Chen S. Huang Q. Xie M. Shao Z. Prognostic and clinicopathological significance of MLKL expression in cancer patients: A meta-analysis. BMC Cancer 2018 18 1 736 10.1186/s12885‑018‑4655‑4 30005626
    [Google Scholar]
  15. Fink S.L. Cookson B.T. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol. 2006 8 11 1812 1825 10.1111/j.1462‑5822.2006.00751.x 16824040
    [Google Scholar]
  16. Fink S.L. Cookson B.T. Pyroptosis and host cell death responses during Salmonella infection. Cell. Microbiol. 2007 9 11 2562 2570 10.1111/j.1462‑5822.2007.01036.x 17714514
    [Google Scholar]
  17. Dixon S.J. Lemberg K.M. Lamprecht M.R. Skouta R. Zaitsev E.M. Gleason C.E. Patel D.N. Bauer A.J. Cantley A.M. Yang W.S. Morrison B. Stockwell B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012 149 5 1060 1072 10.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  18. Hofmann S. Kedersha N. Anderson P. Ivanov P. Molecular mechanisms of stress granule assembly and disassembly. Biochim. Biophys. Acta Mol. Cell Res. 2021 1868 1 118876 10.1016/j.bbamcr.2020.118876 33007331
    [Google Scholar]
  19. Markmiller S. Soltanieh S. Server K.L. Mak R. Jin W. Fang M.Y. Luo E.C. Krach F. Yang D. Sen A. Fulzele A. Wozniak J.M. Gonzalez D.J. Kankel M.W. Gao F.B. Bennett E.J. Lécuyer E. Yeo G.W. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 2018 172 3 590 604.e13 10.1016/j.cell.2017.12.032 29373831 5969999
    [Google Scholar]
  20. Protter D.S.W. Parker R. Principles and properties of stress granules. Trends Cell Biol. 2016 26 9 668 679 10.1016/j.tcb.2016.05.004 27289443
    [Google Scholar]
  21. Alam U. Kennedy D. Rasputin a decade on and more promiscuous than ever? A review of G3BPs. Biochim. Biophys. Acta Mol. Cell Res. 2019 1866 3 360 370 10.1016/j.bbamcr.2018.09.001 30595162
    [Google Scholar]
  22. Reineke L.C. Dougherty J.D. Pierre P. Lloyd R.E. Large G3BP-induced granules trigger eIF2α phosphorylation. Mol. Biol. Cell 2012 23 18 3499 3510 10.1091/mbc.e12‑05‑0385 22833567
    [Google Scholar]
  23. Kedersha N.L. Gupta M. Li W. Miller I. Anderson P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 α to the assembly of mammalian stress granules. J. Cell Biol. 1999 147 7 1431 1442 10.1083/jcb.147.7.1431 10613902
    [Google Scholar]
  24. Lin Y. Protter D.S.W. Rosen M.K. Parker R. Formation and maturation of phase-separated liquid droplets by RNA-Binding proteins. Mol. Cell 2015 60 2 208 219 10.1016/j.molcel.2015.08.018 26412307
    [Google Scholar]
  25. de Nadal E. Ammerer G. Posas F. Controlling gene expression in response to stress. Nat. Rev. Genet. 2011 12 12 833 845 10.1038/nrg3055 22048664
    [Google Scholar]
  26. Thedieck K. Holzwarth B. Prentzell M.T. Boehlke C. Kläsener K. Ruf S. Sonntag A.G. Maerz L. Grellscheid S.N. Kremmer E. Nitschke R. Kuehn E.W. Jonker J.W. Groen A.K. Reth M. Hall M.N. Baumeister R. Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. Cell 2013 154 4 859 874 10.1016/j.cell.2013.07.031 23953116
    [Google Scholar]
  27. Arimoto K. Fukuda H. Imajoh-Ohmi S. Saito H. Takekawa M. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat. Cell Biol. 2008 10 11 1324 1332 10.1038/ncb1791 18836437
    [Google Scholar]
  28. Kim W.J. Back S.H. Kim V. Ryu I. Jang S.K. Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions. Mol. Cell. Biol. 2005 25 6 2450 2462 10.1128/MCB.25.6.2450‑2462.2005 15743837
    [Google Scholar]
  29. Ivanov P. Kedersha N. Anderson P. Stress granules and processing bodies in translational control. Cold Spring Harb. Perspect. Biol. 2019 11 5 a032813 10.1101/cshperspect.a032813 30082464
