Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

The broad-spectrum action and capacity to target drug-resistant infections make synthetic Antimicrobial Peptides (AMPs) popular therapeutic agents. Indeed, the effective use of these peptides in clinical application relies on a thorough understanding of their Pharmacokinetic (PK) and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) characteristics. Despite growing research on synthetic AMPs, there is a notable gap in the literature specifically addressing their ADMET profiles. Previous reviews have not extensively covered this area, providing a vital opportunity to study synthetic AMPs' pharmacokinetics and safety, which are crucial for their therapeutic development. This review covered research studies that focused on PK and ADMET of synthetic antimicrobial peptides from several databases, including Google Scholar, SCOPUS, PubMed, and Science Direct, within the years 2020 to 2024, and 12 related research papers have been found. AMPs display a wide range of PK behaviors, including rapid renal clearance, liver-centric distribution, broad distribution with low toxicity, high kidney retention, and gradual absorption with dose-dependent toxicity. Overall, the ADMET profiles of AMPs are crucial in assessing their therapeutic potential, and continuous study is necessary to enhance their practical feasibility. An in-depth investigation of the ADMET and pharmacokinetic profiles of synthetic AMPs is presented in this review to address the current gap in the research. The findings of this study provide important insights for developing synthetic AMPs as effective antimicrobial drugs.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575362479241231054240
2025-02-11
2025-09-26
Loading full text...

Full text loading...

References

  1. XuanH. TruongT. HiepT. Antimicrobial peptides – Advances in development of therapeutic applications.Life Sci.2020260115
    [Google Scholar]
  2. HuanY. KongQ. MouH. YiH. Antimicrobial peptides: Classification, design, application and research progress in multiple fields.Front. Microbiol.20201158277910.3389/fmicb.2020.582779 33178164
    [Google Scholar]
  3. AlkatheriA.H. YapP.S.X. AbushelaibiA. LaiK.S. ChengW.H. LimS.H.E. Host–bacterial interactions: Outcomes of antimicrobial peptide applications.Membranes202212771510.3390/membranes12070715 35877918
    [Google Scholar]
  4. ChenY. WuJ. ChengH. DaiY. WangY. YangH. XiongF. XuW. WeiL. Anti-infective effects of a fish-derived antimicrobial peptide against drug-resistant bacteria and its synergistic effects with antibiotic.Front. Microbiol.20201160241210.3389/fmicb.2020.602412 33329494
    [Google Scholar]
  5. Le GouicA.V. HarnedyP.A. FitzGeraldR.J. Bioactive peptides from fish protein by-products BT - bioactive molecules in food. Springer international publishing: Cham,201813510.1007/978‑3‑319‑54528‑8_29‑1
    [Google Scholar]
  6. KundaN.K. Antimicrobial peptides as novel therapeutics for non-small cell lung cancer.Drug Discov. Today202025123824710.1016/j.drudis.2019.11.012 31786365
    [Google Scholar]
  7. HancockR.E.W. SahlH.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies.Nat. Biotechnol.200624121551155710.1038/nbt1267 17160061
    [Google Scholar]
  8. LawD. Abdulkareem NajmA. ChongJ.X. K’ngJ.Z.Y. AmranM. ChingH.L. WongR.R. LeongM.H. MahdiI.M. FazryS. In silico identification and in vitro assessment of a potential anti-breast cancer activity of antimicrobial peptide retrieved from the ATMP1 Anabas testudineus fish peptide.PeerJ202311e1565110.7717/peerj.15651 37483971
