Skip to content
2000
image of Advancement in Gene Therapy for the Treatment of Parkinson’s Disease: A Comprehensive Review

Abstract

Parkinson’s Disease (PD) is a neurological disease marked by the buildup of α-synuclein. The main symptom of the disease is the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). Gene therapy may be a treatment option for PD and has been used in clinical trials to treat a variety of illnesses in the human brain. Currently, the majority of gene therapy clinical studies are being conducted to treat PD. The primary objective is to enhance medications that address motor issues. Patients with PD have been the subjects of several gene therapy treatment techniques that have been developed and tested. Genes are typically transported to neurons in brain regions relevant to PD, such as the striatum, using viral vectors. It may only be necessary to administer these gene delivery methods once, and they may induce expression to persist for an extended time. Several neurotrophic factors, including neurturin, GDNF, BDNF, CDNF, and VEGF-A, have demonstrated promising outcomes in preclinical models as potential disease-modifying targets that may slow disease development. Currently available treatment regimens for PD mostly comprise the administration of levodopa (L-DOPA), dopamine agonists or MAO-B inhibitors, or surgery in the form of deep brain stimulation or neuroablative surgery, among other options. Many different targeting moieties for PD treatment, as well as current treatment techniques and gene therapy methodologies, are covered in this review article. The research reviewed the relevant literature on the potential role of gene therapy for the treatment of PD. The research articles are obtained through various databases, including ScienceDirect, Scopus, PubMed, and Google Scholar. This review includes various targeting moieties for the treatment of PD, current PD treatment strategies, PD treatment using gene therapy, comparison of risk-benefit ratios of gene therapy vs. DBS/drugs, and gene vector technology in the treatment of PD. This review compiles data on Parkinson's disease, its current treatment strategies, and the potential role of gene therapy in its treatment.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575405524251008112752
2025-11-04
2026-02-22
Loading full text...

Full text loading...

References

  1. Smith T.J. Gene therapy: Opportunities for pharmacy in the 21st century. Am. J. Pharm. Educ. 1996 60 2 213 215 10.1016/S0002‑9459(24)04585‑6
    [Google Scholar]
  2. Dunbar C.E. High K.A. Joung J.K. Kohn D.B. Ozawa K. Sadelain M. Gene therapy comes of age. Science 2018 359 6372 eaan4672 10.1126/science.aan4672 29326244
    [Google Scholar]
  3. Stoner N. Gene therapy applications. Clin. Pharm. 2009 1 270 273
    [Google Scholar]
  4. Wang Z. Hu B. Zhu L. Lin J. Xu M. Wang D. Hopf bifurcation analysis for Parkinson oscillation with heterogeneous delays: A theoretical derivation and simulation analysis. Commun. Nonlinear Sci. Numer. Simul. 2022 114 106614 10.1016/j.cnsns.2022.106614
    [Google Scholar]
  5. Goetz C.G. The history of Parkinson’s disease: early clinical descriptions and neurological therapies. Cold Spring Harb. Perspect. Med. 2011 1 1 a008862 10.1101/cshperspect.a008862 22229124
    [Google Scholar]
  6. Gibb W.R. Lees A.J. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1988 51 6 745 752 10.1136/jnnp.51.6.745 2841426
    [Google Scholar]
  7. Marras C. Lang A. Parkinson’s disease subtypes: lost in translation? J. Neurol. Neurosurg. Psychiatry 2013 84 4 409 415 10.1136/jnnp‑2012‑303455 22952329
    [Google Scholar]
  8. Hu B. Wang X. Lu S. Ying X. A study of bidirectional control of Parkinson’s beta oscillations by basal ganglia. Chaos Solitons Fractals 2025 195 116267 10.1016/j.chaos.2025.116267
    [Google Scholar]
  9. Wang Z. Hu B. Zhou W. Xu M. Wang D. Hopf bifurcation mechanism analysis in an improved cortex-basal ganglia network with distributed delays: An application to Parkinson’s disease. Chaos Solitons Fractals 2023 166 113022 10.1016/j.chaos.2022.113022
    [Google Scholar]
  10. Chen Q. He Y. Yang K. Gene therapy for Parkinson’s disease: progress and challenges. Curr. Gene Ther. 2005 5 1 71 80 10.2174/1566523052997505 15638712
    [Google Scholar]
  11. Collier T.J. Sortwell C.E. Therapeutic potential of nerve growth factors in Parkinson’s disease. Drugs Aging 1999 14 4 261 287 10.2165/00002512‑199914040‑00003 10319241
    [Google Scholar]
  12. Airaksinen M.S. Saarma M. The GDNF family: Signalling, biological functions and therapeutic value. Nat. Rev. Neurosci. 2002 3 5 383 394 10.1038/nrn812 11988777
    [Google Scholar]
  13. Lei Z. Jiang Y. Li T. Zhu J. Zeng S. Signaling of glial cell line-derived neurotrophic factor and its receptor GFRα1 induce Nurr1 and Pitx3 to promote survival of grafted midbrain-derived neural stem cells in a rat model of Parkinson disease. J. Neuropathol. Exp. Neurol. 2011 70 9 736 747 10.1097/NEN.0b013e31822830e5 21865882
    [Google Scholar]
  14. Zetterstrِm, R.H.; Solomin, L.; Jansson, L.; Hoffer, B.J.; Olson, L.; Perlmann, T. Dopamine neuron agenesis in Nurr1-deficient mice. Science 1997 276 5310 248 250 10.1126/science.276.5310.248 9092472