    [Google Scholar]
  30. Liu Y. Liu Y. He Y. Zhang N. Zhang S. Li Y. Wang X. Liang Y. Chen X. Zhao W. Chen B. Wang L. Luo D. Yang Q. Hypoxia‐induced FUS–circTBC1D14 stress granules promote autophagy in TNBC. Adv. Sci. 2023 10 10 2204988 10.1002/advs.202204988 36806670
    [Google Scholar]
  31. Zhang H. Zhang S. He H. Zhao W. Chen J. Shao R. GAP 161 targets and downregulates G 3 BP to suppress cell growth and potentiate cisplaitin‐mediated cytotoxicity to colon carcinoma HCT 116 cells. Cancer Sci. 2012 103 10 1848 1856 10.1111/j.1349‑7006.2012.02361.x 22703643
    [Google Scholar]
  32. Viswanathan S.R. Powers J.T. Einhorn W. Hoshida Y. Ng T.L. Toffanin S. O’Sullivan M. Lu J. Phillips L.A. Lockhart V.L. Shah S.P. Tanwar P.S. Mermel C.H. Beroukhim R. Azam M. Teixeira J. Meyerson M. Hughes T.P. Llovet J.M. Radich J. Mullighan C.G. Golub T.R. Sorensen P.H. Daley G.Q. Lin28 promotes transformation and is associated with advanced human malignancies. Nat. Genet. 2009 41 7 843 848 10.1038/ng.392 19483683
    [Google Scholar]
  33. Tsai N.P. Wei L.N. RhoA/ROCK1 signaling regulates stress granule formation and apoptosis. Cell. Signal. 2010 22 4 668 675 10.1016/j.cellsig.2009.12.001 20004716
    [Google Scholar]
  34. Franchini D.M. Lanvin O. Tosolini M. Patras de Campaigno E. Cammas A. Péricart S. Scarlata C.M. Lebras M. Rossi C. Ligat L. Pont F. Arimondo P.B. Laurent C. Ayyoub M. Despas F. Lapeyre-Mestre M. Millevoi S. Fournié J.J. Microtubule-driven stress granule dynamics regulate inhibitory immune checkpoint expression in T cells. Cell Rep. 2019 26 1 94 107.e7 10.1016/j.celrep.2018.12.014 30605689
    [Google Scholar]
  35. Moeller B.J. Cao Y. Li C.Y. Dewhirst M.W. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors. Cancer Cell 2004 5 5 429 441 10.1016/S1535‑6108(04)00115‑1 15144951
    [Google Scholar]
  36. Shukla S. Parker R. Hypo- and hyper-assembly diseases of RNA–Protein complexes. Trends Mol. Med. 2016 22 7 615 628 10.1016/j.molmed.2016.05.005 27263464
    [Google Scholar]
  37. Vanderweyde T. Apicco D.J. Youmans-Kidder K. Ash P.E.A. Cook C. Lummertz da Rocha E. Jansen-West K. Frame A.A. Citro A. Leszyk J.D. Ivanov P. Abisambra J.F. Steffen M. Li H. Petrucelli L. Wolozin B. Interaction of tau with the RNA-Binding protein TIA1 regulates tau pathophysiology and toxicity. Cell Rep. 2016 15 7 1455 1466 10.1016/j.celrep.2016.04.045 27160897
    [Google Scholar]
  38. Yu Q.Y. Ye L.Q. Li H.L. Molecular interaction of stress granules with tau and autophagy in Alzheimer’s disease. Neurochem. Int. 2022 157 105342 10.1016/j.neuint.2022.105342 35461975
    [Google Scholar]
  39. Marrone L. Poser I. Casci I. Japtok J. Reinhardt P. Janosch A. Andree C. Lee H.O. Moebius C. Koerner E. Reinhardt L. Cicardi M.E. Hackmann K. Klink B. Poletti A. Alberti S. Bickle M. Hermann A. Pandey U.B. Hyman A.A. Sterneckert J.L. Isogenic FUS-eGFP iPSC reporter lines enable quantification of FUS stress granule pathology that is rescued by drugs inducing autophagy. Stem Cell Reports 2018 10 2 375 389 10.1016/j.stemcr.2017.12.018 29358088
    [Google Scholar]
  40. Paget M. Cadena C. Ahmad S. Wang H.T. Jordan T.X. Kim E. Koo B. Lyons S.M. Ivanov P. tenOever B. Mu X. Hur S. Stress granules are shock absorbers that prevent excessive innate immune responses to dsRNA. Mol. Cell 2023 83 7 1180 1196.e8 10.1016/j.molcel.2023.03.010 37028415 10170497
    [Google Scholar]
  41. Le Sage V. Cinti, A.; McCarthy, S.; Amorim, R.; Rao, S.; Daino, G.L.; Tramontano, E.; Branch, D.R.; Mouland, A.J. Ebola virus VP35 blocks stress granule assembly. Virology 2017 502 73 83 10.1016/j.virol.2016.12.012 28013103