    [Google Scholar]
  9. NajmA.A.K. AzfaralariffA. DyariH.R.E. OthmanB.A. ShahidM. KhaliliN. LawD. Syed AlwiS.S. FazryS. Anti-breast cancer synthetic peptides derived from the Anabas testudineus skin mucus fractions.Sci. Rep.20211112318210.1038/s41598‑021‑02007‑6 34848729
    [Google Scholar]
  10. RajuS.V. SarkarP. KumarP. ArockiarajJ. Piscidin, fish antimicrobial peptide: Structure, classification, properties, mechanism, gene regulation and therapeutical importance.Int. J. Pept. Res. Ther.20212719110710.1007/s10989‑020‑10068‑w
    [Google Scholar]
  11. WaliA.F. MajidS. RasoolS. ShehadaS.B. AbdulkareemS.K. FirdousA. BeighS. ShakeelS. MushtaqS. AkbarI. MadhkaliH. RehmanM.U. Natural products against cancer: Review on phytochemicals from marine sources in preventing cancer.Saudi Pharm. J.201927676777710.1016/j.jsps.2019.04.013 31516319
    [Google Scholar]
  12. WangJ. DouX. SongJ. LyuY. ZhuX. XuL. LiW. ShanA. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era.Med. Res. Rev.201939383185910.1002/med.21542 30353555
    [Google Scholar]
  13. Erdem BüyükkirazM. KesmenZ. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds.J. Appl. Microbiol.202213231573159610.1111/jam.15314 34606679
    [Google Scholar]
  14. ZengZ.Z. HuangS.H. AlezraV. WanY. Antimicrobial peptides: Triumphs and challenges.Future Med. Chem.202113161313131510.4155/fmc‑2021‑0134 34148371
    [Google Scholar]
  15. BiswaroL.S. da Costa SousaM.G. RezendeT.M.B. DiasS.C. FrancoO.L. Antimicrobial peptides and nanotechnology, recent advances and challenges.Front. Microbiol.2018985510.3389/fmicb.2018.00855 29867793
    [Google Scholar]
  16. PfalzgraffA. BrandenburgK. WeindlG. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds.Front. Pharmacol.2018928110.3389/fphar.2018.00281 29643807
    [Google Scholar]
  17. GarveyM. Antimicrobial peptides demonstrate activity against resistant bacterial pathogens.Infect. Dis. Rep.202315445446910.3390/idr15040046 37623050
    [Google Scholar]
  18. Cytryńska, M.; Zdybicka-Barabas, A. Defense peptides: Recent developments.Biomol. Concepts20156423725110.1515/bmc‑2015‑0014 26203603
    [Google Scholar]
  19. HuangY. HuangJ. ChenY. Alpha-helical cationic antimicrobial peptides: Relationships of structure and function.Protein Cell20101214315210.1007/s13238‑010‑0004‑3 21203984
    [Google Scholar]
  20. ZelezetskyI. TossiA. Alpha-helical antimicrobial peptides: Using a sequence template to guide structure–activity relationship studies.Biochim. Biophys. Acta Biomembr.2006175891436144910.1016/j.bbamem.2006.03.021 16678118
    [Google Scholar]
  21. PortoW.F. SilvaO.N. FrancoO.L. Prediction and rational design of antimicrobial peptides.Protein Struct201237739610.5772/2335
    [Google Scholar]
  22. WhiteR.E. Role of ADME/PK in drug discovery, Safety Assessment, and clinical development.3rd edElsevier201710.1016/B978‑0‑12‑409547‑2.12364‑9
    [Google Scholar]
  23. BolleddulaJ. BradyK. BruinG. LeeA. MartinJ.A. WallesM. XuK. YangT.Y. ZhuX. YuH. Absorption, distribution, metabolism, and excretion of therapeutic proteins: Current industry practices and future perspectives.Drug Metab. Dispos.202250683784510.1124/dmd.121.000461 35149541
    [Google Scholar]
  24. CrestiL. FalcianiC. CappelloG. BrunettiJ. VailatiS. MelloniE. BracciL. PiniA. Safety evaluations of a synthetic antimicrobial peptide administered intravenously in rats and dogs.Sci. Rep.20221211929410.1038/s41598‑022‑23841‑2 36369523
    [Google Scholar]
