Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Most natural products in nature have broad but not exceedingly good biological activities. The pyrazole structure has been introduced into natural products due to its suitability for various synthetic methods and its broad pharmacological activities. This article provides a detailed introduction to the anti-inflammatory, antibacterial, antifungal, antiviral, and anti-Alzheimer disease activities of pyrazole-modified natural product derivatives, particularly their anti-tumor activity. It is worth noting that compared to lead compounds, most natural product derivatives modified with pyrazole exhibit excellent pharmacological activity. Some of these derivatives exhibit outstanding anti-tumor activity, with IC values reaching nanomolar levels. This review provides more research directions and choices for future studies on natural products.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575359419241211092252
2025-01-21
2025-11-01
Loading full text...

Full text loading...

References

  1. TiwariA. KumarS. SuryawanshiS.N. MittalM. VishwakarmaP. GuptaS. Chemotherapy of leishmaniasis part X: Synthesis and bioevaluation of novel terpenyl heterocycles.Bioorg. Med. Chem. Lett.201323124825110.1016/j.bmcl.2012.10.110 23177254
    [Google Scholar]
  2. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  3. SharmaS. MalakarC.C. SinghV. Transition-metal-free C-S bond forming strategy towards synthesis of highly diverse Pyrazole tethered benzothiazoles: Investigation of their photophysical properties.Asian J. Org. Chem.20209111857186810.1002/ajoc.202000390
    [Google Scholar]
  4. Eftekhari-SisB. ZirakM. AkbariA. Arylglyoxals in synthesis of heterocyclic compounds.Chem. Rev.201311352958304310.1021/cr300176g 23347156
    [Google Scholar]
  5. ChougalaB.M. SamundeeswariS. HoliyachiM. ShastriL.A. DodamaniS. JalalpureS. DixitS.R. JoshiS.D. SunagarV.A. Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano[2,3-c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents.Eur. J. Med. Chem.201712510111610.1016/j.ejmech.2016.09.021 27657808
    [Google Scholar]
  6. LiX. HeL. ChenH. WuW. JiangH. Copper-catalyzed aerobic C(sp2)-H functionalization for C-N bond formation: synthesis of pyrazoles and indazoles.J. Org. Chem.20137883636364610.1021/jo400162d 23547954
    [Google Scholar]
  7. BoruahD.J. BorkotokyL. NewarU.D. MauryaR.A. YuvarajP. Transition-metal-free synthesis of N-Heterocyclic compounds via multi-component reactions.Asian J. Org. Chem.2023129e20230029710.1002/ajoc.202300297
    [Google Scholar]
  8. MorS. KhatriM. punia, R.; Sindhu, S. Recent progress in anti-cancer agents incorporating pyrazole scaffold.Mini Rev. Med. Chem.202222111516310.2174/1389557521666210325115218 33823764
    [Google Scholar]
  9. SharmaS. SinghD. KumarS. An efficient metal-free and catalyst-free C–S/C–O bondformation strategy: Synthesis of pyrazole-conjugated thioamides and amides.Beilstein J. Org. Chem.20231923124410.3762/bjoc.19.22 36895429
    [Google Scholar]
  10. Abdel-AzizM. Abuo-RahmaG.E.D.A. HassanA.A. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities.Eur. J. Med. Chem.20094493480348710.1016/j.ejmech.2009.01.032 19268406
    [Google Scholar]
  11. PasinJ.S.M. FerreiraA.P.O. SaraivaA.L.L. RatzlaffV. AndrighettoR. MachadoP. MarchesanS. ZanetteR.A. BonacorsoH.G. ZanattaN. MartinsM.A.P. FerreiraJ. MelloC.F. Antipyretic and antioxidant activities of 5-trifluoromethyl-4,5-dihydro-1H-pyrazoles in rats.Braz. J. Med. Biol. Res.201043121193120210.1590/S0100‑879X2010007500139 21140097
    [Google Scholar]
  12. BonesiM. LoizzoM.R. StattiG.A. MichelS. TillequinF. MenichiniF. The synthesis and angiotensin converting enzyme (ACE) inhibitory activity of chalcones and their pyrazole derivatives.Bioorg. Med. Chem. Lett.20102061990199310.1016/j.bmcl.2010.01.113 20167484
    [Google Scholar]
  13. LavanyaG. Mallikarjuna ReddyL. PadmavathiV. PadmajaA. Synthesis and antimicrobial activity of (1,4-phenylene)bis (arylsulfonylpyrazoles and isoxazoles).Eur. J. Med. Chem.2014731218719410.1016/j.ejmech.2013.11.041 24398288