    [Google Scholar]
  42. Li T. Li X. Wang X. Chen X. Zhao G. Liu C. Bao M. Song J. Li J. Huang L. Rong J. Tian K. Deng J. Zhu J. Cai X. Bu Z. Zheng J. Weng C. African swine fever virus pS273R antagonizes stress granule formation by cleaving the nucleating protein G3BP1 to facilitate viral replication. J. Biol. Chem. 2023 299 7 104844 10.1016/j.jbc.2023.104844 37209818
    [Google Scholar]
  43. Fujikawa D. Nakamura T. Yoshioka D. Li Z.Z. Moriizumi H. Taguchi M. Tokai-Nishizumi N. Kozuka-Hata H. Oyama M. Takekawa M. Stress granule formation inhibits stress-induced apoptosis by selectively sequestering executioner caspases. Curr. Biol. 2023 33 10 1967 1981.e8 10.1016/j.cub.2023.04.012
    [Google Scholar]
  44. Chen H.Y. Lin L.T. Wang M.L. Tsai K.L. Huang P.I. Yang Y.P. Lee Y.Y. Chen Y.W. Lo W.L. Lan Y.T. Chiou S.H. Lin C.M. Ma H.I. Chen M.T. Musashi-1 promotes chemoresistant granule formation by PKR/eIF2α signalling cascade in refractory glioblastoma. Biochim. Biophys. Acta Mol. Basis Dis. 2018 1864 5 1850 1861 10.1016/j.bbadis.2018.02.017 29486283
    [Google Scholar]
  45. Wang X. Chen T. Li C. Li W. Zhou X. Li Y. Luo D. Zhang N. Chen B. Wang L. Zhao W. Fu S. Yang Q. CircRNA-CREIT inhibits stress granule assembly and overcomes doxorubicin resistance in TNBC by destabilizing PKR. J. Hematol. Oncol. 2022 15 1 122 10.1186/s13045‑022‑01345‑w 36038948
    [Google Scholar]
  46. Krecic A.M. Swanson M.S. hnRNP complexes: Composition, structure, and function. Curr. Opin. Cell Biol. 1999 11 3 363 371 10.1016/S0955‑0674(99)80051‑9 10395553
    [Google Scholar]
  47. Geuens T. Bouhy D. Timmerman V. The hnRNP family: Insights into their role in health and disease. Hum. Genet. 2016 135 8 851 867 10.1007/s00439‑016‑1683‑5 27215579
    [Google Scholar]
  48. Wall M.L. Bera A. Wong F.K. Lewis S.M. Cellular stress orchestrates the localization of hnRNP H to stress granules. Exp. Cell Res. 2020 394 1 112111 10.1016/j.yexcr.2020.112111 32473225
    [Google Scholar]
  49. Kim J. Yeon A. Kim W.K. Kim K.H. Ohn T. Stress-induced accumulation of HnRNP K into stress granules. J. Cancer Sci. Clin. Ther. 2021 5 4 434 447 10.26502/jcsct.5079129 35340804
    [Google Scholar]
  50. Richardson P.G. Mitsiades C. Schlossman R. Ghobrial I. Hideshima T. Munshi N. Anderson K.C. Bortezomib in the front-line treatment of multiple myeloma. Expert Rev. Anticancer Ther. 2008 8 7 1053 1072 10.1586/14737140.8.7.1053 18588451
    [Google Scholar]
  51. Fournier M.J. Gareau C. Mazroui R. The chemotherapeutic agent bortezomib induces the formation of stress granules. Cancer Cell Int. 2010 10 1 12 10.1186/1475‑2867‑10‑12 20429927
    [Google Scholar]
  52. Gareau C. Fournier M-J. Filion C. Coudert L. Martel D. Labelle Y. Mazroui R. Mazroui R. p21WAF1/CIP1 upregulation through the stress granule-associated protein CUGBP1 confers resistance to bortezomib-mediated apoptosis. PLoS One 2011 6 5 e20254 10.1371/journal.pone.0020254
    [Google Scholar]
  53. Bittencourt L.F.F. Negreiros-Lima G.L. Sousa L.P. Silva A.G. Souza I.B.S. Ribeiro R.I.M.A. Dutra M.F. Silva R.F. Dias A.C.F. Soriani F.M. Martins W.K. Barcelos L.S. G3BP1 knockdown sensitizes U87 glioblastoma cell line to Bortezomib by inhibiting stress granules assembly and potentializing apoptosis. J. Neurooncol. 2019 144 3 463 473 10.1007/s11060‑019‑03252‑6 31392596
    [Google Scholar]
  54. Nomura T. Fukai T. Matsumoto J. Ohmori T. Constituents of the cultivated mulberry tree. Planta Med. 1982 46 9 28 32 10.1055/s‑2007‑970012 17396934
