Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Organic compounds containing azines, di-imines, or -Schiff-bases have two azomethine (-CH=N-) functional groups associated with a bridging component. These constituents have attracted attention from a diversity of disciplines, comprising coordination, medicinal, agriculture chemistry, and organic synthesis, because of their comprehensive chemical reactivity and nature. This study determines common synthetic approaches and various biological and pharmacological activities of several substituted -Schiff byproducts. The usefulness of -Schiff bases in synthetic chemistry and their potential as inhibitors of a number of enzymes have attracted research attention. We have examined different biological activities and common synthetic methods used to make -Schiff bases that have been published in the literature. A systematic search of the literature has been performed, and studies fitting the prearranged inclusion standards have been inspected. This review can open up new potentials for upcoming research in this area and advance our information on -Schiff bases.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575363243241129100845
2025-01-10
2025-10-09
Loading full text...

Full text loading...

/deliver/fulltext/mrmc/25/6/MRMC-25-6-01.html?itemId=/content/journals/mrmc/10.2174/0113895575363243241129100845&mimeType=html&fmt=ahah

References

  1. GrygorenkoO.O. VolochnyukD.M. VashchenkoB.V. Emerging building blocks for medicinal chemistry: recent synthetic advances.Eur. J. Org. Chem.20212021476478651010.1002/ejoc.202100857
    [Google Scholar]
  2. SchiesserS. CoxR.J. CzechtizkyW. The powerful symbiosis between synthetic and medicinal chemistry.Future Med. Chem.2021131194194410.4155/fmc‑2021‑0062 33878945
    [Google Scholar]
  3. ZaibS. KhanI. Synthetic and medicinal chemistry of phthalazines: Recent developments, opportunities and challenges.Bioorg. Chem.202010510442510.1016/j.bioorg.2020.104425 33157344
    [Google Scholar]
  4. PetasisN.A. Expanding roles for organoboron compounds–Versatile and valuable molecules for synthetic, biological and medicinal chemistry.Aust. J. Chem.2007601179579810.1071/CH07360
    [Google Scholar]
  5. BoströmJ. BrownD.G. YoungR.J. KeserüG.M. Expanding the medicinal chemistry synthetic toolbox.Nat. Rev. Drug Discov.2018171070972710.1038/nrd.2018.116 30140018
    [Google Scholar]
  6. Garcia-CastroM. ZimmermannS. SankarM.G. KumarK. Scaffold diversity synthesis and its application in probe and drug discovery.Angew. Chem. Int. Ed.201655277586760510.1002/anie.201508818 27187638
    [Google Scholar]
  7. BorsariC. TraderD.J. TaitA. CostiM.P. Designing chimeric molecules for drug discovery by leveraging chemical biology.J. Med. Chem.20206351908192810.1021/acs.jmedchem.9b01456 32023055
    [Google Scholar]
  8. HartleyO. GaertnerH. WilkenJ. ThompsonD. FishR. RamosA. PastoreC. DufourB. CeriniF. MelottiA. HevekerN. PicardL. AlizonM. MosierD. KentS. OffordR. Medicinal chemistry applied to a synthetic protein: Development of highly potent HIV entry inhibitors.Proc. Natl. Acad. Sci. USA200410147164601646510.1073/pnas.0404802101 15545608
    [Google Scholar]
  9. BennaniY.L. Drug discovery in the next decade: innovation needed ASAP.Drug Discov. Today20111617-1877979210.1016/j.drudis.2011.06.004 21704185
    [Google Scholar]
  10. GittelmanM. The revolution re-visited: Clinical and genetics research paradigms and the productivity paradox in drug discovery.Res. Policy20164581570158510.1016/j.respol.2016.01.007
    [Google Scholar]
  11. KhanM. FazalZ. AlamA. IbrahimM. AliT. AliM. KhanH.D. Synthetic transformation of 4-fluorobenzoic acid to 4-fluorobenzohydrazide Schiff bases and 1,3,4-oxadiazole analogs having DPPH radical scavenging potential.Lett. Drug Des. Discov.202320122018202410.2174/1570180820666221031091246
    [Google Scholar]
  12. TalabF. AlamA. Zainab; Ullah, S.; Elhenawy, A.A.; Shah, S.A.A.; Ali, M.; Halim, S.A.; Khan, A.; Latif, A.; Al-Harrasi, A.; Ahmad, M. Novel hydrazone Schiff’s base derivatives of polyhydroquinoline: synthesis, in vitro prolyl oligopeptidase inhibitory activity and their molecular docking study.J. Biomol. Struct. Dyn.202411510.1080/07391102.2024.2319677 38385366
    [Google Scholar]
  13. LiuH. ChuZ.W. XiaD.G. CaoH.Q. LvX.H. Discovery of novel multi-substituted benzo-indole pyrazole schiff base derivatives with antibacterial activity targeting DNA gyrase.Bioorg. Chem.20209910380710.1016/j.bioorg.2020.103807 32272364