    [Google Scholar]
  14. GeronikakiA. BabaevE. DeardenJ. DehaenW. FilimonovD. GalaevaI. KrajnevaV. LaguninA. MacaevF. MolodavkinG. PoroikovV. PogrebnoiS. SaloutinV. StepanchikovaA. StingaciE. TkachN. VladL. VoroninaT. Design, synthesis, computational and biological evaluation of new anxiolytics.Bioorg. Med. Chem.200412246559656810.1016/j.bmc.2004.09.016 15556772
    [Google Scholar]
  15. CottineauB. TotoP. MarotC. PipaudA. ChenaultJ. Synthesis and hypoglycemic evaluation of substituted pyrazole-4-carboxylic acids.Bioorg. Med. Chem. Lett.200212162105210810.1016/S0960‑894X(02)00380‑3 12127514
    [Google Scholar]
  16. KüçükgüzelŞ.G. ŞenkardeşS. Recent advances in bioactive pyrazoles.Eur. J. Med. Chem.201597578681510.1016/j.ejmech.2014.11.059 25555743
    [Google Scholar]
  17. SinghD. SharmaP. KumarR. PandeyS.K. MalakarC.C. SinghV. An expeditious approach towards synthesis of β-carboline and pyrazole based molecular hybrids.Asian J. Org. Chem.20187238339410.1002/ajoc.201700545
    [Google Scholar]
  18. LiuY. YanQ. ZengZ. FanC. XiongW. Advances and prospects of mRNA vaccines in cancer immunotherapy.Biochim. Biophys. Acta Rev. Cancer20241879218906810.1016/j.bbcan.2023.189068 38171406
    [Google Scholar]
  19. CaoY. YangP. YangY. LinZ. FanZ. WeiX. YanL. LiY. HeZ. MaL. XuH. WuC. Discovery of a novel 1H-pyrazole- [3,4-b] pyridine-based lysine demethylase 5B inhibitor with potential anti-prostate cancer activity that perturbs the phosphoinositide 3-kinase/AKT pathway.Eur. J. Med. Chem.202325111525010.1016/j.ejmech.2023.115250 36931124
    [Google Scholar]
  20. FaragP.S. AboulMagd, A.M.; Hemdan, M.M.; Hassaballah, A.I. Annulated pyrazole derivatives as a novel class of urokinase (uPA) inhibitors: Green synthesis, anticancer activity, DNA-damage evaluation, and molecular modelling study.Bioorg. Chem.202313010623110.1016/j.bioorg.2022.106231 36335649
    [Google Scholar]
  21. SemenovaM.N. DemchukD.V. TsyganovD.V. ChernyshevaN.B. SametA.V. SilyanovaE.A. KislyiV.P. MaksimenkoA.S. VarakutinA.E. KonyushkinL.D. RaihstatM.M. KiselyovA.S. SemenovV.V. Sea urchin embryo model as a reliable in vivo phenotypic screen to characterize selective antimitotic molecules. Comparative evaluation of combretapyrazoles isoxazoles,- 1,2,3-triazoles, and -pyrroles as tubulin-binding agents.ACS Comb. Sci.2018201270072110.1021/acscombsci.8b00113 30452225
    [Google Scholar]
  22. YangY. CaoY. YuJ. YuX. GuoY. WangF. RenQ. LiC. Design and synthesis of novel 3-amino-5-phenylpyrazole derivatives as tubulin polymerization inhibitors targeting the colchicine-binding site.Eur. J. Med. Chem.202426711617710.1016/j.ejmech.2024.116177 38280356
    [Google Scholar]
  23. ZhangH. ZhuP. LiuJ. LinY. YaoH. JiangJ. YeW. WuX. XuJ. Synthesis, in vitro and in vivo antitumor activity of pyrazole-fused 23-hydroxybetulinic acid derivatives.Bioorg. Med. Chem. Lett.201525372873210.1016/j.bmcl.2014.11.058 25529742
    [Google Scholar]
  24. LiuJ. ZhuZ. TangJ. LinQ. ChenL. SunJ. Design and synthesis of no-releasing betulinic acid derivatives as potential anticancer agents.Anticancer. Agents Med. Chem.201717224124910.2174/1871520616666160926115747 27671295
    [Google Scholar]
  25. ChenY. LiC. ZhengY. GaoY. HuJ. ChenH. Discovery of FZU-03,010 as a self-assembling anticancer amphiphile for acute myeloid leukemia.Bioorg. Med. Chem. Lett.20172741007101110.1016/j.bmcl.2016.12.071 28073673
    [Google Scholar]
  26. ZhuS.L. WuY. LiuC.J. WeiC.Y. TaoJ.C. LiuH.M. Synthesis and in vitro cytotoxic activity evaluation of novel heterocycle bridged carbothioamide type isosteviol derivatives as antitumor agents.Bioorg. Med. Chem. Lett.20132351343134610.1016/j.bmcl.2012.12.091 23347685
    [Google Scholar]
  27. MaL. MiaoD. LeeJ.J. LiT. ChenY. SuG. ZhaoY. Synthesis and biological evaluation of heterocyclic ring-fused dammarane-type ginsenoside derivatives as potential anti-tumor agents.Bioorg. Chem.202111610536510.1016/j.bioorg.2021.105365 34563998
    [Google Scholar]
  28. LeiZ.C. LiN. YuN.R. JuW. SunX.N. ZhangX.L. DongH.J. SunJ.B. ChenL. Design and synthesis of novel celastrol derivatives as potential anticancer agents against gastric cancer cells.J. Nat. Prod.20228551282129310.1021/acs.jnatprod.1c01236 35536757