  25. HuangD.B. BrothersK.M. MandellJ.B. TaguchiM. AlexanderP.G. ParkerD.M. ShinabargerD. PillarC. MorrisseyI. HawserS. GhahramaniP. DobbinsD. PachudaN. MontelaroR. SteckbeckJ.D. UrishK.L. Engineered peptide PLG0206 overcomes limitations of a challenging antimicrobial drug class.PLoS One2022179e027481510.1371/journal.pone.0274815 36112657
    [Google Scholar]
  26. BrunoB.J. MillerG.D. LimC.S. Basics and recent advances in peptide and protein drug delivery.Ther. Deliv.20134111443146710.4155/tde.13.104 24228993
    [Google Scholar]
  27. VliegheP. LisowskiV. MartinezJ. KhrestchatiskyM. Synthetic therapeutic peptides: Science and market.Drug Discov. Today2010151-2405610.1016/j.drudis.2009.10.009 19879957
    [Google Scholar]
  28. LesiukM. Paduszyńska, M.; Greber, K.E. Synthetic antimicrobial immunomodulatory peptides: Ongoing studies and clinical trials.Antibiotics 2022118106210.3390/antibiotics11081062 36009931
    [Google Scholar]
  29. LimaP.G. OliveiraJ.T.A. AmaralJ.L. FreitasC.D.T. SouzaP.F.N. Synthetic antimicrobial peptides: Characteristics, design, and potential as alternative molecules to overcome microbial resistance.Life Sci.202127811964710.1016/j.lfs.2021.119647 34043990
    [Google Scholar]
  30. VanzoliniT. BruschiM. RinaldiA.C. MagnaniM. FraternaleA. Multitalented synthetic antimicrobial peptides and their antibacterial, antifungal and antiviral mechanisms.Int. J. Mol. Sci.202223154510.3390/ijms23010545 35008974
    [Google Scholar]
  31. NajmA.A. AzfaralarriffA. Eziwar DyariH.R. Syed AlwiS.S. KhaliliN. OthmanB.A. LawD. ShahidM. FazryS. A systematic review of antimicrobial peptides from fish with anticancer properties.Pertanika J. Sci. Technol.20223021171119610.47836/pjst.30.2.18
    [Google Scholar]
  32. MorettaA. ScieuzoC. PetroneA.M. SalviaR. MannielloM.D. FrancoA. LucchettiD. VassalloA. VogelH. SgambatoA. FalabellaP. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields.Front. Cell. Infect. Microbiol.20211166863210.3389/fcimb.2021.668632 34195099
    [Google Scholar]
  33. EspositoT.V.F. Rodríguez-RodríguezC. BlackadarC. HaneyE.F. PletzerD. HancockR.E.W. SaatchiK. HäfeliU.O. Biodistribution and toxicity of innate defense regulator 1018 (IDR-1018).Eur. J. Pharm. Biopharm.2022179112510.1016/j.ejpb.2022.08.004 36028151
    [Google Scholar]
  34. MarrA. GooderhamW. HancockR. Antibacterial peptides for therapeutic use: Obstacles and realistic outlook.Curr. Opin. Pharmacol.20066546847210.1016/j.coph.2006.04.006 16890021
    [Google Scholar]
  35. MookherjeeN. AndersonM.A. HaagsmanH.P. DavidsonD.J. Antimicrobial host defence peptides: Functions and clinical potential.Nat. Rev. Drug Discov.202019531133210.1038/s41573‑019‑0058‑8 32107480
    [Google Scholar]
  36. GustafsonH.H. Holt-CasperD. GraingerD.W. GhandehariH. Nanoparticle uptake: The phagocyte problem.Nano Today201510448751010.1016/j.nantod.2015.06.006 26640510
    [Google Scholar]
  37. NieS. Understanding and overcoming major barriers in cancer nanomedicine opsonization & phagocytosis.Nanomedicine 2010552352810.2217/nnm.10.23.Understanding 20528447
    [Google Scholar]
  38. RuggieroA. VillaC.H. BanderE. ReyD.A. BergkvistM. BattC.A. Manova-TodorovaK. DeenW.M. ScheinbergD.A. McDevittM.R. Paradoxical glomerular filtration of carbon nanotubes.Proc. Natl. Acad. Sci. USA201010727123691237410.1073/pnas.0913667107 20566862
    [Google Scholar]
  39. XiongY.Q. HadyW.A. DeslandesA. ReyA. FraisseL. KristensenH.H. YeamanM.R. BayerA.S. Efficacy of NZ2114, a novel plectasin-derived cationic antimicrobial peptide antibiotic, in experimental endocarditis due to methicillin-resistant Staphylococcus aureus.Antimicrob. Agents Chemother.201155115325533010.1128/AAC.00453‑11 21859940