    [Google Scholar]
  14. VermaM. PandeyaS.N. SinghK.N. StablesJ.P. Anticonvulsant activity of Schiff bases of isatin derivatives.Acta Pharm.20045414956 15050044
    [Google Scholar]
  15. KizilkayaH. DagB. AralT. GencN. ErenlerR. Synthesis, characterization, and antioxidant activity of heterocyclic Schiff bases.J. Chin. Chem. Soc. (Taipei)20206791696170110.1002/jccs.202000161
    [Google Scholar]
  16. MagalhãesT.F.F. SilvaC.M. SantosL.B.F. SantosD.A. SilvaL.M. FuchsB.B. MylonakisE. MartinsC.V.B. Resende-StoianoffM.A. FátimaÂ. Cinnamyl Schiff bases: synthesis, cytotoxic effects and antifungal activity of clinical interest.Lett. Appl. Microbiol.202071549049710.1111/lam.13356 32777092
    [Google Scholar]
  17. WangY.Y. XuF.Z. ZhuY.Y. SongB. LuoD. YuG. ChenS. XueW. WuJ. Pyrazolo[3,4-d]pyrimidine derivatives containing a Schiff base moiety as potential antiviral agents.Bioorg. Med. Chem. Lett.201828172979298410.1016/j.bmcl.2018.06.049 30122226
    [Google Scholar]
  18. UddinN. RashidF. AliS. TirmiziS.A. AhmadI. ZaibS. ZubairM. DiaconescuP.L. TahirM.N. IqbalJ. HaiderA. Synthesis, characterization, and anticancer activity of Schiff bases.J. Biomol. Struct. Dyn.202038113246325910.1080/07391102.2019.1654924 31411114
    [Google Scholar]
  19. BhosaleP. ChavanR. BhosaleA. ChemInform abstract: design, synthesis, biological evaluation of thiazolyl schiff base derivatives as novel antiinflammatory agents.ChemInform2012
    [Google Scholar]
  20. KarrouchiK. Synthesis, antioxidant and analgesic activities of Schiff bases of 4-amino-1,2,4-triazole derivatives containing a pyrazole moiety.Ann. Pharm. Fr.2016746431438
    [Google Scholar]
  21. WadherS. PuranikM. KarandeN. YeoleP. Synthesis and biological evaluation of Schiff base of dapsone and their derivative as antimicrobial agents.Int. J. Pharm. Tech. Res.2009112233
    [Google Scholar]
  22. SherafatiM. Mohammadi-KhanaposhtaniM. MoradiS. AsgariM.S. NajafabadipourN. FaramarziM.A. MahdaviM. BiglarM. LarijaniB. HamedifarH. HajimiriM.H. Design, synthesis and biological evaluation of novel phthalimide-Schiff base-coumarin hybrids as potent α-glucosidase inhibitors.Chem. Pap.202074124379438810.1007/s11696‑020‑01246‑7
    [Google Scholar]
  23. HamadA. KhanM.A. RahmanK.M. AhmadI. Ul-HaqZ. KhanS. ShafiqZ. Development of sulfonamide-based Schiff bases targeting urease inhibition: Synthesis, characterization, inhibitory activity assessment, molecular docking and ADME studies.Bioorg. Chem.202010210405710.1016/j.bioorg.2020.104057 32663667
    [Google Scholar]
  24. OkoliB.J. ModiseJ.S. Investigation into the thermal response and pharmacological activity of substituted Schiff Bases on α-Amylase and α-glucosidase.Antioxidants20187911310.3390/antiox7090113 30154344
    [Google Scholar]
  25. IrajiA. PanahiZ. EdrakiN. KhoshneviszadehM. KhoshneviszadehM. Design, synthesis, in vitro and in silico studies of novel Schiff base derivatives of 2‐hydroxy‐4‐methoxybenzamide as tyrosinase inhibitors.Drug Dev. Res.202182453354210.1002/ddr.21771 33340117
    [Google Scholar]
  26. YahyaouiM. BouchamaA. AnakB. ChiterC. DjedouaniA. RabilloudF. Synthesis, molecular structure analyses and DFT studies on new asymmetrical azines based Schiff bases.J. Mol. Struct.20191177697710.1016/j.molstruc.2018.09.039
    [Google Scholar]
  27. SunC.W. WangH.F. ZhuJ. YangD.R. XingJ. JinJ. Novel symmetrical trans-bis-schiff bases of N-substituted-4- piperidones: synthesis, characterization, and preliminary antileukemia activity mensurations.J. Heterocycl. Chem.20135061374138010.1002/jhet.916
    [Google Scholar]
  28. AfsahE.M. ElmorsyS.S. AbdelmageedS.M. ZakiZ.E. Synthesis of some new mixed azines, Schiff and Mannich bases of pharmaceutical interest related to isatin.Z. Naturforsch. B. J. Chem. Sci.201570639340210.1515/znb‑2014‑0262
    [Google Scholar]
  29. KagatikarS. SunilD. Aggregation-induced emission of azines: An up-to-date review.J. Mol. Liq.201929211137110.1016/j.molliq.2019.111371
    [Google Scholar]
  30. BashiriM. JarrahpourA. NabavizadehS.M. KarimianS. RastegariB. HaddadiE. TurosE. Potent antiproliferative active agents: novel bis Schiff bases and bis spiro β-lactams bearing isatin tethered with butylene and phenylene as spacer and DNA/BSA binding behavior as well as studying molecular docking.Med. Chem. Res.202130125828410.1007/s00044‑020‑02659‑5