    [Google Scholar]
  29. ZhangY. YuanW. WangX. ZhangH. SunY. ZhangX. ZhaoY. Synthesis, characterization and cytotoxic activity evaluation of ginsengdiol oxidation and nitrogen hybrid derivatives.MedChemComm20189111910191910.1039/C8MD00387D 30568759
    [Google Scholar]
  30. LuanS. ZhongH. ZhaoX. YangJ. JingY. LiuD. ZhaoL. Synthesis, anticancer evaluation and pharmacokinetic study of novel 10-O-phenyl ethers of dihydroartemisinin.Eur. J. Med. Chem.201714158459510.1016/j.ejmech.2017.10.023 29102180
    [Google Scholar]
  31. WangJ. LiT. ZhaoT. WuT. LiuC. DingH. LiZ. BianJ. Design of wogonin-inspired selective cyclin-dependent kinase 9 (CDK9) inhibitors with potent in vitro and in vivo antitumor activity.Eur. J. Med. Chem.201917878280110.1016/j.ejmech.2019.06.024 31238183
    [Google Scholar]
  32. KhanI. GarikapatiK.R. SettiA. ShaikA.B. Kanth MakaniV.K. ShareefM.A. RajpurohitH. VangaraN. Pal-BhadraM. KamalA. KumarC.G. Design, synthesis, in silico pharmacokinetics prediction and biological evaluation of 1,4-dihydroindeno[1,2-c]pyrazole chalcone as EGFR/Akt pathway inhibitors.Eur. J. Med. Chem.201916363664810.1016/j.ejmech.2018.12.011 30562699
    [Google Scholar]
  33. TangetiV.S. VasundharaD. SatyanarayanaK.V.V.V. Pavan KumarK.S. Synthesis and antiproliferative activity of some dihydro-1H-furo[2,3-c]pyrazole-flavone hybrids.Asian J. Chem.20172971525153210.14233/ajchem.2017.20550
    [Google Scholar]
  34. PhamV.T.B. NguyenT.V. NguyenH.V. NguyenT.T. HoangH.M. Curcuminoids versus pyrazole‐modified analogues: Synthesis and cytotoxicity against HepG2 cancer cell cine.ChemistrySelect2020537116811168410.1002/slct.202003003
    [Google Scholar]
  35. KumarS. LathwalE. KumarG. SarohaB. KumarS. MahataS. SahooP.K. NasareV.D. Synthesis of pyrazole based novel aurone analogs and their cytotoxic activity against MCF-7 cell line.Chem. Data Collect.20203010055910.1016/j.cdc.2020.100559
    [Google Scholar]
  36. KamalA. SrinivasuluV. NayakV.L. SathishM. ShankaraiahN. BagulC. ReddyN.V.S. RangarajN. NageshN. Design and synthesis of C3-pyrazole/chalcone-linked beta-carboline hybrids: antitopoisomerase I, DNA-interactive, and apoptosis-inducing anticancer agents.ChemMedChem2014992084209810.1002/cmdc.201300406 24470122
    [Google Scholar]
  37. BudziszE. PanethP. GerominoI. MuziołT. RozalskiM. KrajewskaU. PipiakP. PonczekM.B. MałeckaM. KupcewiczB. The cytotoxic effect of spiroflavanone derivatives, their binding ability to human serum albumin (HSA) and a DFT study on the mechanism of their synthesis.J. Mol. Struct.2017113726727610.1016/j.molstruc.2017.02.037
    [Google Scholar]
  38. KovácsD. WölflingJ. SzabóN. SzécsiM. SchelzZ. ZupkóI. FrankÉ. Synthesis of novel 17-(4′-formyl)pyrazolylandrosta-5,16-dienes and their derivatives as potent 17α-hydroxylase/C17,20-lyase inhibitors or antiproliferative agents depending on the substitution pattern of the heteroring.Eur. J. Med. Chem.201612028429510.1016/j.ejmech.2016.05.006 27209562
    [Google Scholar]
  39. LiJ. HuoH. GuoR. LiuB. LiL. DanW. XiaoX. ZhangJ. ShiB. Facile and efficient access to Androsten-17-(1′,3′,4′)-pyrazoles and Androst-17β-(1′,3′,4′)-pyrazoles via Vilsmeier reagents, and their antiproliferative activity evaluation in vitro.Eur. J. Med. Chem.201713011410.1016/j.ejmech.2017.02.033 28237792
    [Google Scholar]
  40. LiuH.S. ZhengH.L. GeM. XiaP. ChenY. Synthesis and VEGF inhibitory activity of 16,17-pyrazo-annulated steroids.Chin. Chem. Lett.201122775776010.1016/j.cclet.2010.12.043
    [Google Scholar]
  41. MótyánG. ZupkóI. MinoricsR. SchneiderG. WölflingJ. FrankÉ. Lewis acid-induced intramolecular access to novel steroidal ring D-condensed arylpyrazolines exerting in vitro cell-growth-inhibitory effects.Mol. Divers.201519351152710.1007/s11030‑015‑9593‑3 25894363
    [Google Scholar]
  42. Shamsuzzaman; Khanam, H.; Mashrai, A.; Sherwani, A.; Owais, M.; Siddiqui, N. Synthesis and anti-tumor evaluation of B-ring substituted steroidal pyrazoline derivatives.Steroids20137812-131263127210.1016/j.steroids.2013.09.006 24064114