    [Google Scholar]
  40. SchmidtR. KnappeD. WendeE. OstorháziE. HoffmannR. In vivo efficacy and pharmacokinetics of optimized apidaecin analogs.Front Chem.201751510.3389/fchem.2017.00015 28373972
    [Google Scholar]
  41. SchmidtR. OstorháziE. WendeE. KnappeD. HoffmannR. Pharmacokinetics and in vivo efficacy of optimized oncocin derivatives.J. Antimicrob. Chemother.20167141003101110.1093/jac/dkv454 26832757
    [Google Scholar]
  42. BrunettiJ. FalcianiC. RosciaG. PolliniS. BindiS. ScaliS. ArrietaU.C. Gómez-VallejoV. QuerciniL. IbbaE. PratoM. RossoliniG.M. LlopJ. BracciL. PiniA. In vitro and in vivo efficacy, toxicity, bio-distribution and resistance selection of a novel antibacterial drug candidate.Sci. Rep.2016612607710.1038/srep26077 27169671
    [Google Scholar]
  43. BrunettiJ. RosciaG. LamprontiI. GambariR. QuerciniL. FalcianiC. BracciL. PiniA. Immunomodulatory and anti-inflammatory activity in vitro and in vivo of a novel antimicrobial candidate.J. Biol. Chem.201629149257422574810.1074/jbc.M116.750257 27758868
    [Google Scholar]
  44. FreitasC.G. LimaS.M.F. FreireM.S. CantuáriaA.P.C. JúniorN.G.O. SantosT.S. FolhaJ.S. RibeiroS.M. DiasS.C. RezendeT.M.B. AlbuquerqueP. NicolaA.M. de la Fuente-NúñezC. HancockR.E.W. FrancoO.L. FelipeM.S.S. An immunomodulatory peptide confers protection in an experimental candidemia murine model.Antimicrob. Agents Chemother.2017618e02518e1610.1128/AAC.02518‑16 28559266
    [Google Scholar]
  45. EspositoT.V.F. BlackadarC. WuL. Rodríguez-RodríguezC. HaneyE.F. PletzerD. SaatchiK. HancockR.E.W. HäfeliU.O. Biodistribution of native and nanoformulated innate defense regulator peptide 1002.Mol. Pharm.20242162751276610.1021/acs.molpharmaceut.3c01169 38693707
    [Google Scholar]
  46. HäfeliU.O. SaatchiK. ElischerP. MisriR. BokharaeiM. LabirisN.R. StoeberB. Lung perfusion imaging with monosized biodegradable microspheres.Biomacromolecules201011356156710.1021/bm9010722 20143805
    [Google Scholar]
  47. TownsleyM.I. Structure and composition of pulmonary arteries, capillaries and veins.Comput. Phys.20122167570910.1002/cphy.c100081 23606929
    [Google Scholar]
  48. SchusterM. BrabetE. OiK.K. DesjonquèresN. MoehleK. Le PouponK. HellS. GableS. RithiéV. DillingerS. ZbindenP. LutherA. LiC. StiegelerS. D’ArcoC. LocherH. RemusT. DiMaioS. MottaP. WachA. JungF. UpertG. ObrechtD. BenghezalM. ZerbeO. Peptidomimetic antibiotics disrupt the lipopolysaccharide transport bridge of drug-resistant Enterobacteriaceae.Sci. Adv.2023921eadg368310.1126/sciadv.adg3683 37224246
    [Google Scholar]
  49. StorckP. UmstätterF. WohlfartS. DomhanC. KleistC. WernerJ. BrandenburgK. ZimmermannS. HaberkornU. MierW. UhlP. Fatty acid conjugation leads to length-dependent antimicrobial activity of a synthetic antibacterial peptide (Pep19-4lf).Antibiotics 202091284410.3390/antibiotics9120844 33255900
    [Google Scholar]
  50. CaiJ. CuiX. WangX. YouL. JiC. CaoY. A novel anti-infective peptide BCCY-1 with immunomodulatory activities.Front. Immunol.20211271396010.3389/fimmu.2021.713960 34367182
    [Google Scholar]
  51. YangP. MaoW. ZhangJ. YangY. ZhangF. OuyangX. LiB. WuX. BaZ. RanK. TianY. LiuH. ZhangY. GouS. ZhongC. NiJ. A novel antimicrobial peptide with broad-spectrum and exceptional stability derived from the natural peptide Brevicidine.Eur. J. Med. Chem.202426911633710.1016/j.ejmech.2024.116337 38537511
    [Google Scholar]