    [Google Scholar]
  31. HameedA. al-RashidaM. UroosM. Abid AliS. KhanK.M. Schiff bases in medicinal chemistry: a patent review (2010-2015).Expert Opin. Ther. Pat.2017271637910.1080/13543776.2017.1252752 27774821
    [Google Scholar]
  32. AkocakS. LolakN. NocentiniA. KarakocG. TufanA. SupuranC.T. Synthesis and biological evaluation of novel aromatic and heterocyclic bis-sulfonamide Schiff bases as carbonic anhydrase I, II, VII and IX inhibitors.Bioorg. Med. Chem.201725123093309710.1016/j.bmc.2017.03.063 28400084
    [Google Scholar]
  33. ArshadI. SaeedA. ChannarP.A. ShehzadiS.A. AhmedM.N. SiddiqM. bis-Schiff bases of 2,2′-dibromobenzidine as efficient corrosion inhibitors for mild steel in acidic medium.RSC Adv.20201084499451110.1039/C9RA06443E 35495232
    [Google Scholar]
  34. KhanB. NaiyerA. AtharF. AliS. ThakurS.C. Synthesis, characterization and anti-inflammatory activity evaluation of 1,2,4-triazole and its derivatives as a potential scaffold for the synthesis of drugs against prostaglandin-endoperoxide synthase.J. Biomol. Struct. Dyn.202139245747510.1080/07391102.2019.1711193 31900051
    [Google Scholar]
  35. ArafaW.A. ShakerR.M. A facile green chemistry approaches towards the synthesis of bis-Schiff bases using ultrasound versus microwave and conventional method without catalyst.Archi. Org. Chem.2016318718720110.3998/ark.5550190.p009.464
    [Google Scholar]
  36. ShindeA. ZangadeS. ChavanS. VibhuteY. Microwave induced synthesis of bis-Schiff bases from propane-1, 3-diamine as promising antimicrobial analogs.Org. Comm.20147260
    [Google Scholar]
  37. ChinchansureA.A. KorwarA.M. KulkarniM.J. JoshiS.P. Recent development of plant products with anti-glycation activity: a review.RSC Advances2015539311133113810.1039/C4RA14211J
    [Google Scholar]
  38. GaoT.H. LiaoW. LinL.T. ZhuZ.P. LuM.G. FuC.M. XieT. Curcumae rhizoma and its major constituents against hepatobiliary disease: Pharmacotherapeutic properties and potential clinical applications.Phytomedicine202210215409010.1016/j.phymed.2022.154090 35580439
    [Google Scholar]
  39. CrascìL. LauroM.R. PuglisiG. PanicoA. Natural antioxidant polyphenols on inflammation management: Anti-glycation activity vs. metalloproteinases inhibition.Crit. Rev. Food Sci. Nutr.201858689390410.1080/10408398.2016.1229657 27646710
    [Google Scholar]
  40. ElostaA. GhousT. AhmedN. Natural products as anti-glycation agents: possible therapeutic potential for diabetic complications.Curr. Diabetes Rev.2012829210810.2174/157339912799424528 22268395
    [Google Scholar]
  41. KhanK.M. KhanM. AliM. TahaM. RasheedS. PerveenS. ChoudharyM.I. Synthesis of bis-Schiff bases of isatins and their antiglycation activity.Bioorg. Med. Chem.200917227795780110.1016/j.bmc.2009.09.028 19837595
    [Google Scholar]
  42. Mohammed KhanK. RahimF. AmbreenN. TahaM. KhanM. JahanH. Najeebullah ShaikhA. IqbalS. PerveenS. ChoudharyM.I. Synthesis of benzophenonehydrazone Schiff bases and their in vitro antiglycating activities.Med. Chem.20139458859510.2174/1573406411309040013 23151265
    [Google Scholar]
  43. ShahabM. Al-MadhagiH. ZhengG. ZebA. AlasmariA.F. AlharbiM. AlasmariF. KhanM.Q. KhanM. WadoodA. Structure based virtual screening and molecular simulation study of FDA-approved drugs to inhibit human HDAC6 and VISTA as dual cancer immunotherapy.Sci. Rep.20231311446610.1038/s41598‑023‑41325‑9 37660065
    [Google Scholar]
  44. LvJ. XuY. XuL. NieL. Quantitative functional evaluation of liver fibrosis in mice with dynamic contrast-enhanced photoacoustic imaging.Radiology20213001899710.1148/radiol.2021204134 33904773
    [Google Scholar]
  45. MominS. GräfeJ.L. KhanR.F. Evaluation of mixed energy partial arcs for volumetric modulated arc therapy for prostate cancer.J. Appl. Clin. Med. Phys.2019204516510.1002/acm2.12561 30861308
    [Google Scholar]
  46. JiangC.H. SunT.L. XiangD.X. WeiS.S. LiW.Q. Anticancer activity and mechanism of xanthohumol: a prenylated flavonoid from hops (Humulus lupulus L.).Front. Pharmacol.2018953010.3389/fphar.2018.00530 29872398
    [Google Scholar]
  47. NehaDesai MominM. KhanT. GharatS. NingthoujamR.S. OmriA. Metallic nanoparticles as drug delivery system for the treatment of cancer.Expert Opin. Drug Deliv.20211891261129010.1080/17425247.2021.1912008 33793359
    [Google Scholar]