    [Google Scholar]
  43. LiJ. ZhaoX. LiL. YuanZ. TanF. ShiB. ZhangJ. Design, synthesis and cytotoxic activity of a novel series of steroidal phenylpyrazoles.Steroids2016107455410.1016/j.steroids.2015.12.018 26742627
    [Google Scholar]
  44. HuangY. LiuM. MengL. FengP. GuoY. YingM. ZhuX. ChenY. Synthesis and antitumor evaluation of novel hybrids of phenylsulfonylfuroxan and epiandrosterone/dehydroep-iandrosterone derivatives.Steroids201510171410.1016/j.steroids.2015.05.003 26004429
    [Google Scholar]
  45. BajiÁ. KovácsF. MótyánG. SchneiderG. WölflingJ. SinkaI. ZupkóI. OcsovszkiI. FrankÉ. Investigation of pH and substituent effects on the distribution ratio of novel steroidal ring D- and A-fused arylpyrazole regioisomers and evaluation of their cell-growth inhibitory effects in vitro.Steroids2017126354910.1016/j.steroids.2017.08.003 28803210
    [Google Scholar]
  46. HuoH. JiangW. SunF. LiJ. ShiB. Synthesis and biological evaluation of novel steroidal pyrazole amides as highly potent anticancer agents.Steroids202117610893110.1016/j.steroids.2021.108931 34655595
    [Google Scholar]
  47. VaarlaK. KesharwaniR.K. SantoshK. VedulaR.R. KotamrajuS. ToopuraniM.K. Synthesis, biological activity evaluation and molecular docking studies of novel coumarin substituted thiazolyl-3-aryl-pyrazole-4-carbaldehydes.Bioorg. Med. Chem. Lett.201525245797580310.1016/j.bmcl.2015.10.042 26542964
    [Google Scholar]
  48. AminK.M. Abou-SeriS.M. AwadallahF.M. EissaA.A.M. HassanG.S. AbdullaM.M. Synthesis and anticancer activity of some 8-substituted-7-methoxy-2H-chromen-2-one derivatives toward hepatocellular carcinoma HepG2 cells.Eur. J. Med. Chem.20159022123110.1016/j.ejmech.2014.11.027 25461322
    [Google Scholar]
  49. ZhangL. ZhangZ. ChenF. ChenY. LinY. WangJ. Aromatic heterocyclic esters of podophyllotoxin exert anti-MDR activity in human leukemia K562/ADR cells via ROS/MAPK signaling pathways.Eur. J. Med. Chem.201612322623510.1016/j.ejmech.2016.07.050 27484511
    [Google Scholar]
  50. WangY. ChengF.X. YuanX.L. TangW.J. ShiJ.B. LiaoC.Z. LiuX.H. Dihydropyrazole derivatives as telomerase inhibitors: Structure-based design, synthesis, SAR and anticancer evaluation in vitro and in vivo.Eur. J. Med. Chem.201611223125110.1016/j.ejmech.2016.02.009 26900656
    [Google Scholar]
  51. DaiH. HuangM. QianJ. LiuJ. MengC. LiY. MingG. ZhangT. WangS. ShiY. YaoY. GeS. ZhangY. LingY. Excellent antitumor and antimetastatic activities based on novel coumarin/pyrazole oxime hybrids.Eur. J. Med. Chem.201916647047910.1016/j.ejmech.2019.01.070 30739827
    [Google Scholar]
  52. VelpulaR. DeshineniR. GaliR. BavantulaR. One-pot multicomponent synthesis of novel 1-thiazolyl-5-coumarin-3-yl-pyrazole derivatives and evaluation of their cytotoxic activity.Res. Chem. Intermed.20164231729174010.1007/s11164‑015‑2114‑2
    [Google Scholar]
  53. GarazdY. GarazdM. LesykR. Synthesis and evaluation of anticancer activity of 6-pyrazolinylcoumarin derivatives.Saudi Pharm. J.201725221422310.1016/j.jsps.2016.05.005 28344471
    [Google Scholar]
  54. HuraN. NaazA. PrassanawarS.S. GuchhaitS.K. PandaD. Drug-clinical agent molecular hybrid: Synthesis of diaryl(trifluoromethyl)pyrazoles as tubulin targeting anticancer agents.ACS Omega2018321955196910.1021/acsomega.7b01784 30023819
    [Google Scholar]
  55. ElmeligieS. KhalilN.A. AhmedE.M. EmamS.H. ZaitoneS.A.B. Synthesis of new N1-substituted-5-aryl-3-(3,4,5-trimethoxyphenyl)-2-pyrazoline derivatives as antitumor agents targeting the colchicine site on tubulin.Biol. Pharm. Bull.201639101611162210.1248/bpb.b16‑00277 27725438
    [Google Scholar]
  56. WangS.F. YinY. ZhangY.L. MiS.W. ZhaoM.Y. LvP.C. WangB.Z. ZhuH.L. Synthesis, biological evaluation and 3D-QSAR studies of novel 5-phenyl-1H-pyrazol cinnamamide derivatives as novel antitubulin agents.Eur. J. Med. Chem.20159329129910.1016/j.ejmech.2015.02.018 25703297
    [Google Scholar]