  52. BartoloniM. JinX. MarcaidaM.J. BanhaJ. DibonaventuraI. BongoniS. BarthoK. GräbnerO. SefkowM. DarbreT. ReymondJ.L. Bridged bicyclic peptides as potential drug scaffolds: Synthesis, structure, protein binding and stability.Chem. Sci. 20156105473549010.1039/C5SC01699A 29861888
    [Google Scholar]
  53. OngZ.Y. WiradharmaN. YangY.Y. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials.Adv. Drug Deliv. Rev.201478284510.1016/j.addr.2014.10.013 25453271
    [Google Scholar]
  54. LuJ. XuH. XiaJ. MaJ. XuJ. LiY. FengJ. D- and unnatural amino acid substituted antimicrobial peptides with improved proteolytic resistance and their proteolytic degradation characteristics.Front. Microbiol.20201156303010.3389/fmicb.2020.563030 33281761
    [Google Scholar]
  55. KharaJ.S. PriestmanM. UhíaI. HamiltonM.S. KrishnanN. WangY. YangY.Y. LangfordP.R. NewtonS.M. RobertsonB.D. EeP.L.R. Unnatural amino acid analogues of membrane-active helical peptides with anti-mycobacterial activity and improved stability.J. Antimicrob. Chemother.20167182181219110.1093/jac/dkw107 27118774
    [Google Scholar]
  56. DuncanV. SmithD. SimpsonL. LovieE. KatvarsL. BergeL. RobertsonJ. SmithS. MunroC. MercerD. O’NeilD. Preliminary characterization of NP339, a novel polyarginine peptide with broad antifungal activity.Antimicrob. Agents Chemother.2021658e02345e2010.1128/AAC.02345‑20 34031048
    [Google Scholar]
  57. ParkA.Y.J. TranD.Q. SchaalJ.B. WangM. SelstedM.E. BeringerP.M. Preclinical pharmacokinetics and safety of intravenous RTD-1.Antimicrob. Agents Chemother.2022663e02125e2110.1128/aac.02125‑21 35041507
    [Google Scholar]
  58. KaganL. AbrahamA.K. HarroldJ.M. MagerD.E. Interspecies scaling of receptor-mediated pharmacokinetics and pharmacodynamics of type I interferons.Pharm. Res.201027592093210.1007/s11095‑010‑0098‑6 20232116
    [Google Scholar]
  59. ChenT. MagerD.E. KaganL. Interspecies modeling and prediction of human exenatide pharmacokinetics.Pharm. Res.201330375176010.1007/s11095‑012‑0917‑z 23229855
    [Google Scholar]
  60. DiL. Strategic approaches to optimizing peptide ADME properties.AAPS J.201517113414310.1208/s12248‑014‑9687‑3 25366889
    [Google Scholar]
  61. DiaoL. MeibohmB. Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides.Clin. Pharmacokinet.2013521085586810.1007/s40262‑013‑0079‑0 23719681
    [Google Scholar]
  62. ElliottA.G. HuangJ.X. NeveS. ZueggJ. EdwardsI.A. CainA.K. BoinettC.J. BarquistL. LundbergC.V. SteenJ. ButlerM.S. MobliM. PorterK.M. BlaskovichM.A.T. LociuroS. StrandhM. CooperM.A. An amphipathic peptide with antibiotic activity against multidrug-resistant Gram-negative bacteria.Nat. Commun.2020111318410.1038/s41467‑020‑16950‑x 32576824
    [Google Scholar]
  63. PfisterJ. BataR. HubmannI. HörmannA.A. GsallerF. HaasH. DecristoforoC. Siderophore scaffold as carrier for antifungal peptides in therapy of Aspergillus fumigatus infections.J. Fungi 20206436710.3390/jof6040367 33334084
    [Google Scholar]
  64. ChosidowS. FantinB. NicolasI. MascaryJ.B. ChauF. BordeauV. VerdierM.C. RocheteauP. GuérinF. CattoirV. de LastoursV. Synergistic activity of PEP16, a promising new antibacterial pseudopeptide against multidrug-resistant organisms, in combination with colistin against multidrug-resistant Escherichia coli, in vitro and in a murine peritonitis model.Antibiotics 20231218110.3390/antibiotics12010081 36671282
    [Google Scholar]