  48. DaiJ. AshrafizadehM. ArefA.R. SethiG. ErtasY.N. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy.Drug Discov. Today202429710398110.1016/j.drudis.2024.103981 38614161
    [Google Scholar]
  49. RatovitskiE.A. ChengX. YanD. ShermanJ.H. CanadyJ. TrinkB. KeidarM. Anti‐cancer therapies of 21st century: novel approach to treat human cancers using cold atmospheric plasma.Plasma Process. Polym.201411121128113710.1002/ppap.201400071
    [Google Scholar]
  50. AyazM. AlamA. Zainab AssadM. JavedA. IslamM.S. RafiqH. AliM. AhmadW. KhanA. LatifA. Al-HarrasiA. AhmadM. Biooriented synthesis of ibuprofen-clubbed novel bis-schiff base derivatives as potential hits for malignant glioma: in vitro anticancer activity and in silico approach.ACS Omega2023851492284924310.1021/acsomega.3c07216 38173864
    [Google Scholar]
  51. Al-MudhafarM.M.J. OmarT.N. AbdulhadiS.L. bis-schiff bases of isatin derivatives synthesis, and their biological activities: a review. Al-Mustansiriyah.J. Pharm. Sci.2022221234810.32947/ajps.v22i1.827
    [Google Scholar]
  52. SondhiS.M. AryaS. RaniR. KumarN. RoyP. Synthesis, anti-inflammatory and anticancer activity evaluation of some mono- and bis-Schiff’s bases.Med. Chem. Res.201221113620362810.1007/s00044‑011‑9899‑3
    [Google Scholar]
  53. BondockS. AlbarqiT. ShaabanI.A. AbdouM.M. Novel asymmetrical azines appending 1,3,4-thiadiazole sulfonamide: synthesis, molecular structure analyses, in silico ADME, and cytotoxic effect.RSC Adv.20231315103531036610.1039/D3RA00123G 37020890
    [Google Scholar]
  54. AliT.E. AssiriM.A. AlqahtaniM.N. ShatiA.A. AlfaifiM.Y. ElbehairiS.E.I. Recyclization of morpholinochromonylidene–thiazolidinone using nucleophiles: facile synthesis, cytotoxic evaluation, apoptosis, cell cycle and molecular docking studies of a novel series of azole, azine, azepine and pyran derivatives.RSC Adv.20231327186581867510.1039/D3RA02777E 37346943
    [Google Scholar]
  55. ShaabanM.R. FarghalyT.A. AlsaediA.M.R. AbdulwahabH.G. Microwaves assisted synthesis of antitumor agents of novel azoles, azines, and azoloazines pendant to phenyl sulfone moiety and molecular docking for VEGFR-2 kinase.J. Mol. Struct.2022124913165710.1016/j.molstruc.2021.131657
    [Google Scholar]
  56. QayedW.S. HassanM.A. El-SayedW.M. RogérioA. SilvaJ. Aboul-FadlT. Novel azine linked hybrids of 2-indolinone and thiazolodinone scaffolds as CDK2 inhibitors with potential anticancer activity: in silico design, synthesis, biological, molecular dynamics and binding free energy studies.Bioorg. Chem.202212610588410.1016/j.bioorg.2022.105884 35623140
    [Google Scholar]
  57. ElgemeieG.H. AzzamR.A. ElsayedR.E. Sulfa drug analogs: new classes of N-sulfonyl aminated azines and their biological and preclinical importance in medicinal chemistry (2000–2018).Med. Chem. Res.20192881099113110.1007/s00044‑019‑02378‑6
    [Google Scholar]
  58. GulH.I. DasU. PanditB. LiP-K. Evaluation of the cytotoxicity of some mono-mannich bases and their corresponding azine derivatives against androgen-independent prostate cancer cells.Arzneimittelforschung20065612850854 17260673
    [Google Scholar]
  59. HaggertyW.J.Jr ChengC.C. Antitumor activity of some azine and hydrazone derivatives of 1,4-dimethoxy-2-butanone.J. Med. Chem.197013357457510.1021/jm00297a067 5459042
    [Google Scholar]
  60. ZhuJ. JiangX. LuoX. ZhaoR. LiJ. CaiH. YeX.Y. BaiR. XieT. Combination of chemotherapy and gaseous signaling molecular therapy: Novel β‐elemene nitric oxide donor derivatives against leukemia.Drug Dev. Res.202384471873510.1002/ddr.22051 36988106
    [Google Scholar]
  61. LiangC. XiaJ. LeiD. LiX. YaoQ. GaoJ. Synthesis, in vitro and in vivo antitumor activity of symmetrical bis-Schiff base derivatives of isatin.Eur. J. Med. Chem.20147474275010.1016/j.ejmech.2013.04.040 24176732
    [Google Scholar]
  62. MorsyN.M. HassanA.S. HafezT.S. MahranM.R. SadaweI.A. GbajA.M. Synthesis, antitumor activity, enzyme assay, DNA binding and molecular docking of bis-Schiff bases of pyrazoles.J. Indian Chem. Soc.2021184759
    [Google Scholar]
  63. IbrahimM. FaragB. Al-HumaidiJ. ZakiM. FathallaM. GomhaS. Mechanochemical synthesis and molecular docking studies of new azines bearing indole as anticancer agents.Molecules2023289386910.3390/molecules28093869 37175279
    [Google Scholar]