    [Google Scholar]
  15. Gill S.S. Patel N.K. Hotton G.R. O’Sullivan K. McCarter R. Bunnage M. Brooks D.J. Svendsen C.N. Heywood P. Direct brain infusion of glial cell line–derived neurotrophic factor in Parkinson disease. Nat. Med. 2003 9 5 589 595 10.1038/nm850 12669033
    [Google Scholar]
  16. Slevin J.T. Gerhardt G.A. Smith C.D. Gash D.M. Kryscio R. Young B. Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line—derived neurotrophic factor. J. Neurosurg. 2005 102 2 216 222 10.3171/jns.2005.102.2.0216 15739547
    [Google Scholar]
  17. Ai Y. Markesbery W. Zhang Z. Grondin R. Elseberry D. Gerhardt G.A. Gash D.M. Intraputamenal infusion of GDNF in aged rhesus monkeys: Distribution and dopaminergic effects. J. Comp. Neurol. 2003 461 2 250 261 10.1002/cne.10689 12724841
    [Google Scholar]
  18. Maswood N. Grondin R. Zhang Z. Stanford J. Surgener S. Gash D. Gerhardt G. Effects of chronic intraputamenal infusion of glial cell line-derived neurotrophic factor (GDNF) in aged Rhesus monkeys. Neurobiol. Aging 2002 23 5 881 889 10.1016/S0197‑4580(02)00022‑2 12392792
    [Google Scholar]
  19. Grondin R. Zhang Z. Yi A. Cass W.A. Maswood N. Andersen A.H. Elsberry D.D. Klein M.C. Gerhardt G.A. Gash D.M. Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced Parkinsonian monkeys. Brain 2002 125 10 2191 2201 10.1093/brain/awf234 12244077
    [Google Scholar]
  20. Patel N.K. Bunnage M. Plaha P. Svendsen C.N. Heywood P. Gill S.S. Intraputamenal infusion of glial cell line–derived neurotrophic factor in PD: A two‐year outcome study. Ann. Neurol. 2005 57 2 298 302 10.1002/ana.20374 15668979
    [Google Scholar]
  21. Lang A.E. Gill S. Patel N.K. Lozano A. Nutt J.G. Penn R. Brooks D.J. Hotton G. Moro E. Heywood P. Brodsky M.A. Burchiel K. Kelly P. Dalvi A. Scott B. Stacy M. Turner D. Wooten V.G.F. Elias W.J. Laws E.R. Dhawan V. Stoessl A.J. Matcham J. Coffey R.J. Traub M. Randomized controlled trial of intraputamenal glial cell line–derived neurotrophic factor infusion in Parkinson disease. Ann. Neurol. 2006 59 3 459 466 10.1002/ana.20737 16429411
    [Google Scholar]
  22. Chen Y.H. Harvey B.K. Hoffman A.F. Wang Y. Chiang Y.H. Lupica C.R. MPTP‐induced deficits in striatal synaptic plasticity are prevented by glial cell line‐derived neurotrophic factor expressed via an adeno‐associated viral vector. FASEB J. 2008 22 1 261 275 10.1096/fj.07‑8797com 17690153
    [Google Scholar]
  23. Tian Y. Tang C.J. Wang J. Feng Y. Chen X. Wang L. Qiao X. Sun S. Favorable effects of VEGF gene transfer on a rat model of Parkinson disease using adeno-associated viral vectors. Neurosci. Lett. 2007 421 3 239 244 10.1016/j.neulet.2007.05.033 17574749
    [Google Scholar]
  24. Lu-Nguyen N.B. Broadstock M. Schliesser M.G. Bartholomae C.C. von Kalle C. Schmidt M. Yáñez-Muñoz, R.J. Transgenic expression of human glial cell line-derived neurotrophic factor from integration-deficient lentiviral vectors is neuroprotective in a rodent model of Parkinson’s disease. Hum. Gene Ther. 2014 25 7 631 641 10.1089/hum.2014.003 24635742
    [Google Scholar]
  25. Sterky F.H. Pernold K. Harvey B.K. Lindqvist E. Hoffer B.J. Olson L. Glial cell line-derived neurotrophic factor partially ameliorates motor symptoms without slowing neurodegeneration in mice with respiratory chain-deficient dopamine neurons. Cell Transplant. 2013 22 9 1529 1539 10.3727/096368912X657693 23051605
    [Google Scholar]
  26. Espadas-Alvarez A.J. Bannon M.J. Orozco-Barrios C.E. Escobedo-Sanchez L. Ayala-Davila J. Reyes-Corona D. Soto-Rodriguez G. Escamilla-Rivera V. De Vizcaya-Ruiz A. Eugenia Gutierrez-Castillo M. Padilla-Viveros A. Martinez-Fong D. Regulation of human GDNF gene expression in nigral dopaminergic neurons using a new doxycycline-regulated NTS-polyplex nanoparticle system. Nanomedicine 2017 13 4 1363 1375 10.1016/j.nano.2017.02.006 28219741
    [Google Scholar]
  27. Rajput S. Malviya R. Uniyal P. Advancements in the diagnosis, prognosis, and treatment of retinoblastoma. Can. J. Ophthalmol. 2024 59 5 281 299 10.1016/j.jcjo.2024.01.018 38369298
    [Google Scholar]
  28. Su X. Kells A.P. Huang E.J. Lee H.S. Hadaczek P. Beyer J. Bringas J. Pivirotto P. Penticuff J. Eberling J. Federoff H.J. Forsayeth J. Bankiewicz K.S. Safety evaluation of AAV2-GDNF gene transfer into the dopaminergic nigrostriatal pathway in aged and parkinsonian rhesus monkeys. Hum. Gene Ther. 2009 20 12 1627 1640 10.1089/hum.2009.103 19671001
    [Google Scholar]
  29. Herzog C.D. Dass B. Gasmi M. Bakay R. Stansell J.E. Tuszynski M. Bankiewicz K. Chen E.Y. Chu Y. Bishop K. Kordower J.H. Bartus R.T. Transgene expression, bioactivity, and safety of CERE-120 (AAV2-neurturin) following delivery to the monkey striatum. Mol. Ther. 2008 16 10 1737 1744 10.1038/mt.2008.170 18728639
    [Google Scholar]
  30. Warren Olanow C. Bartus R.T. Baumann T.L. Factor S. Boulis N. Stacy M. Turner D.A. Marks W. Larson P. Starr P.A. Jankovic J. Simpson R. Watts R. Guthrie B. Poston K. Henderson J.M. Stern M. Baltuch G. Goetz C.G. Herzog C. Kordower J.H. Alterman R. Lozano A.M. Lang A.E. Gene delivery of neurturin to putamen and substantia nigra in P arkinson disease: A double‐blind, randomized, controlled trial. Ann. Neurol. 2015 78 2 248 257 10.1002/ana.24436 26061140