    [Google Scholar]
  55. Li H. Wang Q. Dong L. Liu C. Sun Z. Gao L. Wang X. Morusin suppresses breast cancer cell growth in vitro and in vivo through C/EBPβ and PPARγ mediated lipoapoptosis. J. Exp. Clin. Cancer Res. 2015 34 1 137 10.1186/s13046‑015‑0252‑4 26538209
    [Google Scholar]
  56. Kang S. Kim E.O. Kim S.H. Lee J.H. Ahn K.S. Yun M. Lee S.G. Morusin induces apoptosis by regulating expression of Bax and survivin in human breast cancer cells. Oncol. Lett. 2017 13 6 4558 4562 10.3892/ol.2017.6006 28599457
    [Google Scholar]
  57. Xue J. Li R. Zhao X. Ma C. Lv X. Liu L. Liu P. Morusin induces paraptosis-like cell death through mitochondrial calcium overload and dysfunction in epithelial ovarian cancer. Chem. Biol. Interact. 2018 283 59 74 10.1016/j.cbi.2018.02.003 29421517
    [Google Scholar]
  58. Park Y.J. Choi D.W. Cho S.W. Han J. Yang S. Choi C.Y. Stress granule formation attenuates RACK1-Mediated apoptotic cell death induced by morusin. Int. J. Mol. Sci. 2020 21 15 5360 10.3390/ijms21155360 32731602
    [Google Scholar]
  59. Dai H. Wang G. Cao W. Qi W. Chen W. Guo H. Stress granules affect the sensitivity of renal cancer cells to sorafenib by sequestering and stabilizing COX 2 mRNA. Oncol. Lett. 2023 25 6 274 10.3892/ol.2023.13860 37216166
    [Google Scholar]
  60. Arbyn M. Weiderpass E. Bruni L. de Sanjosé S. Saraiya M. Ferlay J. Bray F. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob. Health 2020 8 2 e191 e203 10.1016/S2214‑109X(19)30482‑6 31812369
    [Google Scholar]
  61. Zhu H. Wu T.C. Chen W.Q. Zhou L.J. Wu Y. Zeng L. Pei H.P. Roles of galectin‐7 and S100A9 in cervical squamous carcinoma: Clinicopathological and in vitro evidence. Int. J. Cancer 2013 132 5 1051 1059 10.1002/ijc.27764 22864818
    [Google Scholar]
  62. Liu C. Zhou L. Chen J. Yang Z. Chen S. Wang X. Liu X. Li Y. Zhang C. Wang Y. Chen Y. Li H. Shen C. Sun H. Galectin-7 promotes cisplatin efficacy by facilitating apoptosis and G3BP1 degradation in cervical cancer. Biochem. Pharmacol. 2023 217 115834 10.1016/j.bcp.2023.115834 37778447
    [Google Scholar]
  63. Wei G. Chen D.F. Lai X.P. Liu D.H. Deng R.D. Zhou J.H. Zhang S.X. Li Y.W. Li H. Zhang Q.D. Muscone exerts neuroprotection in an experimental model of stroke via inhibition of the fas pathway. Nat. Prod. Commun 2012 7 8 1934578X1200700826 10.1177/1934578X1200700826 22978231
    [Google Scholar]
  64. Wu Q. Li H. Wu Y. Shen W. Zeng L. Cheng H. He L. Protective effects of muscone on ischemia–reperfusion injury in cardiac myocytes. J. Ethnopharmacol. 2011 138 1 34 39 10.1016/j.jep.2011.08.009 21856397
    [Google Scholar]
  65. Yu L. Wang N. Zhang Y. Wang Y. Li J. Wu Q. Liu Y. Neuroprotective effect of muscone on glutamate-induced apoptosis in PC12 cells via antioxidant and Ca2+ antagonism. Neurochem. Int. 2014 70 10 21 10.1016/j.neuint.2014.03.003 24636892
    [Google Scholar]
  66. Huang Y. Xu F. Mei S. Liu X. Zhao F. Wei L. Fan Z. Hu Y. Wang L. Ai B. Cen S. Liang C. Guo F. MxB inhibits long interspersed nlm type 1 retrotransposition. PLoS Genet. 2022 18 2 e1010034 10.1371/journal.pgen.1010034 35171907
    [Google Scholar]
  67. Sun B. Luo J. Li Z. Chen D. Wang Q. Si W. Muscone alleviates neuronal injury via increasing stress granules formation and reducing apoptosis in acute ischemic stroke. Exp. Neurol. 2024 373 114678 10.1016/j.expneurol.2024.114678 38185313
    [Google Scholar]