  64. AlzahraniA.Y.A. GomhaS.M. ZakiM.E.A. FaragB. AbdelgawadF.E. MohamedM.A. Chitosan-sulfonic acid-catalyzed green synthesis of naphthalene-based azines as potential anticancer agents.Future Med. Chem.202416764766310.4155/fmc‑2023‑0351 38385167
    [Google Scholar]
  65. TalabF. UllahS. AlamA. HalimS.A. RehmanN.U. Zainab; Ali, M.; Latif, A.; Khan, A.; Al-Harrasi, A.; Ahmad, M. Bio-oriented synthesis of novel polyhydroquinoline derivatives as α-glucosidase inhibitor for management of diabetes.ACS Omega2023876234624310.1021/acsomega.2c05390 36844517
    [Google Scholar]
  66. ZhaoC. TangX. ZhaoJ. CaoJ. JiangZ. QinJ. MOF derived core-shell CuO/C with temperature-controlled oxygen-vacancy for real time analysis of glucose.J. Nanobiotechnology202220150710.1186/s12951‑022‑01715‑z 36456946
    [Google Scholar]
  67. AlamA. AliM. RehmanN.U. UllahS. HalimS.A. LatifA. Zainab; Khan, A.; Ullah, O.; Ahmad, S.; Al-Harrasi, A.; Ahmad, M. Bio-oriented synthesis of novel (S)-flurbiprofen clubbed hydrazone schiff’s bases for diabetic management: in vitro and in silico studies.Pharmaceuticals (Basel)202215667210.3390/ph15060672 35745591
    [Google Scholar]
  68. ChenL. JiangZ. YangL. FangY. LuS. AkakuruO.U. HuangS. LiJ. MaS. WuA. HPDA/Zn as a CREB inhibitor for ultrasound imaging and stabilization of atherosclerosis plaque.Chin. J. Chem.202341219920610.1002/cjoc.202200406
    [Google Scholar]
  69. KhanM. AlamA. KhanK.M. SalarU. ChigurupatiS. WadoodA. AliF. MohammadJ.I. RiazM. PerveenS. Flurbiprofen derivatives as novel α-amylase inhibitors: Biology-oriented drug synthesis (BIODS), in vitro , and in silico evaluation.Bioorg. Chem.20188115716710.1016/j.bioorg.2018.07.038 30125730
    [Google Scholar]
  70. ChangH. WangD. XiaW. PanX. HuoW. XuS. LiY. Epigenetic disruption and glucose homeostasis changes following low-dose maternal bisphenol A exposure.Toxicol. Res. (Camb.)2016551400140910.1039/C6TX00047A 30090444
    [Google Scholar]
  71. AlamA. AliM. LatifA. RehmanN.U. SaherS. Zainab, Faryal, Khan, A.; Ullah, S.; Ullah, O.; Halim, S.A.; Sani, F.; Al-Harrasi, A.; Ahmad, M. Novel bis-Schiff’s base derivatives of 4-nitroacetophenone as potent α-glucosidase agents: Design, synthesis and in silico approach.Bioorg. Chem.202212810605810.1016/j.bioorg.2022.106058 35917750
    [Google Scholar]
  72. KhanM. AhadG. AlamA. UllahS. KhanA. Kanwal, Salar, U.; Wadood, A.; Ajmal, A.; Khan, K.M.; Perveen, S.; Uddin, J.; Al-Harrasi, A. Synthesis of new bis(dimethyl-amino)benzophenone hydrazone for diabetic management: In-vitro and in-silico approach.Heliyon2024101e2332310.1016/j.heliyon.2023.e23323 38163112
    [Google Scholar]
  73. RahimF. ZamanK. TahaM. UllahH. GhufranM. WadoodA. RehmanW. UddinN. ShahS.A.A. SajidM. NawazF. KhanK.M. Synthesis, in vitro alpha-glucosidase inhibitory potential of benzimidazole bearing bis-Schiff bases and their molecular docking study.Bioorg. Chem.20209410339410.1016/j.bioorg.2019.103394 31699396
    [Google Scholar]
  74. KhanI. RehmanW. RahimF. HussainR. KhanS. FazilS. RasheedL. TahaM. ShahS.A.A. AbdellattifM.H. FarghalyT.A. Synthesis, in vitro α-glucosidase inhibitory activity and molecular docking study of new benzotriazole-based bis-Schiff base derivatives.Pharmaceuticals (Basel)20221611710.3390/ph16010017 36678514
    [Google Scholar]
  75. Zainab; Yu, H.; Rehman, N.U.; Ali, M.; Alam, A.; Latif, A.; Shahab, N.; Amir Khan, I.; Jabbar Shah, A.; Khan, M.; Al-Ghafri, A.; Al-Harrasi, A.; Ahmad, M. Novel polyhydroquinoline-hydrazide-linked schiff’s base derivatives: Multistep synthesis, antimicrobial, and calcium-channel-blocking activities.Antibiotics (Basel)20221111156810.3390/antibiotics11111568 36358223
    [Google Scholar]
  76. LiJ. XieS. AhmedS. WangF. GuY. ZhangC. ChaiX. WuY. CaiJ. ChengG. Antimicrobial activity and resistance: influencing factors.Front. Pharmacol.2017836410.3389/fphar.2017.00364 28659799
    [Google Scholar]
  77. ZhangL. ShiH. TanX. JiangZ. WangP. QinJ. Ten-gram-scale mechanochemical synthesis of ternary lanthanum coordination polymers for antibacterial and antitumor activities.Front Chem.20221089832410.3389/fchem.2022.898324 35774860
    [Google Scholar]
  78. MoelleringR.C. Discovering new antimicrobial agents.Int. J. Antimicrob. Agents20113712910.1016/j.ijantimicag.2010.08.018 21075608
    [Google Scholar]
  79. ZhuH.Y. Synthesis, crystal structures, and antimicrobial activities of copper(II) complexes with bis-Schiff bases. Inorg.Nano-Metal Chem.202151793193610.1080/24701556.2020.1813175