  57. RomagnoliR. OlivaP. SalvadorM.K. CamachoM.E. PadroniC. BrancaleA. FerlaS. HamelE. RoncaR. GrilloE. BortolozziR. RrugaF. MariottoE. ViolaG. Design, synthesis and biological evaluation of novel vicinal diaryl-substituted 1H-Pyrazole analogues of combretastatin A-4 as highly potent tubulin polymerization inhibitors.Eur. J. Med. Chem.201918111157710.1016/j.ejmech.2019.111577 31400707
    [Google Scholar]
  58. WangC. YangS. DuJ. NiJ. WuY. WangJ. GuanQ. ZuoD. BaoK. WuY. ZhangW. Synthesis and bioevaluation of diarylpyrazoles as antiproliferative agents.Eur. J. Med. Chem.201917111010.1016/j.ejmech.2019.02.049 30901597
    [Google Scholar]
  59. BrownA.W. FisherM. TozerG.M. KanthouC. HarrityJ.P.A. Sydnone cycloaddition route to pyrazole-based analogs of combretastatin A4.J. Med. Chem.201659209473948810.1021/acs.jmedchem.6b01128 27690431
    [Google Scholar]
  60. ZhengC.J. XuL.L. SunL.P. MiaoJ. PiaoH.R. Synthesis and antibacterial activity of novel 1,3-diphenyl-1H-pyrazoles functionalized with phenylalanine-derived rhodanines.Eur. J. Med. Chem.20125811211610.1016/j.ejmech.2012.10.012 23123727
    [Google Scholar]
  61. VermaR. VermaS.K. RakeshK.P. GirishY.R. AshrafizadehM. Sharath KumarK.S. RangappaK.S. Pyrazole-based analogs as potential antibacterial agents against methicillin-resistance Staphylococcus aureus (MRSA) and its SAR elucidation.Eur. J. Med. Chem.202121211313410.1016/j.ejmech.2020.113134 33395624
    [Google Scholar]
  62. LawrenceJ.A. HuangZ. RathinaveluS. HuJ.F. GaroE. EllisM. NormanV.L. BuckleR. WilliamsR.B. StarksC.M. EldridgeG.R. Optimized plant compound with potent anti-biofilm activity across gram-negative species.Bioorg. Med. Chem.202028511522910.1016/j.bmc.2019.115229 32033878
    [Google Scholar]
  63. FarooqS. NgainiZ. Microwave‐assisted synthesis, antimicrobial activities and molecular docking of methoxycarboxylated chalcone derived pyrazoline and pyrazole derivatives.ChemistrySelect202271e20210398410.1002/slct.202103984
    [Google Scholar]
  64. YuL.G. NiT.F. GaoW. HeY. WangY.Y. CuiH.W. YangC.G. QiuW.W. The synthesis and antibacterial activity of pyrazole-fused tricyclic diterpene derivatives.Eur. J. Med. Chem.201590102010.1016/j.ejmech.2014.11.015 25461307
    [Google Scholar]
  65. LiuH. RenZ.L. WangW. GongJ.X. ChuM.J. MaQ.W. WangJ.C. LvX.H. Novel coumarin-pyrazole carboxamide derivatives as potential topoisomerase II inhibitors: Design, synthesis and antibacterial activity.Eur. J. Med. Chem.2018157818710.1016/j.ejmech.2018.07.059 30075404
    [Google Scholar]
  66. KumarS. KumarN. DrabuS. Synthesis of benzo[G]quinoxaline-5,10-dione based pyrazoline derivatives and their antimycobacterial activity.Int. J. Pharm. Sci. Res.201892498508
    [Google Scholar]
  67. KimB.R. ParkJ.Y. JeongH.J. KwonH.J. ParkS.J. LeeI.C. RyuY.B. LeeW.S. Design, synthesis, and evaluation of curcumin analogues as potential inhibitors of bacterial sialidase.J. Enzyme Inhib. Med. Chem.20183311256126510.1080/14756366.2018.1488695 30126306
    [Google Scholar]
  68. AshokD. RanguK. Hanumantha RaoV. GunduS. SrilataB. VijjulathaM. Microwave-assisted synthesis, molecular docking and antimicrobial activity of novel 2-(3-aryl,1-phenyl-1H-pyrazol-4-yl)-8H-pyrano[2,3-f]chromen-4-ones.Med. Chem. Res.201625350151410.1007/s00044‑016‑1505‑2
    [Google Scholar]
  69. WhittJ. DukeC. SumlinA. ChambersS.A. AlnufaieR. GilmoreD. FiteT. BasnakianA.G. AlamM.A. Synthesis of hydrazone derivatives of 4-[4-Formyl-3-(2-oxochromen-3-yl)pyrazol-1-yl]benzoic acid as potent growth inhibitors of antibiotic-resistant Staphylococcus aureus and Acinetobacter baumannii.Molecules20192411205110.3390/molecules24112051 31146470
    [Google Scholar]
  70. AlnufaieR. RajK.C. H.; Alsup, N.; Whitt, J.; Andrew Chambers, S.; Gilmore, D.; Alam, M.A.; Basnakian, A.G.; Alam, M.A. Synthesis and antimicrobial studies of coumarin-substituted pyrazole derivatives as potent Anti-staphylococcus aureus agents.Molecules20202512275810.3390/molecules25122758 32549248
    [Google Scholar]
  71. GondruR. BanothuJ. ThatipamulaR.K. HussainS.K. A.; Bavantula, R. 3-(1-Phenyl-4-((2-(4-arylthiazol-2-yl)hydrazono) methyl)-1H-pyrazol-3-yl)-2H-chromen-2-ones: One-pot three component condensation, in vitro antimicrobial, antioxidant and molecular docking studies.RSC Advances2015542335623356910.1039/C5RA04196A