  68. Si W. Li Z. Huang Z. Ye S. Li X. Li Y. Kuang W. Chen D. Zhu M. RNA binding protein motif 3 inhibits oxygen-glucose deprivation/reoxygenation-induced apoptosis through promoting stress granules formation in PC12 cells and rat primary cortical neurons. Front. Cell. Neurosci. 2020 14 559384 10.3389/fncel.2020.559384 32982696
    [Google Scholar]
  69. Liao J.K. Seto M. Noma K. Rho kinase (ROCK) inhibitors. J. Cardiovasc. Pharmacol. 2007 50 1 17 24 10.1097/FJC.0b013e318070d1bd 17666911
    [Google Scholar]
  70. Sebbagh M. Hamelin J. Bertoglio J. Solary E. Bréard J. Direct cleavage of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-independent manner. J. Exp. Med. 2005 201 3 465 471 10.1084/jem.20031877 15699075
    [Google Scholar]
  71. Si W. Ye S. Ren Z. Liu X. Wu Z. Li Y. Zhou J. Zhang S. Li Y. Deng R. Chen D. miR 335 promotes stress granule formation to inhibit apoptosis by targeting ROCK2 in acute ischemic stroke. Int. J. Mol. Med. 2019 43 3 1452 1466 10.3892/ijmm.2019.4073 30747210
    [Google Scholar]
  72. Li W. Qin R. Tang Z. Wang C. Xu H. Li W. Leng Y. Wang Y. Xia Z. Inhibition of inflammation and apoptosis through the cyclic GMP‐AMP synthase‐stimulator of interferon genes pathway by stress granules after ALKBH5 demethylase activation during diabetic myocardial ischaemia‐reperfusion injury. Diabetes Obes. Metab. 2024 26 9 3940 3957 10.1111/dom.15743 38988216
    [Google Scholar]
  73. Nanchal R. Subramanian R. Karvellas C.J. Hollenberg S.M. Peppard W.J. Singbartl K. Truwit J. Al-Khafaji A.H. Killian A.J. Alquraini M. Alshammari K. Alshamsi F. Belley-Cote E. Cartin-Ceba R. Dionne J.C. Galusca D.M. Huang D.T. Hyzy R.C. Junek M. Kandiah P. Kumar G. Morgan R.L. Morris P.E. Olson J.C. Sieracki R. Steadman R. Taylor B. Alhazzani W. Guidelines for the management of adult acute and acute-on-chronic liver failure in the ICU: Cardiovascular, endocrine, hematologic, pulmonary, and renal considerations. Crit. Care Med. 2020 48 3 e173 e191 10.1097/CCM.0000000000004192 32058387
    [Google Scholar]
  74. Li W.Y. Yang F. Li X. Wang L.W. Wang Y. Stress granules inhibit endoplasmic reticulum stress-mediated apoptosis during hypoxia-induced injury in acute liver failure. World J. Gastroenterol. 2023 29 8 1315 1329 10.3748/wjg.v29.i8.1315 36925453
    [Google Scholar]
  75. López Sambrooks C. Carpio M.A. Hallak M.E. Arginylated calreticulin at plasma membrane increases susceptibility of cells to apoptosis. J. Biol. Chem. 2012 287 26 22043 22054 10.1074/jbc.M111.338335 22577148
    [Google Scholar]
  76. Polak P. Hall M.N. mTOR and the control of whole body metabolism. Curr. Opin. Cell Biol. 2009 21 2 209 218 10.1016/j.ceb.2009.01.024 19261457
    [Google Scholar]
  77. Dhanasekaran D.N. Reddy E.P. JNK signaling in apoptosis. Oncogene 2008 27 48 6245 6251 10.1038/onc.2008.301 18931691
    [Google Scholar]
  78. Ganassi M. Mateju D. Bigi I. Mediani L. Poser I. Lee H.O. Seguin S.J. Morelli F.F. Vinet J. Leo G. Pansarasa O. Cereda C. Poletti A. Alberti S. Carra S. A surveillance function of the HSPB8-BAG3-HSP70 chaperone complex ensures stress granule integrity and dynamism. Mol. Cell 2016 63 5 796 810 10.1016/j.molcel.2016.07.021 27570075
    [Google Scholar]
  79. Mayer M.P. Bukau B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell. Mol. Life Sci. 2005 62 6 670 684 10.1007/s00018‑004‑4464‑6 15770419
    [Google Scholar]
  80. Wang A. Abulaiti X. Zhang H. Su H. Liu G. Gao S. Li L. Cancer cells evade stress-induced apoptosis by promoting HSP70-Dependent clearance of stress granules. Cancers 2022 14 19 4671 10.3390/cancers14194671 36230594
    [Google Scholar]