    [Google Scholar]
  31. Bartus R.T. Baumann T.L. Siffert J. Herzog C.D. Alterman R. Boulis N. Turner D.A. Stacy M. Lang A.E. Lozano A.M. Olanow C.W. Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology 2013 80 18 1698 1701 10.1212/WNL.0b013e3182904faa 23576625
    [Google Scholar]
  32. Axelsen T.M. Woldbye D.P.D. Gene therapy for Parkinson’s disease, an update. J. Parkinsons Dis. 2018 8 2 195 215 10.3233/JPD‑181331 29710735
    [Google Scholar]
  33. Hagg T. Manthorpe M. Vahlsing H.L. Varon S. Delayed treatment with nerve growth factor reverses the apparent loss of cholinergic neurons after acute brain damage. Exp. Neurol. 1988 101 2 303 312 10.1016/0014‑4886(88)90013‑1 3396647
    [Google Scholar]
  34. Kordower J.H. Herzog C.D. Dass B. Bakay R.A.E. Stansell J. Gasmi M. Bartus R.T. Delivery of neurturin by AAV2 (CERE‐120)‐mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP‐treated monkeys. Ann. Neurol. 2006 60 6 706 715 10.1002/ana.21032 17192932
    [Google Scholar]
  35. Herzog C.D. Dass B. Holden J.E. Stansell J. Gasmi M. Tuszynski M.H. Bartus R.T. Kordower J.H. Striatal delivery of CERE‐120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys. Mov. Disord. 2007 22 8 1124 1132 10.1002/mds.21503 17443702
    [Google Scholar]
  36. Marks W.J. Ostrem J.L. Verhagen L. Starr P.A. Larson P.S. Bakay R.A.E. Taylor R. Cahn-Weiner D.A. Stoessl A.J. Olanow C.W. Bartus R.T. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2–neurturin) to patients with idiopathic Parkinson’s disease: An open-label, phase I trial. Lancet Neurol. 2008 7 5 400 408 10.1016/S1474‑4422(08)70065‑6 18387850
    [Google Scholar]
  37. Bartus R.T. Herzog C.D. Chu Y. Wilson A. Brown L. Siffert J. Johnson E.M. Olanow C.W. Mufson E.J. Kordower J.H. Bioactivity of AAV2‐neurturin gene therapy (CERE‐120): Differences between Parkinson’s disease and nonhuman primate brains. Mov. Disord. 2011 26 1 27 36 10.1002/mds.23442 21322017
    [Google Scholar]
  38. Bartus R.T. Kordower J.H. Johnson E.M. Brown L. Kruegel B.R. Chu Y. Baumann T.L. Lang A.E. Olanow C.W. Herzog C.D. Post-mortem assessment of the short and long-term effects of the trophic factor neurturin in patients with α-synucleinopathies. Neurobiol. Dis. 2015 78 162 171 10.1016/j.nbd.2015.03.023 25841760
    [Google Scholar]
  39. Runeberg-Roos P. Piccinini E. Penttinen A.M. Mنtlik, K.; Heikkinen, H.; Kuure, S.; Bespalov, M.M.; Perنnen, J.; Garea-Rodrيguez, E.; Fuchs, E.; Airavaara, M.; Kalkkinen, N.; Penn, R.; Saarma, M. Developing therapeutically more efficient Neurturin variants for treatment of Parkinson’s disease. Neurobiol. Dis. 2016 96 335 345 10.1016/j.nbd.2016.07.008 27425888
    [Google Scholar]
  40. Benedetti F. Frisaldi E. Carlino E. Giudetti L. Pampallona A. Zibetti M. Lanotte M. Lopiano L. Teaching neurons to respond to placebos. J. Physiol. 2016 594 19 5647 5660 10.1113/JP271322 26861164
    [Google Scholar]
  41. Decressac M. Mattsson B. Bjِörklund, A. Comparison of the behavioural and histological characteristics of the 6-OHDA and α-synuclein rat models of Parkinson’s disease. Exp. Neurol. 2012 235 1 306 315 10.1016/j.expneurol.2012.02.012 22394547
    [Google Scholar]
  42. Venda L.L. Cragg S.J. Buchman V.L. Wade-Martins R. α-Synuclein and dopamine at the crossroads of Parkinson’s disease. Trends Neurosci. 2010 33 12 559 568 10.1016/j.tins.2010.09.004 20961626
    [Google Scholar]
  43. Decressac M. Ulusoy A. Mattsson B. Georgievska B. Romero-Ramos M. Kirik D. Bjِörklund, A. GDNF fails to exert neuroprotection in a rat -synuclein model of Parkinson’s disease. Brain 2011 134 8 2302 2311 10.1093/brain/awr149 21712347
    [Google Scholar]
  44. Kirik D. Rosenblad C. Burger C. Lundberg C. Johansen T.E. Muzyczka N. Mandel R.J. Bjِörklund, A. Parkinson-like neurodegeneration induced by targeted overexpression of α-synuclein in the nigrostriatal system. J. Neurosci. 2002 22 7 2780 2791 10.1523/JNEUROSCI.22‑07‑02780.2002 11923443
    [Google Scholar]
  45. Jankovic J. Chen S. Le W.D. The role of Nurr1 in the development of dopaminergic neurons and Parkinson’s disease. Prog. Neurobiol. 2005 77 1-2 128 138 10.1016/j.pneurobio.2005.09.001 16243425
    [Google Scholar]
  46. Le W. Pan T. Huang M. Xu P. Xie W. Zhu W. Zhang X. Deng H. Jankovic J. Decreased NURR1 gene expression in patients with Parkinson’s disease. J. Neurol. Sci. 2008 273 1-2 29 33 10.1016/j.jns.2008.06.007 18684475
    [Google Scholar]
  47. Oh S.M. Chang M.Y. Song J.J. Rhee Y.H. Joe E.H. Lee H.S. Yi S.H. Lee S.H. Combined Nurr1 and Foxa2 roles in the therapy of Parkinson’s disease. EMBO Mol. Med. 2015 7 5 510 525 10.15252/emmm.201404610 25759364
    [Google Scholar]
  48. Dong J. Li S. Mo J.L. Cai H.B. Le W.D. Nurr1‐based therapies for Parkinson’s disease. CNS Neurosci. Ther. 2016 22 5 351 359 10.1111/cns.12536 27012974
    [Google Scholar]
  49. Apostolou A. Shen Y. Liang Y. Luo J. Fang S. Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death. Exp. Cell Res. 2008 314 13 2454 2467 10.1016/j.yexcr.2008.05.001 18561914
    [Google Scholar]