    [Google Scholar]
  72. GuoY. WangX. QuL. XuS. ZhaoY. XieR. HuangM. ZhangY. Design, synthesis, antibacterial and insecticidal activities of novel N-phenylpyrazole fraxinellone hybrid compounds.RSC Advances2017719117961180210.1039/C6RA28064A
    [Google Scholar]
  73. AragadeP. PalkarM. RonadP. SatyanarayanaD. Coumarinyl pyrazole derivatives of INH: Promising antimycobacterial agents.Med. Chem. Res.20132252279228310.1007/s00044‑012‑0222‑8
    [Google Scholar]
  74. CorralesJ. Ramos-AlonsoL. González-SabínJ. Ríos-LombardíaN. Trevijano-ContadorN. Engen BergH. Sved SkottvollF. MorisF. ZaragozaO. ChymkowitchP. GarciaI. EnserinkJ.M. Characterization of a selective, iron-chelating antifungal compound that disrupts fungal metabolism and synergizes with fluconazole.Microbiol. Spectr.2024122e02594e2310.1128/spectrum.02594‑23 38230926
    [Google Scholar]
  75. DongH.H. WangY.H. PengX.M. ZhouH.Y. ZhaoF. JiangY.Y. ZhangD.Z. JinY.S. Synergistic antifungal effects of curcumin derivatives as fungal biofilm inhibitors with fluconazole.Chem. Biol. Drug Des.20219751079108810.1111/cbdd.13827 33506609
    [Google Scholar]
  76. AshokD. KifahM.A. LakshmiB.V. SarasijaM. AdamS. Microwave-assisted one-pot synthesis of some new flavonols by modified Algar–Flynn–Oyamada reaction and their antimicrobial activity.Chem. Heterocycl. Compd.201652317217610.1007/s10593‑016‑1852‑4
    [Google Scholar]
  77. LiS. WangK. JiangK. XingD. DengR. XuY. DingY. GuanH. ChenL.L. WangD. ChenY. BuW. XiangY. Brazilin-Ce nanoparticles attenuate inflammation by de/anti-phosphorylation of IKKβ.Biomaterials202430512246610.1016/j.biomaterials.2023.122466 38184960
    [Google Scholar]
  78. GuoH.Y. LiX. SangX.T. QuanZ.S. ShenQ.K. Design and synthesis of forsythin derivatives as anti-inflammatory agents for acute lung injury.Eur. J. Med. Chem.202426711622310.1016/j.ejmech.2024.116223 38342013
    [Google Scholar]
  79. WuY. JinF. WangY. LiF. WangL. WangQ. RenZ. WangY. In vitro and in vivo anti-inflammatory effects of theaflavin-3,3′-digallate on lipopolysaccharide-induced inflammation.Eur. J. Pharmacol.2017794526010.1016/j.ejphar.2016.11.027 27871911
    [Google Scholar]
  80. PassosG.F. MedeirosR. MarconR. NascimentoA.F.Z. CalixtoJ.B. PianowskiL.F. The role of PKC/ERK1/2 signaling in the anti-inflammatory effect of tetracyclic triterpene euphol on TPA-induced skin inflammation in mice.Eur. J. Pharmacol.20136981-341342010.1016/j.ejphar.2012.10.019 23099255
    [Google Scholar]
  81. Marcondes SariM.H. SouzaA.C.G. RosaS.G. ChagasP.M. da LuzS.C.A. RodriguesO.E.D. NogueiraC.W. Biochemical and histological evaluations of anti-inflammatory and antioxidant p-chloro-selenosteroid actions in acute murine models of inflammation.Eur. J. Pharmacol.2016781253510.1016/j.ejphar.2016.03.051 27102337
    [Google Scholar]
  82. RagabF.A. Abdel GawadN.M. GeorgeyH.H. SaidM.F. Synthesis of novel 1,3,4-trisubstituted pyrazoles as anti-inflammatory and analgesic agents.Eur. J. Med. Chem.20136364565410.1016/j.ejmech.2013.03.005 23567953
    [Google Scholar]
  83. AhmedA.H.H. MohamedM.F.A. AllamR.M. NafadyA. MohamedS.K. GoudaA.E. BeshrE.A.M. Design, synthesis, and molecular docking of novel pyrazole-chalcone analogs of lonazolac as 5-LOX, iNOS and tubulin polymerization inhibitors with potential anticancer and anti-inflammatory activities.Bioorg. Chem.202212910617110.1016/j.bioorg.2022.106171 36166898
    [Google Scholar]
  84. RenS.Z. WangZ.C. ZhuX.H. ZhuD. LiZ. ShenF.Q. DuanY.T. CaoH. ZhaoJ. ZhuH.L. Design and biological evaluation of novel hybrids of 1, 5-diarylpyrazole and Chrysin for selective COX-2 inhibition.Bioorg. Med. Chem.201826144264427510.1016/j.bmc.2018.07.022 30031652
    [Google Scholar]
  85. ChavanH.V. BandgarB.P. AdsulL.K. DhakaneV.D. BhaleP.S. ThakareV.N. MasandV. Design, synthesis, characterization and anti-inflammatory evaluation of novel pyrazole amalgamated flavones.Bioorg. Med. Chem. Lett.20132351315132110.1016/j.bmcl.2012.12.094 23357629
    [Google Scholar]