  81. Zou T. Rao J.N. Liu L. Xiao L. Cui Y.H. Jiang Z. Ouyang M. Donahue J.M. Wang J.Y. Polyamines inhibit the assembly of stress granules in normal intestinal epithelial cells regulating apoptosis. Am. J. Physiol. Cell Physiol. 2012 303 1 C102 C111 10.1152/ajpcell.00009.2012 22555848
    [Google Scholar]
  82. Arimoto-Matsuzaki K. Saito H. Takekawa M. TIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress-induced apoptosis. Nat. Commun. 2016 7 1 10252 10.1038/ncomms10252 26738979
    [Google Scholar]
  83. Takahashi M. Higuchi M. Matsuki H. Yoshita M. Ohsawa T. Oie M. Fujii M. Stress granules inhibit apoptosis by reducing reactive oxygen species production. Mol. Cell. Biol. 2013 33 4 815 829 10.1128/MCB.00763‑12 23230274
    [Google Scholar]
  84. Kitajima H. Maruyama R. Niinuma T. Yamamoto E. Takasawa A. Takasawa K. Ishiguro K. Tsuyada A. Suzuki R. Sudo G. Kubo T. Mitsuhashi K. Idogawa M. Tange S. Toyota M. Yoshido A. Kumegawa K. Kai M. Yanagihara K. Tokino T. Osanai M. Nakase H. Suzuki H. TM4SF1-AS1 inhibits apoptosis by promoting stress granule formation in cancer cells. Cell Death Dis. 2023 14 7 424 10.1038/s41419‑023‑05953‑3 37443145
    [Google Scholar]
  85. Liu S. Yao S. Yang H. Liu S. Wang Y. Autophagy: Regulator of cell death. Cell Death Dis. 2023 14 10 648 10.1038/s41419‑023‑06154‑8 37794028
    [Google Scholar]
  86. Yang C. Wang Z. Kang Y. Yi Q. Wang T. Bai Y. Liu Y. Stress granule homeostasis is modulated by TRIM21-mediated ubiquitination of G3BP1 and autophagy-dependent elimination of stress granules. Autophagy 2023 19 7 1934 1951 10.1080/15548627.2022.2164427 36692217
    [Google Scholar]
  87. Buchan J.R. Kolaitis R.M. Taylor J.P. Parker R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 2013 153 7 1461 1474 10.1016/j.cell.2013.05.037 23791177
    [Google Scholar]
  88. Omer A. Patel D. Moran J.L. Lian X.J. Di Marco S. Gallouzi I.E. Autophagy and heat-shock response impair stress granule assembly during cellular senescence. Mech. Ageing Dev. 2020 192 111382 10.1016/j.mad.2020.111382 33049246
    [Google Scholar]
  89. Taylor J.P. Multisystem proteinopathy. Neurology 2015 85 8 658 660 10.1212/WNL.0000000000001862 26208960
    [Google Scholar]
  90. Meyer H. Bug M. Bremer S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 2012 14 2 117 123 10.1038/ncb2407 22298039
    [Google Scholar]
  91. Meyer H. Weihl C.C. The VCP/p97 system at a glance: Connecting cellular function to disease pathogenesis. J. Cell. Sci 2014 127 (PT 18) jcs.093831 10.1242/jcs.093831 25146396
    [Google Scholar]
  92. Wang B. Maxwell B.A. Joo J.H. Gwon Y. Messing J. Mishra A. Shaw T.I. Ward A.L. Quan H. Sakurada S.M. Pruett-Miller S.M. Bertorini T. Vogel P. Kim H.J. Peng J. Taylor J.P. Kundu M. ULK1 and ULK2 regulate stress granule disassembly through phosphorylation and activation of VCP/p97. Mol. Cell 2019 74 4 742 757.e8 10.1016/j.molcel.2019.03.027 30979586
    [Google Scholar]
  93. Bento-Abreu A. Van Damme P. Van Den Bosch L. Robber-echt W. The neurobiology of amyotrophic lateral sclerosis. Eur. J. Neurosci. 2010 31 12 2247 2265 10.1111/j.1460‑9568.2010.07260.x 20529130
    [Google Scholar]
  94. Zhang Y. Gu J. Sun Q. Aberrant stress granule dynamics and aggrephagy in ALS pathogenesis. Cells 2021 10 9 2247 10.3390/cells10092247 34571896
    [Google Scholar]
  95. Ryu H.H. Jun M.H. Min K.J. Jang D.J. Lee Y.S. Kim H.K. Lee J.A. Autophagy regulates amyotrophic lateral sclerosis-linked fused in sarcoma-positive stress granules in neurons. Neurobiol. Aging 2014 35 12 2822 2831 10.1016/j.neurobiolaging.2014.07.026 25216585
    [Google Scholar]