  50. Glembotski C.C. Thuerauf D.J. Huang C. Vekich J.A. Gottlieb R.A. Doroudgar S. Mesencephalic astrocyte-derived neurotrophic factor protects the heart from ischemic damage and is selectively secreted upon sarco/endoplasmic reticulum calcium depletion. J. Biol. Chem. 2012 287 31 25893 25904 10.1074/jbc.M112.356345 22637475
    [Google Scholar]
  51. Mätlik Mätlik K.; Yu, L.; Eesmaa, A.; Hellman, M.; Lindholm, P.; Peränen, J.; Galli, E.; Anttila, J.; Saarma, M.; Permi, P.; Airavaara, M.; Arumäe, U. Role of two sequence motifs of mesencephalic astrocyte-derived neurotrophic factor in its survival-promoting activity. Cell Death Dis. 2015 6 12 e2032 10.1038/cddis.2015.371 26720341
    [Google Scholar]
  52. Rajput S. Kumar Sharma P. Malviya R. Fluid mechanics in circulating tumour cells: Role in metastasis and treatment strategies. Med. Drug Discov 2023 18 100158 10.1016/j.medidd.2023.100158
    [Google Scholar]
  53. Mercado G. Valdés P. Hetz C. An ERcentric view of Parkinson’s disease. Trends Mol. Med. 2013 19 3 165 175 10.1016/j.molmed.2012.12.005 23352769
    [Google Scholar]
  54. Petrova P.S. Raibekas A. Pevsner J. Vigo N. Anafi M. Moore M.K. Peaire A.E. Shridhar V. Smith D.I. Kelly J. Durocher Y. Commissiong J.W. MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J. Mol. Neurosci. 2003 20 2 173 188 10.1385/JMN:20:2:173 12794311
    [Google Scholar]
  55. Lindholm P. Voutilainen M.H. Laurén J. Peränen, J.; Leppänen, V.M.; Andressoo, J.O.; Lindahl, M.; Janhunen, S.; Kalkkinen, N.; Timmusk, T.; Tuominen, R.K.; Saarma, M. Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature 2007 448 7149 73 77 10.1038/nature05957 17611540
    [Google Scholar]
  56. Bäck Bäck S.; Peränen, J.; Galli, E.; Pulkkila, P.; Lonka-Nevalaita, L.; Tamminen, T.; Voutilainen, M.H.; Raasmaja, A.; Saarma, M.; Mänistِö, P.T.; Tuominen, R.K. Gene therapy with AAV 2‐ CDNF provides functional benefits in a rat model of P arkinson’s disease. Brain Behav. 2013 3 2 75 88 10.1002/brb3.117 23532969
    [Google Scholar]
  57. Ren X. Zhang T. Gong X. Hu G. Ding W. Wang X. AAV2-mediated striatum delivery of human CDNF prevents the deterioration of midbrain dopamine neurons in a 6-hydroxydopamine induced parkinsonian rat model. Exp. Neurol. 2013 248 148 156 10.1016/j.expneurol.2013.06.002 23764500
    [Google Scholar]
  58. Cordero-Llana Ó س.; Houghton, B.C.; Rinaldi, F.; Taylor, H.; Yáñez-Muٌoz, R.J.; Uney, J.B.; Wong, L.F.; Caldwell, M.A. Enhanced efficacy of the CDNF/MANF family by combined intranigral overexpression in the 6-OHDA rat model of Parkinson’s disease. Mol. Ther. 2015 23 2 244 254 10.1038/mt.2014.206 25369767
    [Google Scholar]
  59. Hao F. Yang C. Chen S.S. Wang Y.Y. Zhou W. Hao Q. Lu T. Hoffer B. Zhao L.R. Duan W.M. Xu Q.Y. Long-term protective effects of AAV9-mesencephalic astrocyte-derived neurotrophic factor gene transfer in parkinsonian rats. Exp. Neurol. 2017 291 120 133 10.1016/j.expneurol.2017.01.008 28131727
    [Google Scholar]
  60. Patapoutian A. Reichardt L.F. Trk receptors: Mediators of neurotrophin action. Curr. Opin. Neurobiol. 2001 11 3 272 280 10.1016/S0959‑4388(00)00208‑7 11399424
    [Google Scholar]
  61. Ding Y.X. Xia Y. Jiao X.Y. Duan L. Yu J. Wang X. Chen L.W. The TrkB-positive dopaminergic neurons are less sensitive to MPTP insult in the substantia nigra of adult C57/BL mice. Neurochem. Res. 2011 36 10 1759 1766 10.1007/s11064‑011‑0491‑5 21562748
    [Google Scholar]
  62. Hyman C. Hofer M. Barde Y.A. Juhasz M. Yancopoulos G.D. Squinto S.P. Lindsay R.M. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 1991 350 6315 230 232 10.1038/350230a0 2005978
    [Google Scholar]
  63. Porritt M.J. Batchelor P.E. Howells D.W. Inhibiting BDNF expression by antisense oligonucleotide infusion causes loss of nigral dopaminergic neurons. Exp. Neurol. 2005 192 1 226 234 10.1016/j.expneurol.2004.11.030 15698637
    [Google Scholar]
  64. Tsukahara T. Takeda M. Shimohama S. Ohara O. Hashimoto N. Effects of brain-derived neurotrophic factor on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mon-keys. Neurosurgery 1995 37 4 733 741 10.1227/00006123‑199510000‑00018 8559303
    [Google Scholar]
  65. Sun M. Kong L. Wang X. Lu X. Gao Q. Geller A.I. Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson’s disease. Brain Res. 2005 1052 2 119 129 10.1016/j.brainres.2005.05.072 16018990
    [Google Scholar]
  66. Hernandez-Chan N.G. Bannon M.J. Orozco-Barrios C.E. Escobedo L. Zamudio S. De la Cruz F. Gongora-Alfaro J.L. Armendáriz-Borunda, J.; Reyes-Corona, D.; Espadas-Alvarez, A.J.; Flores-Martínez, Y.M.; Ayala-Davila, J.; Hernandez-Gutierrez, M.E.; Pavón, L.; García-Villegas, R.; Nadella, R.; Martinez-Fong, D. Neurotensin-polyplex-mediated brain-derived neurotrophic factor gene delivery into nigral dopamine neurons prevents nigrostriatal degeneration in a rat model of early Parkinson’s disease. J. Biomed. Sci. 2015 22 1 59 10.1186/s12929‑015‑0166‑7 26198255
    [Google Scholar]
  67. Lapchak P.A. Beck K.D. Araujo D.M. Irwin I. Langston J.W. Hefti F. Chronic intranigral administration of brain-derived neurotrophic factor produces striatal dopaminergic hypofunction in unlesioned adult rats and fails to attenuate the decline of striatal dopaminergic function following medial forebrain bundle transection. Neuroscience 1993 53 3 639 650 10.1016/0306‑4522(93)90612‑J 8098137