    [Google Scholar]
  80. KassabR.M. KhalilF.S.A.M. AbbasA.A. Synthesis and antimicrobial activities of some new bis (Schiff bases) and their triazole-based lariat macrocycles.Polycycl. Aromat. Compd.20224252751276610.1080/10406638.2020.1852272
    [Google Scholar]
  81. IsmailM. AhmadR. LatifA. KhanA.A. AlamA. OzdemirF.A. Ammara; Ali, M. Synthesis, antibacterial activities and theoretical study of polyhydroquinoline derivatives.ChemistrySelect2023841e20230095410.1002/slct.202300954
    [Google Scholar]
  82. TantaruG. ApostuM. GhiciucC.M. PoiataA. StefanacheA. VieriuM. The influence of the structure of several new ortho-hydroxyketone derived bis-Schiff bases on their antibacterial and anti-inflammatory activity.Revista de Chimie202071124424810.37358/RC.20.1.7840
    [Google Scholar]
  83. KhanM. AlamA. SalarU. ChigurupatiS. SaleemF. HameedS. TahaM. KhanK.M. Flurbiprofen derivatives as potential DPPH and ABTS radical scavengers.Russ. J. Org. Chem.20235991577158210.1134/S1070428023090154
    [Google Scholar]
  84. AhadG. KhanM. KhanA. IbrahimM. SalarU. KhanK.M. PerveenS. Synthesis, structural characterization, and antioxidant activities of 2, 4-dinitrophenyl-hydrazone derivatives.J. Chem. Soc. Pak.2018405961961
    [Google Scholar]
  85. KhanK.M. AliM. WadoodA. Zaheer-ul-Haq KhanM. LodhiM.A. PerveenS. ChoudharyM.I. VoelterW. Molecular modeling-based antioxidant arylidene barbiturates as urease inhibitors.J. Mol. Graph. Model.20113015315610.1016/j.jmgm.2011.07.001 21816644
    [Google Scholar]
  86. YousafM. KhanM. AliM. ShamsW.A. AliM. 2-Mercaptobenzimidazole based hydrazone derivatives as potential antioxidant and α-glucosidase inhibitors.Curr. Bioact. Compd.20221810e19042220378110.2174/1573407218666220419105140
    [Google Scholar]
  87. SuraiP. Silymarin as a natural antioxidant: an overview of the current evidence and perspectives.Antioxidants20154120424710.3390/antiox4010204 26785346
    [Google Scholar]
  88. MaqsoudlouA. AssadpourE. MohebodiniH. JafariS.M. Improving the efficiency of natural antioxidant compounds via different nanocarriers.Adv. Colloid Interface Sci.202027810212210.1016/j.cis.2020.102122 32097732
    [Google Scholar]
  89. AhmadR. AlamA. KhanM. AliT. ElhenawyA.A. AhmadM. Antioxidant activity, molecular docking and quantum studies of new Bis‐schiff bases based on benzyl phenyl ketone moiety.ChemistrySelect2023835e20230233810.1002/slct.202302338
    [Google Scholar]
  90. KhanK.M. KhanM. AmbreenN. RahimF. MuhammadB. AliS. HaiderS.M. PerveenS. ChoudharyM. Bis-Schiff bases of isatins: a new class of antioxidant.J. Pharm. Res.201141034023404
    [Google Scholar]
  91. YaparG. DemirN. KirazA. ÖzkatG.Y. YıldızM. Synthesis, biological activities, antioxidant properties, and molecular docking studies of novel bis-schiff base podands as responsive chemosensors for anions.J. Mol. Struct.2022126613353010.1016/j.molstruc.2022.133530
    [Google Scholar]
  92. AlamA. AliM. RehmanN.U. LatifA. ShahA.J. WazirN.U. LodhiM.A. KamalM. AyazM. Al-HarrasiA. AhmadM. Synthesis and characterization of biologically active flurbiprofen amide derivatives as selective prostaglandin-endoperoxide synthase II inhibitors: In vivo anti-inflammatory activity and molecular docking.Int. J. Biol. Macromol.202322865967010.1016/j.ijbiomac.2022.12.259 36584776
    [Google Scholar]
  93. AhmadiA. KhaliliM. OlamaZ. KaramiS. Nahri-NiknafsB. Synthesis and study of analgesic and anti-inflammatory activities of amide derivatives of ibuprofen.Mini Rev. Med. Chem.201717979980410.2174/1389557516666161226155951 28029080
    [Google Scholar]
  94. ShiS. LiK. PengJ. LiJ. LuoL. LiuM. ChenY. XiangZ. XiongP. LiuL. CaiW. Chemical characterization of extracts of leaves of Kadsua coccinea (Lem.) A.C. Sm. by UHPLC-Q-Exactive Orbitrap Mass spectrometry and assessment of their antioxidant and anti-inflammatory activities.Biomed. Pharmacother.202214911282810.1016/j.biopha.2022.112828 35339830
    [Google Scholar]
  95. CiprianoM. BjörklundE. WilsonA.A. CongiuC. OnnisV. FowlerC.J. Inhibition of fatty acid amide hydrolase and cyclooxygenase by the N-(3-methylpyridin-2-yl)amide derivatives of flurbiprofen and naproxen.Eur. J. Pharmacol.20137201-338339010.1016/j.ejphar.2013.09.065 24120370
    [Google Scholar]
  96. HuaS. Neuroimmune interaction in the regulation of peripheral opioid-mediated analgesia in inflammation.Front. Immunol.2016729310.3389/fimmu.2016.00293 27532001