  65. ScottM.G. DullaghanE. MookherjeeN. GlavasN. WaldbrookM. ThompsonA. WangA. LeeK. DoriaS. HamillP. YuJ.J. LiY. DoniniO. GuarnaM.M. FinlayB.B. NorthJ.R. HancockR.E.W. An anti-infective peptide that selectively modulates the innate immune response.Nat. Biotechnol.200725446547210.1038/nbt1288 17384586
    [Google Scholar]
  66. BolouriH. SävmanK. WangW. ThomasA. MaurerN. DullaghanE. FjellC.D. EkC.J. HagbergH. HancockR.E.W. BrownK.L. MallardC. Innate defense regulator peptide 1018 protects against perinatal brain injury.Ann. Neurol.201475339541010.1002/ana.24087 24339166
    [Google Scholar]
  67. Rivas-SantiagoB. Castañeda-DelgadoJ.E. Rivas SantiagoC.E. WaldbrookM. González-CurielI. León-ContrerasJ.C. Enciso-MorenoJ.A. VillarV. Mendez-RamosJ. HancockR.E.W. Hernandez-PandoR. Ability of innate defence regulator peptides IDR-1002, IDR-HH2 and IDR-1018 to protect against Mycobacterium tuberculosis infections in animal models.PLoS One201383e5911910.1371/journal.pone.0059119 23555622
    [Google Scholar]
  68. AchtmanA.H. PilatS. LawC.W. LynnD.J. JanotL. MayerM.L. MaS. KindrachukJ. FinlayB.B. BrinkmanF.S.L. SmythG.K. HancockR.E.W. SchofieldL. Effective adjunctive therapy by an innate defense regulatory peptide in a preclinical model of severe malaria.Sci. Transl. Med.20124135135ra6410.1126/scitranslmed.3003515 22623740
    [Google Scholar]
  69. ChoeH. NarayananA.S. GandhiD.A. WeinbergA. MarcusR.E. LeeZ. BonomoR.A. GreenfieldE.M. Immunomodulatory peptide IDR-1018 decreases implant infection and preserves osseointegration.Clin. Orthop. Relat. Res.201547392898290710.1007/s11999‑015‑4301‑2 25953690
    [Google Scholar]
  70. WuB.C. LeeA.H.Y. HancockR.E.W. Mechanisms of the innate defense regulator peptide-1002 anti-Inflammatory activity in a sterile inflammation mouse model.J. Immunol.2017199103592360310.4049/jimmunol.1700985 28993516
    [Google Scholar]
  71. NiyonsabaF. MaderaL. AfacanN. OkumuraK. OgawaH. HancockR.E.W. The innate defense regulator peptides IDR-HH2, IDR-1002, and IDR-1018 modulate human neutrophil functions.J. Leukoc. Biol.201394115917010.1189/jlb.1012497 23616580
    [Google Scholar]
  72. Huante-MendozaA. Silva-GarcíaO. Oviedo-BoysoJ. HancockR.E.W. Baizabal-AguirreV.M. Peptide IDR-1002 inhibits NF-κB nuclear translocation by inhibition of IκB-α degradation and activates p38/ERK1/2-MSK1-dependent CREB phosphorylation in macrophages stimulated with lipopolysaccharide.Front. Immunol.2016753310.3389/fimmu.2016.00533 27933067
    [Google Scholar]
  73. TongaonkarP. TrinhK.K. SchaalJ.B. TranD. GulkoP.S. OuelletteA.J. SelstedM.E. Rhesus macaque θ-defensin RTD-1 inhibits proinflammatory cytokine secretion and gene expression by inhibiting the activation of NF-κB and MAPK pathways.J. Leukoc. Biol.20159861061107010.1189/jlb.3A0315‑102R 26269197
    [Google Scholar]
  74. SchaalJ.B. MaretzkyT. TranD.Q. TranP.A. TongaonkarP. BlobelC.P. OuelletteA.J. SelstedM.E. Macrocyclic θ-defensins suppress tumor necrosis factor-α (TNF-α) shedding by inhibition of TNF--α–converting enzyme.J. Biol. Chem.201829382725273410.1074/jbc.RA117.000793 29317500
    [Google Scholar]
  75. NicolasI. BordeauV. BondonA. Baudy-Floc’hM. FeldenB. Novel antibiotics effective against gram-positive and -negative multi-resistant bacteria with limited resistance.PLoS Biol.2019177e300033710.1371/journal.pbio.3000337 31287812
    [Google Scholar]
  76. CorreaW. HeinbockelL. BehrendsJ. KaconisY. Barcena-VarelaS. GutsmannT. MaussK. SchürholzT. SchrommA.B. Martinez de TejadaG. BrandenburgK. Antibacterial action of synthetic antilipopolysaccharide peptides (SALP) involves neutralization of both membrane-bound and free toxins.FEBS J.201928681576159310.1111/febs.14805 30843356