    [Google Scholar]
  68. Ferrara N. Gerber H.P. LeCouter J. The biology of VEGF and its receptors. Nat. Med. 2003 9 6 669 676 10.1038/nm0603‑669 12778165
    [Google Scholar]
  69. Dvorak H.F. Brown L.F. Detmar M. Dvorak A.M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 1995 146 5 1029 1039 7538264
    [Google Scholar]
  70. Neufeld G. Cohen T. Shraga N. Lange T. Kessler O. Herzog Y. The neuropilins: Multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc. Med. 2002 12 1 13 19 10.1016/S1050‑1738(01)00140‑2 11796239
    [Google Scholar]
  71. Schrag A. Quinn N. Dyskinesias and motor fluctuations in Parkinson’s disease. Brain 2000 123 11 2297 2305 10.1093/brain/123.11.2297 11050029
    [Google Scholar]
  72. Fahn S. Parkinson disease, the effect of levodopa, and the ELLDOPA trial. Earlier vs. Later L-DOPA. Arch. Neurol. 1999 56 5 529 535 10.1001/archneur.56.5.529 10328247
    [Google Scholar]
  73. Fahn S. Oakes D. Shoulson I. Kieburtz K. Rudolph A. Lang A. Olanow C.W. Tanner C. Marek K. Levodopa and the progression of Parkinson’s disease. N. Engl. J. Med. 2004 351 24 2498 2508 10.1056/NEJMoa033447 15590952
    [Google Scholar]
  74. Rajput S. Malviya R. Sridhar S.B. Nanoparticle-based photodynamic therapy for targeted treatment of breast cancer. Nano-Structures & Nano-Objects 2024 40 101405 10.1016/j.nanoso.2024.101405
    [Google Scholar]
  75. Rascol O. Brooks D.J. Korczyn A.D. De Deyn P.P. Clarke C.E. Lang A.E. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N. Engl. J. Med. 2000 342 20 1484 1491 10.1056/NEJM200005183422004 10816186
    [Google Scholar]
  76. Pramipexole C. Pramipexole vs levodopa as initial treatment for Parkinson disease: A randomized controlled trial. JAMA 2000 284 15 1931 1938 10.1001/jama.284.15.1931 11035889
    [Google Scholar]
  77. Holloway R.G. Shoulson I. Fahn S. Kieburtz K. Lang A. Marek K. McDermott M. Seibyl J. Weiner W. Musch B. Kamp C. Welsh M. Shinaman A. Pahwa R. Barclay L. Hubble J. LeWitt P. Miyasaki J. Suchowersky O. Stacy M. Russell D.S. Ford B. Hammerstad J. Riley D. Standaert D. Wooten F. Factor S. Jankovic J. Atassi F. Kurlan R. Panisset M. Rajput A. Rodnitzky R. Shults C. Petsinger G. Waters C. Pfeiffer R. Biglan K. Borchert L. Montgomery A. Sutherland L. Weeks C. DeAngelis M. Sime E. Wood S. Pantella C. Harrigan M. Fussell B. Dillon S. Alexander-Brown B. Rainey P. Tennis M. Rost-Ruffner E. Brown D. Evans S. Berry D. Hall J. Shirley T. Dobson J. Fontaine D. Pfeiffer B. Brocht A. Bennett S. Daigneault S. Hodgeman K. O’Connell C. Ross T. Richard K. Watts A. Pramipexole vs levodopa as initial treatment for Parkinson disease: a 4-year randomized controlled trial. Arch. Neurol. 2004 61 7 1044 1053 15262734
    [Google Scholar]
  78. Müller T. Fritze J. Fibrosis associated with dopamine agonist therapy in Parkinson’s disease. Clin. Neuropharmacol. 2003 26 3 109 111 10.1097/00002826‑200305000‑00001 12782910
    [Google Scholar]
  79. Zanettini R. Antonini A. Gatto G. Gentile R. Tesei S. Pezzoli G. Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N. Engl. J. Med. 2007 356 1 39 46 10.1056/NEJMoa054830 17202454
    [Google Scholar]
  80. Voon V. Hassan K. Zurowski M. Duff-Canning S. de Souza M. Fox S. Lang A.E. Miyasaki J. Prospective prevalence of pathologic gambling and medication association in Parkinson disease. Neurology 2006 66 11 1750 1752 10.1212/01.wnl.0000218206.20920.4d 16769956
    [Google Scholar]
  81. Imamura A. Uitti R.J. Wszolek Z.K. Dopamine agonist therapy for Parkinson disease and pathological gambling. Parkinsonism Relat. Disord. 2006 12 8 506 508 10.1016/j.parkreldis.2006.02.004 16723269
    [Google Scholar]
  82. Lees A.J. Comparison of therapeutic effects and mortality data of levodopa and levodopa combined with selegiline in patients with early, mild Parkinson’s disease. BMJ 1995 311 7020 1602 1607 10.1136/bmj.311.7020.1602 8555803
    [Google Scholar]
  83. Group T.P. Impact of deprenyl and tocopherol treatment on Parkinson’s disease in DATATOP patients requiring levodopa. Ann. Neurol. 1996 39 1 37 45 10.1002/ana.410390107 8572664
    [Google Scholar]
  84. Ives N.J. Stowe R.L. Marro J. Counsell C. Macleod A. Clarke C.E. Gray R. Wheatley K. Monoamine oxidase type B inhibitors in early Parkinson’s disease: meta-analysis of 17 randomised trials involving 3525 patients. BMJ 2004 329 7466 593 10.1136/bmj.38184.606169.AE 15310558
    [Google Scholar]
  85. A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch. Neurol. 2002 59 12 1937 1943 10.1001/archneur.59.12.1937 12470183
    [Google Scholar]
  86. Mizuno Y. Yanagisawa N. Kuno S. Yamamoto M. Hasegawa K. Origasa H. Kowa H. Randomized, double‐blind study of pramipexole with placebo and bromocriptine in advanced Parkinson’s disease. Mov. Disord. 2003 18 10 1149 1156 10.1002/mds.10508 14534919
    [Google Scholar]
  87. Brunt E.R. Brooks D.J. Korczyn A.D. Montastruc J.L. Stocchi F. A six-month multicentre, double-blind, bromocriptine-controlled study of the safety and efficacy of ropinirole in the treatment of patients with Parkinson’s disease not optimally controlled by L-dopa. J. Neural Transm. (Vienna) 2002 109 4 489 501 10.1007/s007020200040 11956968