  86. AhmedM. QadirM.A. HameedA. ImranM. MuddassarM. Screening of curcumin‐derived isoxazole, pyrazoles, and pyrimidines for their anti‐inflammatory, antinociceptive, and cyclooxygenase‐2 inhibition.Chem. Biol. Drug Des.201891133834310.1111/cbdd.13076 28741789
    [Google Scholar]
  87. WangJ. WeiW. ZhangX. CaoS. HuB. YeY. JiangM. WangT. ZuoJ. HeS. YangC. Synthesis and biological evaluation of C-17-amino-substituted pyrazole-fused betulinic acid derivatives as novel agents for osteoarthritis treatment.J. Med. Chem.20216418136761369210.1021/acs.jmedchem.1c01019 34491054
    [Google Scholar]
  88. MacariniA.F. SobrinhoT.U.C. RizziG.W. CorrêaR. Pyrazole–chalcone derivatives as selective COX-2 inhibitors: Design, virtual screening, and in vitro analysis.Med. Chem. Res.20192881235124510.1007/s00044‑019‑02368‑8
    [Google Scholar]
  89. WuJ. BaoB.H. ShenQ. ZhangY.C. JiangQ. LiJ.X. Novel heterocyclic ring-fused oleanolic acid derivatives as osteoclast inhibitors for osteoporosis.MedChemComm20167237137710.1039/C5MD00482A
    [Google Scholar]
  90. CaiX. ZhaoS. CaiD. ZhengJ. ZhuZ. WeiD. ZhengZ. ZhuH. ChenY. Synthesis and evaluation of novel D-ring substituted steroidal pyrazolines as potential anti-inflammatory agents.Steroids2019146707810.1016/j.steroids.2019.03.012 30951758
    [Google Scholar]
  91. XuY. ZhangZ. JiangX. ChenX. WangZ. AlsulamiH. QinH.L. TangW. Discovery of δ-sultone-fused pyrazoles for treating Alzheimer’s disease: Design, synthesis, biological evaluation and SAR studies.Eur. J. Med. Chem.201918111159810.1016/j.ejmech.2019.111598 31415981
    [Google Scholar]
  92. GuttiG. KumarD. PaliwalP. GaneshpurkarA. LahreK. KumarA. KrishnamurthyS. SinghS.K. Development of pyrazole and spiropyrazoline analogs as multifunctional agents for treatment of Alzheimer’s disease.Bioorg. Chem.20199010308010.1016/j.bioorg.2019.103080 31271946
    [Google Scholar]
  93. LiZ. YinB. ZhangS. LanZ. ZhangL. Targeting protein kinases for the treatment of Alzheimer’s disease: Recent progress and future perspectives.Eur. J. Med. Chem.202326111581710.1016/j.ejmech.2023.115817 37722288
    [Google Scholar]
  94. MessaadM. DhouibI. AbdelhediM. KhemakhemB. Synthesis, bioassay and molecular docking of novel pyrazole and pyrazolone derivatives as acetylcholinesterase inhibitors.J. Mol. Struct.2022126313310510.1016/j.molstruc.2022.133105
    [Google Scholar]
  95. YamaliC. GulH.I. KazazC. LeventS. GulcinI. Synthesis, structure elucidation, and in vitro pharmacological evaluation of novel polyfluoro substituted pyrazoline type sulfonamides as multi-target agents for inhibition of acetylcholinesterase and carbonic anhydrase I and II enzymes.Bioorg. Chem.20209610362710.1016/j.bioorg.2020.103627 32058104
    [Google Scholar]
  96. JainM. DhariwalR. BhardavaK. DasS. ShaikhM. TendulkarR. WaniR. SharmaM. DeltaA.K. KaushikP. In silico and in vitro profiling of curcumin and its derivatives as a potent acetylcholinesterase inhibitor.Biocatal. Agric. Biotechnol.20245610302210.1016/j.bcab.2024.103022
    [Google Scholar]
  97. TaslimiP. TürkanF. CetinA. BurhanH. KaramanM. BildiriciI. Gulçinİ. ŞenF. Pyrazole[3,4-d]pyridazine derivatives: Molecular docking and explore of acetylcholinesterase and carbonic anhydrase enzymes inhibitors as anticholinergics potentials.Bioorg. Chem.20199210321310.1016/j.bioorg.2019.103213 31470200
    [Google Scholar]
  98. AminK.M. Abdel RahmanD.E. Abdelrasheed AllamH. El-ZoheiryH.H. Design and synthesis of novel coumarin derivatives as potential acetylcholinesterase inhibitors for Alzheimer’s disease.Bioorg. Chem.202111010479210.1016/j.bioorg.2021.104792 33799178
    [Google Scholar]
  99. Benazzouz-TouamiA. ChouhA. HalitS. Terrachet-BouazizS. Makhloufi-ChebliM. Ighil-AhrizK. SilvaA.M.S. New coumarin-pyrazole hybrids: Synthesis, docking studies and biological evaluation as potential cholinesterase inhibitors.J. Mol. Struct.2022124913159110.1016/j.molstruc.2021.131591
    [Google Scholar]
  100. EndoH. NikaidoY. NakadateM. IseS. KonnoH. Structure activity relationship study of curcumin analogues toward the amyloid-beta aggregation inhibitor.Bioorg. Med. Chem. Lett.201424245621562610.1016/j.bmcl.2014.10.076 25467149
    [Google Scholar]