    [Google Scholar]
  77. ZhangL. DhillonP. YanH. FarmerS. HancockR.E.W. Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa.Antimicrob. Agents Chemother.200044123317332110.1128/AAC.44.12.3317‑3321.2000 11083634
    [Google Scholar]
  78. JeralaR. PorroM. Endotoxin neutralizing peptides.Curr. Top. Med. Chem.20044111173118410.2174/1568026043388079 15279607
    [Google Scholar]
  79. LiuT. ZhuN. ZhongC. ZhuY. GouS. ChangL. BaoH. LiuH. ZhangY. NiJ. Effect of N-methylated and fatty acid conjugation on analogs of antimicrobial peptide Anoplin.Eur. J. Pharm. Sci.202015210545310.1016/j.ejps.2020.105453 32649983
    [Google Scholar]
  80. van der WeideH. BrunettiJ. PiniA. BracciL. AmbrosiniC. LupettiP. PaccagniniE. GentileM. BerniniA. NiccolaiN. JonghD.V. Bakker-WoudenbergI.A.J.M. GoessensW.H.F. HaysJ.P. FalcianiC. Investigations into the killing activity of an antimicrobial peptide active against extensively antibiotic-resistant K. pneumoniae and P. aeruginosa.Biochim. Biophys. Acta Biomembr.20171859101796180410.1016/j.bbamem.2017.06.001 28583831
    [Google Scholar]
  81. LuoY. SongY. Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and antibiofilm activities.Int. J. Mol. Sci.202122211140110.3390/ijms222111401 34768832
    [Google Scholar]
  82. PiniA. FalcianiC. MantengoliE. BindiS. BrunettiJ. IozziS. RossoliniG.M. BracciL. A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysaccharide and prevents septic shock in vivo.FASEB J.20102441015102210.1096/fj.09‑145474 19917670
    [Google Scholar]
  83. FalcianiC. LozziL. PolliniS. LucaV. CarnicelliV. BrunettiJ. LelliB. BindiS. ScaliS. Di GiulioA. RossoliniG.M. MangoniM.L. BracciL. PiniA. Isomerization of an antimicrobial peptide broadens antimicrobial spectrum to gram-positive bacterial pathogens.PLoS One2012710e4625910.1371/journal.pone.0046259 23056272
    [Google Scholar]
  84. BechingerB. GorrS.U. Antimicrobial peptides: Mechanisms of action and resistance.J. Dent. Res.201796325426010.1177/0022034516679973 27872334
    [Google Scholar]
  85. ChoiK.Y. ChowL.N.Y. MookherjeeN. Cationic host defence peptides: Multifaceted role in immune modulation and inflammation.J. Innate Immun.20124436137010.1159/000336630 22739631
    [Google Scholar]
  86. Pachón-IbáñezM.E. SmaniY. PachónJ. Sánchez-CéspedesJ. Perspectives for clinical use of engineered human host defense antimicrobial peptides.FEMS Microbiol. Rev.201741332334210.1093/femsre/fux012 28521337
    [Google Scholar]
  87. MuñozA. GandíaM. HarriesE. CarmonaL. ReadN.D. MarcosJ.F. Understanding the mechanism of action of cell-penetrating antifungal peptides using the rationally designed hexapeptide PAF26 as a model.Fungal Biol. Rev.201326414615510.1016/j.fbr.2012.10.003
    [Google Scholar]
  88. VetterliS.U. ZerbeK. MüllerM. UrferM. MondalM. WangS.Y. MoehleK. ZerbeO. VitaleA. PessiG. EberlL. WollscheidB. RobinsonJ.A. Thanatin targets the intermembrane protein complex required for lipopolysaccharide transport in Escherichia coli.Sci. Adv.2018411eaau263410.1126/sciadv.aau2634 30443594
    [Google Scholar]
  89. FiorentinoF. SauerJ.B. QiuX. CoreyR.A. CassidyC.K. Mynors-WallisB. MehmoodS. BollaJ.R. StansfeldP.J. RobinsonC.V. Dynamics of an LPS translocon induced by substrate and an antimicrobial peptide.Nat. Chem. Biol.202117218719510.1038/s41589‑020‑00694‑2 33199913
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575362479241231054240
Loading
/content/journals/mrmc/10.2174/0113895575362479241231054240
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test