    [Google Scholar]
  88. Metman L.V. Del Dotto P. van den Munckhof P. Fang J. Mouradian M.M. Chase T.N. Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson’s disease. Neurology 1998 50 5 1323 1326 10.1212/WNL.50.5.1323 9595981
    [Google Scholar]
  89. Luginger E. Wenning G.K. Bِösch, S.; Poewe, W. Beneficial effects of amantadine on L-dopa-induced dyskinesias in Parkinson’s disease. Mov. Disord. 2000 15 5 873 878 10.1002/1531‑8257(200009)15:5<873:AID‑MDS1017>3.0.CO;2‑I 11009193
    [Google Scholar]
  90. Davie C.A. A review of Parkinson’s disease. Br. Med. Bull. 2008 86 1 109 127 10.1093/bmb/ldn013 18398010
    [Google Scholar]
  91. Poewe W. Wenning G.K. Apomorphine: An underutilized therapy for Parkinson’s disease. Mov. Disord. 2000 15 5 789 794 10.1002/1531‑8257(200009)15:5<789:AID‑MDS1005>3.0.CO;2‑H 11009181
    [Google Scholar]
  92. Nyholm D. Nilsson Remahl A.I.M. Dizdar N. Constantinescu R. Holmberg B. Jansson R. Aquilonius S.M. Askmark H. Duodenal levodopa infusion monotherapy vs oral polypharmacy in advanced Parkinson disease. Neurology 2005 64 2 216 223 10.1212/01.WNL.0000149637.70961.4C 15668416
    [Google Scholar]
  93. Huang R. Han L. Li J. Ren F. Ke W. Jiang C. Pei Y. Neuroprotection in a 6‐hydroxydopamine‐lesioned Parkinson model using lactoferrin‐modified nanoparticles. J. Gene Med. 2009 11 754 763
    [Google Scholar]
  94. Gonzalez-Barrios J.A. Lindahl M. Bannon M.J. Anaya-Martيnez V. Flores G. Navarro-Quiroga I. Trudeau L.E. Aceves J. Martinez-Arguelles D.B. Garcia-Villegas R. Jiménez I. Segovia J. Martinez-Fong D. Neurotensin polyplex as an efficient carrier for delivering the human GDNF gene into nigral dopamine neurons of hemiparkinsonian rats. Mol. Ther. 2006 14 6 857 865 10.1016/j.ymthe.2006.09.001 17015039
    [Google Scholar]
  95. Sundram S. Dhiman N. Malviya R. Awasth R. Non-coding RNAs in regulation of protein aggregation and clearance pathways: Current perspectives towards Alzheimer’s research and therapy. Curr. Gene Ther. 2024 24 1 8 16
    [Google Scholar]
  96. Azzouz M. Martin-Rendon E. Barber R.D. Mitrophanous K.A. Carter E.E. Rohll J.B. Kingsman S.M. Kingsman A.J. Mazarakis N.D. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson’s disease. J. Neurosci. 2002 22 23 10302 10312 10.1523/JNEUROSCI.22‑23‑10302.2002 12451130
    [Google Scholar]
  97. Jarraya B. Boulet S. Scott Ralph G. Jan C. Bonvento G. Azzouz M. Miskin J.E. Shin M. Delzescaux T. Drouot X. Hérard A.S. Day D.M. Brouillet E. Kingsman S.M. Hantraye P. Mitrophanous K.A. Mazarakis N.D. Palfi S. Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci. Transl. Med. 2009 1 2 2ra4 10.1126/scitranslmed.3000130 20368163
    [Google Scholar]
  98. Azman K.F. Zakaria R. Brain-derived neurotrophic factor (BDNF) in Huntington’s disease: Neurobiology and therapeutic potential. Curr. Neuropharmacol. 2025 23 4 384 403 10.2174/1570159X22666240530105516 40123457
    [Google Scholar]
  99. Klein R.L. Lewis M.H. Muzyczka N. Meyer E.M. Prevention of 6-hydroxydopamine-induced rotational behavior by BDNF somatic gene transfer. Brain Res. 1999 847 2 314 320 10.1016/S0006‑8993(99)02116‑2 10575102
    [Google Scholar]
  100. Batts A.J. Ji R. Bae S. Tsitsos F.N. Jiménez-Gambín S. Kwon N. Gorman S.L. Tsakri D. Noel R.L. Bendig J. Jimenez D.A. Portable transcranial therapeutic ultrasound enhances targeted gene delivery for Parkinson’s disease: From rodent models to non-human primates. BioRxiv 2025
    [Google Scholar]
  101. Kitahama K. Ikemoto K. Jouvet A. Araneda S. Nagatsu I. Raynaud B. Nishimura A. Nishi K. Niwa S. Aromatic l-amino acid decarboxylase-immunoreactive structures in human midbrain, pons, and medulla. J. Chem. Neuroanat. 2009 38 2 130 140 10.1016/j.jchemneu.2009.06.010 19589383
    [Google Scholar]
  102. Bankiewicz K.S. Forsayeth J. Eberling J.L. Sanchez-Pernaute R. Pivirotto P. Bringas J. Herscovitch P. Carson R.E. Eckelman W. Reutter B. Cunningham J. Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol. Ther. 2006 14 4 564 570 10.1016/j.ymthe.2006.05.005 16829205
    [Google Scholar]
  103. Hadaczek P. Eberling J.L. Pivirotto P. Bringas J. Forsayeth J. Bankiewicz K.S. Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol. Ther. 2010 18 8 1458 1461 10.1038/mt.2010.106 20531394
    [Google Scholar]
  104. Christine C.W. Starr P.A. Larson P.S. Eberling J.L. Jagust W.J. Hawkins R.A. VanBrocklin H.F. Wright J.F. Bankiewicz K.S. Aminoff M.J. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 2009 73 20 1662 1669 10.1212/WNL.0b013e3181c29356 19828868
    [Google Scholar]
  105. Szunyogh S. Carroll E. Wade-Martins R. Recent developments in gene therapy for Parkinson’s disease. Mol. Ther. 2025 33 5 2052 2064 10.1016/j.ymthe.2025.03.030 40121531
    [Google Scholar]
  106. Kingwell K. Gene therapy zeroes in on Parkinson disease brain circuits. Nat. Rev. Drug Discov. 2024 23 1 20 10.1038/d41573‑023‑00192‑9 38049465
    [Google Scholar]
  107. Bu D.F. Erlander M.G. Hitz B.C. Tillakaratne N.J. Kaufman D.L. Wagner-McPherson C.B. Evans G.A. Tobin A.J. Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc. Natl. Acad. Sci. USA 1992 89 6 2115 2119 10.1073/pnas.89.6.2115 1549570