    [Google Scholar]
  97. PanthongA. SupraditapornW. KanjanapothiD. TaesotikulT. ReutrakulV. Analgesic, anti-inflammatory and venotonic effects of Cissus quadrangularis Linn.J. Ethnopharmacol.2007110226427010.1016/j.jep.2006.09.018 17095173
    [Google Scholar]
  98. DionneR.A. LepinskiA.M. GordonS.M. JaberL. BrahimJ.S. HargreavesK.M. Analgesic effects of peripherally administered opioids in clinical models of acute and chronic inflammation.Clin. Pharmacol. Ther.2001701667310.1067/mcp.2001.116443 11452246
    [Google Scholar]
  99. RajakariarR. YaqoobM.M. GilroyD.W. COX-2 in inflammation and resolution.Mol. Interv.20066419920710.1124/mi.6.4.6 16960142
    [Google Scholar]
  100. AlamA. AliM. Zainab LatifA. Najeeb Ur Rehman Jabbar ShahA. Amir KhanI. AyazM. Sajjad Ur Rahman Al-HarrasiA. AhmadM. Discovery of (S)-flurbiprofen-based novel azine derivatives as prostaglandin endoperoxide synthase-II inhibitors: Synthesis, in-vivo analgesic, anti-inflammatory activities, and their molecular docking.Bioorg. Chem.202314110684710.1016/j.bioorg.2023.106847 37722268
    [Google Scholar]
  101. SondhiS.M. SinghJ. RaniR. GuptaP.P. AgrawalS.K. SaxenaA.K. Synthesis, anti-inflammatory and anticancer activity evaluation of some novel acridine derivatives.Eur. J. Med. Chem.201045255556310.1016/j.ejmech.2009.10.042 19926172
    [Google Scholar]
  102. SondhiS.M. DinodiaM. JainS. KumarA. Synthesis of biologically active novel bis Schiff bases, bis hydrazone and bis guanidine derivatives.Indian J. Chem. Sect. B200948811281136
    [Google Scholar]
  103. AhmadS. KhanM. AlamA. AjmalA. WadoodA. KhanA. AlAsmariA.F. AlharbiM. AlshammariA. ShakoorA. Novel flurbiprofen clubbed oxadiazole derivatives as potential urease inhibitors and their molecular docking study.RSC Adv.20231337257172572810.1039/D3RA03841F 37649663
    [Google Scholar]
  104. AhmadS. KhanM. ShahM.I.A. AliM. AlamA. RiazM. KhanK.M. Synthetic transformation of 2-{2-fluoro [1, 1′-biphenyl]-4-yl} propanoic acid into hydrazide–hydrazone derivatives: in vitro urease inhibition and in silico study.ACS Omega2022749450774508710.1021/acsomega.2c05498 36530251
    [Google Scholar]
  105. AhmadS. KhanM. RehmanN.U. IkramM. RehmanS. AliM. UddinJ. KhanA. AlamA. Al-HarrasiA. Design, synthesis, crystal structure, in vitro and in silico evaluation of new N′-benzylidene-4-tert-butylbenzohydrazide derivatives as potent urease inhibitors.Molecules20222720690610.3390/molecules27206906 36296497
    [Google Scholar]
  106. GrahamD.Y. MiftahussururM. Helicobacter pylori urease for diagnosis of Helicobacter pylori infection: A mini review.J. Adv. Res.201813515710.1016/j.jare.2018.01.006 30094082
    [Google Scholar]
  107. ZhouJ.T. LiC.L. TanL.H. XuY.F. LiuY.H. MoZ.Z. DouY.X. SuR. SuZ.R. HuangP. XieJ.H. Inhibition of Helicobacter pylori and its associated urease by palmatine: investigation on the potential mechanism.PLoS One2017121e016894410.1371/journal.pone.0168944 28045966
    [Google Scholar]
  108. KlimczykM. SiczekA. SchimmelpfennigL. Improving the efficiency of urea-based fertilization leading to reduction in ammonia emission.Sci. Total Environ.202177114548310.1016/j.scitotenv.2021.145483 33736136
    [Google Scholar]
  109. AhmadR. KhanM. AlamA. ElhenawyA.A. QadeerA. AlAsmariA.F. AlharbiM. AlasmariF. AhmadM. Synthesis, molecular structure and urease inhibitory activity of novel bis-Schiff bases of benzyl phenyl ketone: A combined theoretical and experimental approach.Saudi Pharm. J.202331810168810.1016/j.jsps.2023.06.021 37457366
    [Google Scholar]
  110. PervezH. AhmadM. ZaibS. YaqubM. NaseerM.M. IqbalJ. Synthesis, cytotoxic and urease inhibitory activities of some novel isatin-derived bis-Schiff bases and their copper(II) complexes.MedChemComm20167591492310.1039/C5MD00529A
    [Google Scholar]
  111. KhanM. GoharH. AlamA. WadoodA. ShareefA. AliM. KhalidA. AbdallaA.N. UllahF. Para-substituted thiosemicarbazones as cholinesterase inhibitors: Synthesis, in vitro biological evaluation, and in silico study.ACS Omega2023855116512310.1021/acsomega.2c08108 36777613
    [Google Scholar]
  112. KangL. GaoX.H. LiuH.R. MenX. WuH.N. CuiP.W. OldfieldE. YanJ.Y. Structure–activity relationship investigation of coumarin–chalcone hybrids with diverse side-chains as acetylcholinesterase and butyrylcholinesterase inhibitors.Mol. Divers.201822489390610.1007/s11030‑018‑9839‑y 29934672