  96. Matus S. Bosco D.A. Hetz C. Autophagy meets fused in sarcoma-positive stress granules. Neurobiol. Aging 2014 35 12 2832 2835 10.1016/j.neurobiolaging.2014.08.019 25444610
    [Google Scholar]
  97. DeJesus-Hernandez M. Mackenzie I.R. Boeve B.F. Boxer A.L. Baker M. Rutherford N.J. Nicholson A.M. Finch N.A. Flynn H. Adamson J. Kouri N. Wojtas A. Sengdy P. Hsiung G.Y.R. Karydas A. Seeley W.W. Josephs K.A. Coppola G. Geschwind D.H. Wszolek Z.K. Feldman H. Knopman D.S. Petersen R.C. Miller B.L. Dickson D.W. Boylan K.B. Graff-Radford N.R. Rademakers R. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011 72 2 245 256 10.1016/j.neuron.2011.09.011 21944778
    [Google Scholar]
  98. Chitiprolu M. Jagow C. Tremblay V. Bondy-Chorney E. Paris G. Savard A. Palidwor G. Barry F.A. Zinman L. Keith J. Rogaeva E. Robertson J. Lavallée-Adam M. Woulfe J. Couture J.F. Côté J. Gibbings D. A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy. Nat. Commun. 2018 9 1 2794 10.1038/s41467‑018‑05273‑7 30022074
    [Google Scholar]
  99. Silva J.M. Rodrigues S. Sampaio-Marques B. Gomes P. Neves-Carvalho A. Dioli C. Soares-Cunha C. Mazuik B.F. Takashima A. Ludovico P. Wolozin B. Sousa N. Sotiropoulos I. Dysregulation of autophagy and stress granule-related proteins in stress-driven Tau pathology. Cell Death Differ. 2019 26 8 1411 1427 10.1038/s41418‑018‑0217‑1 30442948
    [Google Scholar]
  100. Li J. Gao X. Zhang Z. Lai Y. Lin X. Lin B. Ma M. Liang X. Li X. Lv W. Lin Y. Zhang N. CircCD44 plays oncogenic roles in triple-negative breast cancer by modulating the miR-502–5p/KRAS and IGF2BP2/Myc axes. Mol. Cancer 2021 20 1 138 10.1186/s12943‑021‑01444‑1 34696797
    [Google Scholar]
  101. Krisenko M.O. Higgins R.L. Ghosh S. Zhou Q. Trybula J.S. Wang W.H. Geahlen R.L. Syk is recruited to stress granules and promotes their clearance through autophagy. J. Biol. Chem. 2015 290 46 27803 27815 10.1074/jbc.M115.642900 26429917
    [Google Scholar]
  102. Zheng Y. Zhu G. Yan J. Tang Y. Han S. Yin J. Peng B. He X. Liu W. The late domain of prototype foamy virus gag facilitates autophagic clearance of stress granules by promoting amphisome formation. J. Virol. 2020 94 7 e01719 e19 10.1128/JVI.01719‑19 31969431
    [Google Scholar]
  103. Sun L. Wang H. Wang Z. He S. Chen S. Liao D. Wang L. Yan J. Liu W. Lei X. Wang X. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 2012 148 1-2 213 227 10.1016/j.cell.2011.11.031 22265413
    [Google Scholar]
  104. Wang H. Sun L. Su L. Rizo J. Liu L. Wang L.F. Wang F.S. Wang X. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 2014 54 1 133 146 10.1016/j.molcel.2014.03.003 24703947
    [Google Scholar]
  105. Place D.E. Samir P. Malireddi R.K.S. Kanneganti T.D. Integrated stress response restricts macrophage necroptosis. Life Sci. Alliance 2022 5 1 e202101260 10.26508/lsa.202101260 34764207
    [Google Scholar]
  106. Yang T. Wang G. Zhang M. Hu X. Li Q. Yun F. Xing Y. Song X. Zhang H. Hu G. Qian Y. Triggering endogenous Z-RNA sensing for anti-tumor therapy through ZBP1-dependent necroptosis. Cell Rep. 2023 42 11 113377 10.1016/j.celrep.2023.113377 37922310
    [Google Scholar]
  107. Szczerba M. Johnson B. Acciai F. Gogerty C. McCaughan M. Williams J. Kibler K.V. Jacobs B.L. Canonical cellular stress granules are required for arsenite-induced necroptosis mediated by Z-DNA–binding protein 1. Sci. Signal. 2023 16 776 eabq0837 10.1126/scisignal.abq0837 36917643
    [Google Scholar]