    [Google Scholar]
  108. Erlander M.G. Tillakaratne N.J.K. Feldblum S. Patel N. Tobin A.J. Two genes encode distinct glutamate decarboxylases. Neuron 1991 7 1 91 100 10.1016/0896‑6273(91)90077‑D 2069816
    [Google Scholar]
  109. Rana A. Mittal A. Vashist C. Rajput S. Sridhar S.B. Sharma S. Malviya R. Advancements in herbal drug loaded nanoparticulate system for antimicrobial effect. Curr. Top. Med. Chem. 2025 25 25 2918 2936 10.2174/0115680266366494250411164750 40277050
    [Google Scholar]
  110. Mi J. Chatterjee S. Wong K.K. Forbes C. Lawless G. Tobin A.J. Recombinant adeno-associated virus (AAV) drives constitutive production of glutamate decarboxylase in neural cell lines. J. Neurosci. Res. 1999 57 1 137 148 10.1002/(SICI)1097‑4547(19990701)57:1<137:AID‑JNR15>3.0.CO;2‑D 10397644
    [Google Scholar]
  111. Luo J. Kaplitt M.G. Fitzsimons H.L. Zuzga D.S. Liu Y. Oshinsky M.L. During M.J. Subthalamic GAD gene therapy in a Parkinson’s disease rat model. Science 2002 298 5592 425 429 10.1126/science.1074549 12376704
    [Google Scholar]
  112. Lee B. Lee H. Nam Y.R. Oh J.H. Cho Y.H. Chang J.W. Enhanced expression of glutamate decarboxylase 65 improves symptoms of rat parkinsonian models. Gene Ther. 2005 12 15 1215 1222 10.1038/sj.gt.3302520 15829994
    [Google Scholar]
  113. Emborg M.E. Carbon M. Holden J.E. During M.J. Ma Y. Tang C. Moirano J. Fitzsimons H. Roitberg B.Z. Tuccar E. Roberts A. Kaplitt M.G. Eidelberg D. Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J. Cereb. Blood Flow Metab. 2007 27 3 501 509 10.1038/sj.jcbfm.9600364 16835631
    [Google Scholar]
  114. Kaplitt M.G. Feigin A. Tang C. Fitzsimons H.L. Mattis P. Lawlor P.A. Bland R.J. Young D. Strybing K. Eidelberg D. During M.J. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 2007 369 9579 2097 2105 10.1016/S0140‑6736(07)60982‑9 17586305
    [Google Scholar]
  115. LeWitt P.A. Rezai A.R. Leehey M.A. Ojemann S.G. Flaherty A.W. Eskandar E.N. Kostyk S.K. Thomas K. Sarkar A. Siddiqui M.S. Tatter S.B. Schwalb J.M. Poston K.L. Henderson J.M. Kurlan R.M. Richard I.H. Van Meter L. Sapan C.V. During M.J. Kaplitt M.G. Feigin A. AAV2-GAD gene therapy for advanced Parkinson’s disease: A double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011 10 4 309 319 10.1016/S1474‑4422(11)70039‑4 21419704
    [Google Scholar]
  116. Benabid A.L. Gene therapy for Parkinson’s disease: Do we have the cure? Lancet Neurol. 2010 9 12 1142 1143 10.1016/S1474‑4422(10)70256‑8 21087733
    [Google Scholar]
  117. Lloyd K.G. Davidson L. Hornykiewicz O. The neurochemistry of Parkinson’s disease: effect of L-dopa therapy. J. Pharmacol. Exp. Ther. 1975 195 3 453 464 10.1016/S0022‑3565(25)30363‑0 489
    [Google Scholar]
  118. Nagatsu T. Sawada M. Biochemistry of postmortem brains in Parkinson’s disease: Historical overview and future prospects. Springer Vienna 2007
    [Google Scholar]
  119. Lang A.E. Lozano A.M. Parkinson’s Disease. N. Engl. J. Med. 1998 339 16 1130 1143 10.1056/NEJM199810153391607 9770561
    [Google Scholar]
  120. Leff S.E. Spratt S.K. Snyder R.O. Mandel R.J. Long-term restoration of striatal l-aromatic amino acid decarboxylase activity using recombinant adeno-associated viral vector gene transfer in a rodent model of Parkinson’s disease. Neuroscience 1999 92 1 185 196 10.1016/S0306‑4522(98)00741‑6 10392841
    [Google Scholar]
  121. Bankiewicz K.S. Eberling J.L. Kohutnicka M. Jagust W. Pivirotto P. Bringas J. Cunningham J. Budinger T.F. Harvey-White J. Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp. Neurol. 2000 164 1 2 14 10.1006/exnr.2000.7408 10877910
    [Google Scholar]
  122. Grote J. Patel N. Bates C. Parmar M.S. From lab bench to hope: A review of gene therapies in clinical trials for Parkinson’s disease and challenges. Neurol. Sci. 2024 45 10 4699 4710 10.1007/s10072‑024‑07599‑1 38795270
    [Google Scholar]
  123. Kotzbauer P.T. Lampe P.A. Heuckeroth R.O. Golden J.P. Creedon D.J. Johnson E.M. Milbrandt J. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 1996 384 6608 467 470 10.1038/384467a0 8945474
    [Google Scholar]
  124. Horger B.A. Nishimura M.C. Armanini M.P. Wang L.C. Poulsen K.T. Rosenblad C. Kirik D. Moffat B. Simmons L. Johnson E. Milbrandt J. Rosenthal A. Bjorklund A. Vandlen R.A. Hynes M.A. Phillips H.S. Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J. Neurosci. 1998 18 13 4929 4937 10.1523/JNEUROSCI.18‑13‑04929.1998 9634558
    [Google Scholar]
  125. Tseng J.L. Bruhn S.L. Zurn A.D. Aebischer P. Neurturin protects dopaminergic neurons following medial forebrain bundle axotomy. Neuroreport 1998 9 8 1817 1822 10.1097/00001756‑199806010‑00027 9665607
    [Google Scholar]
  126. Oiwa Y. Yoshimura R. Nakai K. Itakura T. Dopaminergic neuroprotection and regeneration by neurturin assessed by using behavioral, biochemical and histochemical measurements in a model of progressive Parkinson’s disease. Brain Res. 2002 947 2 271 283 10.1016/S0006‑8993(02)02934‑7 12176170
    [Google Scholar]