    [Google Scholar]
  113. KhanN.H. MirM. NgowiE.E. ZafarU. KhakwaniM.M.A.K. KhattakS. ZhaiY.K. JiangE.S. ZhengM. DuanS.F. WeiJ.S. WuD.D. JiX.Y. Nanomedicine: A Promising way to manage Alzheimer’s disease.Front. Bioeng. Biotechnol.2021963005510.3389/fbioe.2021.630055 33996777
    [Google Scholar]
  114. LiH. ZhangC. FanR. SunH. XieH. LuoJ. WangY. LvH. TangT. The effects of Chuanxiong on the pharmacokinetics of warfarin in rats after biliary drainage.J. Ethnopharmacol.201619311712410.1016/j.jep.2016.08.005 27497635
    [Google Scholar]
  115. BegumF. YousafM. IqbalS. UllahN. HussainA. KhanM. KhalidA. AlgarniA.S. AbdallaA.N. KhanA. LodhiM.A. Al-HarrasiA. Inhibition of acetylcholinesterase with novel 1, 3, 4, oxadiazole derivatives: A Kinetic, in silico, and in vitro approach.ACS Omega2023849468164682910.1021/acsomega.3c06298 38107974
    [Google Scholar]
  116. LuQ.Q. ChenY.M. LiuH.R. YanJ.Y. CuiP.W. ZhangQ.F. GaoX.H. FengX. LiuY.Z. Nitrogen‐containing flavonoid and their analogs with diverse B‐ring in acetylcholinesterase and butyrylcholinesterase inhibition.Drug Dev. Res.20208181037104710.1002/ddr.21726 32754990
    [Google Scholar]
  117. NalivaevaN. FiskL. BelyaevN. TurnerA. Amyloid-degrading enzymes as therapeutic targets in Alzheimer’s disease.Curr. Alzheimer Res.20085221222410.2174/156720508783954785 18393806
    [Google Scholar]
  118. LiH. ZhouY. LiaoL. TanH. LiY. LiZ. ZhouB. BaoM. HeB. Pharmacokinetics effects of chuanxiong rhizoma on warfarin in pseudo germ-free rats.Front. Pharmacol.202313102256710.3389/fphar.2022.1022567 36686675
    [Google Scholar]
  119. RevadigarV. GhalibR.M. MurugaiyahV. EmbabyM.A. JawadA. MehdiS.H. HashimR. SulaimanO. Enzyme inhibitors involved in the treatment of Alzheimer’s disease.In: Drug Design and Discovery in Alzheimer’s Disease.Bentham Science Publisher2014142198
    [Google Scholar]
  120. KabirM.T. UddinM.S. BegumM.M. ThangapandiyanS. RahmanM.S. AleyaL. MathewB. AhmedM. BarretoG.E. AshrafG.M. Cholinesterase inhibitors for Alzheimer’s disease: multitargeting strategy based on anti-Alzheimer’s drugs repositioning.Curr. Pharm. Des.201925333519353510.2174/1381612825666191008103141 31593530
    [Google Scholar]
  121. GaoX.H. TangJ.J. LiuH.R. LiuL.B. LiuY.Z. Structure–activity study of fluorine or chlorine‐substituted cinnamic acid derivatives with tertiary amine side chain in acetylcholinesterase and butyrylcholinesterase inhibition.Drug Dev. Res.201980443844510.1002/ddr.21515 30680760
    [Google Scholar]
  122. ManzoorS. HodaN. A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer’s disease agents: A review.Eur. J. Med. Chem.202020611278710.1016/j.ejmech.2020.112787 32942081
    [Google Scholar]
  123. IbrahimM. HalimS.A. LatifA. AhmadM. AliS. UllahS. KhalidA. AbdallaA.N. KhanA. Al-HarrasiA. AliM. Synthesis, biochemical and computational evaluations of novel bis-acylhydrazones of 2,2′-(1,1′-biphenyl)-4,4′-diylbis(oxy))di(acet-ohydrazide) as dual cholinesterase inhibitors.Bioorg. Chem.202414410714410.1016/j.bioorg.2024.107144 38281382
    [Google Scholar]
  124. TahaM. RahimF. ZamanK. AnouarE.H. UddinN. NawazF. SajidM. KhanK.M. ShahA.A. WadoodA. RehmanA.U. AlhibshiA.H. Synthesis, in vitro biological screening and docking study of benzo[ d]oxazole bis Schiff base derivatives as a potent anti-Alzheimer agent.J. Biomol. Struct. Dyn.20234151649166410.1080/07391102.2021.2023640 34989316
    [Google Scholar]
  125. ChouiterA.D. MousserM.O. MousserH.B. KridA. BelkhiriL. FleutotS. FrançoisM. Synthesis, spectra, crystal, DFT, molecular docking and in vitro cholinesterase inhibition evaluation on two novel symmetrical Azine Schiff bases.J. Mol. Struct.2023128113517110.1016/j.molstruc.2023.135171
    [Google Scholar]
  126. KhanS. UllahH. HussainR. KhanY. KhanM.U. KhanM. SattarA. KhanM.S. Synthesis, in vitro bio-evaluation, and molecular docking study of thiosemicarbazone-based isatin/bis-Schiff base hybrid analogues as effective cholinesterase inhibitors.J. Mol. Struct.2023128413535110.1016/j.molstruc.2023.135351
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575363243241129100845
Loading
/content/journals/mrmc/10.2174/0113895575363243241129100845
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): azines; biological activities; bis-Schiff bases; di-imines; enzyme inhibitions; Synthesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test