  108. Liao Y. Wang H.X. Mao X. Fang H. Wang H. Li Y. Sun Y. Meng C. Tan L. Song C. Qiu X. Ding C. RIP1 is a central signaling protein in regulation of TNF-α/TRAIL mediated apoptosis and necroptosis during newcastle disease virus infection. Oncotarget 2017 8 26 43201 43217 10.18632/oncotarget.17970 28591723
    [Google Scholar]
  109. Orning P. Lien E. Fitzgerald K.A. Gasdermins and their role in immunity and inflammation. J. Exp. Med. 2019 216 11 2453 2465 10.1084/jem.20190545 31548300
    [Google Scholar]
  110. Shi J. Zhao Y. Wang K. Shi X. Wang Y. Huang H. Zhuang Y. Cai T. Wang F. Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015 526 7575 660 665 10.1038/nature15514 26375003
    [Google Scholar]
  111. Samir P. Kesavardhana S. Patmore D.M. Gingras S. Malireddi R.K.S. Karki R. Guy C.S. Briard B. Place D.E. Bhattacharya A. Sharma B.R. Nourse A. King S.V. Pitre A. Burton A.R. Pelletier S. Gilbertson R.J. Kanneganti T.D. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature 2019 573 7775 590 594 10.1038/s41586‑019‑1551‑2 31511697 6980284
    [Google Scholar]
  112. Yoshioka D. Nakamura T. Kubota Y. Takekawa M. Formation of the NLRP3 inflammasome inhibits stress granule assembly by multiple mechanisms. J. Biochem. 2024 175 6 629 641 10.1093/jb/mvae009 38299728
    [Google Scholar]
  113. Klotz K. Weistenhöfer W. Neff F. Hartwig A. van Thriel C. Drexler H. The health effects of aluminum exposure. Dtsch. Arztebl. Int. 2017 114 39 653 659 10.3238/arztebl.2017.0653 29034866
    [Google Scholar]
  114. Hao W. Zhu X. Liu Z. Song Y. Wu S. Lu X. Yang J. Jin C. Aluminum exposure induces central nervous system impairment via activating NLRP3-medicated pyroptosis pathway. Ecotoxicol. Environ. Saf. 2023 264 115401 10.1016/j.ecoenv.2023.115401 37634479
    [Google Scholar]
  115. Tang D. Kang R. Berghe T.V. Vandenabeele P. Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019 29 5 347 364 10.1038/s41422‑019‑0164‑5 30948788
    [Google Scholar]
  116. He Z. Yang J. Sui C. Zhang P. Wang T. Mou T. Sun K. Wang Y. Xu Z. Li G. Deng H. Shi J. Zhuang B. FAM98A promotes resistance to 5-fluorouracil in colorectal cancer by suppressing ferroptosis. Arch. Biochem. Biophys. 2022 722 109216 10.1016/j.abb.2022.109216 35421356
    [Google Scholar]
  117. Gao H. Gu T. Gao X. Song Z. Liu J. Song Y. Zhang G. Sun Y. African swine fever virus enhances viral replication by increasing intracellular reduced glutathione levels, which suppresses stress granule formation. Vet. Res. 2024 55 1 172 10.1186/s13567‑024‑01433‑4 39707514
    [Google Scholar]
  118. Peng Y. Long Y. Wan C. NOD-like receptor X1 promotes autophagy and inactivates NLR family pyrin domain containing 3 inflammasome signaling by binding autophagy-related gene 5 to alleviate cerebral ischemia/reperfusion-induced neuronal injury. J. Neuropathol. Exp. Neurol. 2025 84 3 223 235 10.1093/jnen/nlae129 39707156
    [Google Scholar]
  119. Lawlor K.E. Murphy J.M. Vince J.E. Gasdermin and MLKL necrotic cell death effectors: Signaling and diseases. Immunity 2024 57 3 429 445 10.1016/j.immuni.2024.02.011 38479360
    [Google Scholar]
  120. Fantone S. Piani F. Olivieri F. Rippo M.R. Sirico A. Di Simone N. Marzioni D. Tossetta G. Role of SLC7A11/xCT in ovarian cancer. Int. J. Mol. Sci. 2024 25 1 587 10.3390/ijms25010587 38203758
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575415756251008112135
Loading
/content/journals/mrmc/10.2174/0113895575415756251008112135
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: autophagy ; cell death ; pyroptosis ; ferroptosis ; apoptosis ; necroptosis ; Stress granules
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test