  127. Gasmi M. Herzog C.D. Brandon E.P. Cunningham J.J. Ramirez G.A. Ketchum E.T. Bartus R.T. Striatal delivery of neurturin by CERE-120, an AAV2 vector for the treatment of dopaminergic neuron degeneration in Parkinson’s disease. Mol. Ther. 2007 15 1 62 68 10.1038/sj.mt.6300010 17164776
    [Google Scholar]
  128. Phielipp N. Henchcliffe C. Investigational gene therapies for parkinson’s disease. CNS Drugs 2025 39 8 725 737 10.1007/s40263‑025‑01203‑6 40640529
    [Google Scholar]
  129. Kim J. Chang M.Y. Gene therapy for Parkinson’s disease using midbrain developmental genes to regulate dopaminergic neuronal maintenance. Int. J. Mol. Sci. 2024 25 22 12369 10.3390/ijms252212369 39596436
    [Google Scholar]
  130. Hamani C. Saint-Cyr J.A. Fraser J. Kaplitt M. Lozano A.M. The subthalamic nucleus in the context of movement disorders. Brain 2004 127 1 4 20 10.1093/brain/awh029 14607789
    [Google Scholar]
  131. Winston G. Kharas N. Svenningsson P. Jha A. Kaplitt M.G. Gene therapy for Parkinson’s disease: trials and technical advances. Lancet Neurol. 2025 24 6 548 556 10.1016/S1474‑4422(25)00125‑5 40409318
    [Google Scholar]
  132. Tripathi R.K. Goyal L. Singh S. Potential therapeutic approach using aromatic l-amino acid decarboxylase and glial-derived neurotrophic factor therapy targeting putamen in parkinson’s disease. Curr. Gene Ther. 2024 24 4 278 291 10.2174/0115665232283842240102073002 38310455
    [Google Scholar]
  133. Roberts W.S. Price S. Wu M. Parmar M.S. Emerging gene therapies for Alzheimer’s and Parkinson’s diseases: an overview of clinical trials and promising candidates. Cureus 2024 16 8 e67037 10.7759/cureus.67037 39286667
    [Google Scholar]
  134. Svendsen C. The first steps towards gene therapy for Parkinson’s disease. Lancet Neurol. 2007 6 9 754 756 10.1016/S1474‑4422(07)70202‑8 17706556
    [Google Scholar]
  135. dos Santos J.C.C. Mano G.B.C. da Cunha Barreto-Vianna A.R. Garcia T.F.M. de Vasconcelos A.V. Sá, C.S.G.; de Souza Santana, S.L.; Farias, A.G.P.; Seimaru, B.; Lima, M.P.P.; Goes, J.V.C.; Gusmão, C.T.P.; Junior, H.L.R. The molecular impact of glucosylceramidase Beta 1 (Gba1) in Parkinson’s disease: A new genetic state of the art. Mol. Neurobiol. 2024 61 9 6754 6770 10.1007/s12035‑024‑04008‑8 38347286
    [Google Scholar]
  136. Yan Y. Wang Z. Wei W. Yang Z. Guo L. Wang Z. Wei X. Correlation of brain iron deposition and freezing of gait in Parkinson’s disease: A cross-sectional study. Quant. Imaging Med. Surg. 2023 13 12 7961 7972 10.21037/qims‑23‑267 38106290
    [Google Scholar]
  137. Bjِöِrklund, T.; Davidsson, M. Next-generation gene therapy for Parkinson’s disease using engineered viral vectors. J. Parkinsons Dis. 2021 11 s2 S209 S217 10.3233/JPD‑212674 34366370
    [Google Scholar]
  138. Alessi D.R. Sammler E. LRRK2 kinase in Parkinson’s disease. Science 2018 360 6384 36 37 10.1126/science.aar5683 29622645
    [Google Scholar]
  139. Cherian A. Divya K.P. Genetics of Parkinson’s disease. Acta Neurol. Belg. 2020 120 6 1297 1305 10.1007/s13760‑020‑01473‑5 32813147
    [Google Scholar]
  140. Vilariño-Güell, C.; Wider, C.; Ross, O.A.; Dachsel, J.C.; Kachergus, J.M.; Lincoln, S.J.; Soto-Ortolaza, A.I.; Cobb, S.A.; Wilhoite, G.J.; Bacon, J.A.; Behrouz, B.; Melrose, H.L.; Hentati, E.; Puschmann, A.; Evans, D.M.; Conibear, E.; Wasserman, W.W.; Aasly, J.O.; Burkhard, P.R.; Djaldetti, R.; Ghika, J.; Hentati, F.; Krygowska-Wajs, A.; Lynch, T.; Melamed, E.; Rajput, A.; Rajput, A.H.; Solida, A.; Wu, R.M.; Uitti, R.J.; Wszolek, Z.K.; Vingerhoets, F.; Farrer, M.J. VPS35 mutations in Parkinson disease. Am. J. Hum. Genet. 2011 89 1 162 167 10.1016/j.ajhg.2011.06.001 21763482
    [Google Scholar]
  141. Kim R.H. Smith P.D. Aleyasin H. Hayley S. Mount M.P. Pownall S. Wakeham A. You-Ten A.J. Kalia S.K. Horne P. Westaway D. Lozano A.M. Anisman H. Park D.S. Mak T.W. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc. Natl. Acad. Sci. USA 2005 102 14 5215 5220 10.1073/pnas.0501282102 15784737
    [Google Scholar]
  142. Park J.S. Blair N.F. Sue C.M. The role of ATP13A2 in Parkinson’s disease: Clinical phenotypes and molecular mechanisms. Mov. Disord. 2015 30 6 770 779 10.1002/mds.26243 25900096
    [Google Scholar]
  143. Meglio M. Gene therapy AAV-GAD Gains regenerative medicine advanced therapy designation as potential parkinson treatment. Gene Ther. 2025
    [Google Scholar]
  144. Barker R.A. Björklund, A.; Gash, D.M.; Whone, A.; Van Laar, A.; Kordower, J.H.; Bankiewicz, K.; Kieburtz, K.; Saarma, M.; Booms, S.; Huttunen, H.J.; Kells, A.P.; Fiandaca, M.S.; Stoessl, A.J.; Eidelberg, D.; Federoff, H.; Voutilainen, M.H.; Dexter, D.T.; Eberling, J.; Brundin, P.; Isaacs, L.; Mursaleen, L.; Bresolin, E.; Carroll, C.; Coles, A.; Fiske, B.; Matthews, H.; Lungu, C.; Wyse, R.K.; Stott, S.; Lang, A.E. GDNF and Parkinson’s disease: Where next? A summary from a recent workshop. J. Parkinsons Dis. 2020 10 3 875 891 10.3233/JPD‑202004 32508331
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575405524251008112752
Loading
/content/journals/mrmc/10.2174/0113895575405524251008112752
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: dopamine ; Parkinson’s disease ; BDNF ; neurotrophic factors ; GDNF ; gene therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test