  101. OkudaM. HijikuroI. FujitaY. TeruyaT. KawakamiH. TakahashiT. SugimotoH. Design and synthesis of curcumin derivatives as tau and amyloid β dual aggregation inhibitors.Bioorg. Med. Chem. Lett.201626205024502810.1016/j.bmcl.2016.08.092 27624076
    [Google Scholar]
  102. OkudaM. FujitaY. HijikuroI. WadaM. UemuraT. KobayashiY. WakuT. TanakaN. NishimotoT. IzumiY. KumeT. AkaikeA. TakahashiT. SugimotoH. PE859, A novel curcumin derivative, inhibits amyloid-β and Tau aggregation, and ameliorates cognitive dysfunction in senescence-accelerated mouse prone 8.J. Alzheimers Dis.201759131332810.3233/JAD‑161017 28598836
    [Google Scholar]
  103. ShiC.J. PengW. ZhaoJ.H. YangH.L. QuL.L. WangC. KongL.Y. WangX.B. Usnic acid derivatives as tau-aggregation and neuroinflammation inhibitors.Eur. J. Med. Chem.202018711196110.1016/j.ejmech.2019.111961 31865017
    [Google Scholar]
  104. KotaniR. UranoY. SugimotoH. NoguchiN. TooyamaI. Decrease of amyloid-β levels by curcumin derivative via modulation of amyloid-β protein precursor trafficking.J. Alzheimers Dis.201756252954210.3233/JAD‑160794 27983550
    [Google Scholar]
  105. Martinez BotellaG. SalituroF.G. HarrisonB.L. BeresisR.T. BaiZ. ShenK. BelfortG.M. LoyaC.M. AckleyM.A. GrossmanS.J. HoffmannE. JiaS. WangJ. DohertyJ.J. RobichaudA.J. Neuroactive steroids. 1. Positive allosteric modulators of the (γ-Aminobutyric Acid)A receptor: Structure–activity relationships of heterocyclic substitution at C-21.J. Med. Chem.20155883500351110.1021/acs.jmedchem.5b00032 25799373
    [Google Scholar]
  106. Martinez BotellaG. SalituroF.G. HarrisonB.L. BeresisR.T. BaiZ. BlancoM.J. BelfortG.M. DaiJ. LoyaC.M. AckleyM.A. AlthausA.L. GrossmanS.J. HoffmannE. DohertyJ.J. RobichaudA.J. Neuroactive steroids. 2. 3α-Hydroxy-3β-methyl-21-(4-cyano-1H-pyrazol-1′-yl)-19-nor-5β-pregnan-20-one (SAGE-217): A clinical next generation neuroactive steroid positive allosteric modulator of the (γ-Aminobutyric Acid)A receptor.J. Med. Chem.201760187810781910.1021/acs.jmedchem.7b00846 28753313
    [Google Scholar]
  107. ZiaM. HameedS. NadeemH. KharlA.A. DegeN. ParachaR.Z. ArshadI. NaseerM.M. Synthesis, structure and acetylcholinesterase inhibition activity of new diarylpyrazoles.Bioorg. Chem.202212110565810.1016/j.bioorg.2022.105658 35182888
    [Google Scholar]
  108. El-SabbaghO.I. BarakaM.M. IbrahimS.M. PannecouqueC. AndreiG. SnoeckR. BalzariniJ. RashadA.A. Synthesis and antiviral activity of new pyrazole and thiazole derivatives.Eur. J. Med. Chem.20094493746375310.1016/j.ejmech.2009.03.038 19419804
    [Google Scholar]
  109. RashadA.E. HegabM.I. Abdel-MegeidR.E. FathallaN. Abdel-MegeidF.M.E. Synthesis and anti-HSV-1 evaluation of some pyrazoles and fused pyrazolopyrimidines.Eur. J. Med. Chem.20094483285329210.1016/j.ejmech.2009.02.012 19285757
    [Google Scholar]
  110. RashadA.E. HegabM.I. Abdel-MegeidR.E. MickyJ.A. Abdel-MegeidF.M.E. Synthesis and antiviral evaluation of some new pyrazole and fused pyrazolopyrimidine derivatives.Bioorg. Med. Chem.200816157102710610.1016/j.bmc.2008.06.054 18635363
    [Google Scholar]
  111. PalR. TeliG. AkhtarM.J. MatadaG.S.P. The role of natural anti-parasitic guided development of synthetic drugs for leishmaniasis.Eur. J. Med. Chem.202325811560910.1016/j.ejmech.2023.115609 37421889
    [Google Scholar]
  112. SharmaA. ShahidA. BanerjeeR. KumarK.J. Emerging insights into the structure-activity relationship of water-soluble polysaccharides in antiviral therapy.Eur. J. Med. Chem. Rep.20241010012210.1016/j.ejmcr.2023.100122
    [Google Scholar]
  113. LiW. LiJ. ShenH. ChengJ. LiZ. XuX. Synthesis, nematicidal activity and docking study of novel chromone derivatives containing substituted pyrazole.Chin. Chem. Lett.201829691191410.1016/j.cclet.2017.10.011
    [Google Scholar]
  114. MatiadisD. SaporitiT. AguileraE. RobertX. GuillonC. CabreraN. Pérez-MontfortR. SagnouM. AlvarezG. Pyrazol(in)e derivatives of curcumin analogs as a new class of anti-Trypanosoma cruzi agents.Future Med. Chem.202113870171410.4155/fmc‑2020‑0349 33648346
    [Google Scholar]
  115. ShtroA.A. ZarubaevV.V. LuzinaO.A. SokolovD.N. KiselevO.I. SalakhutdinovN.F. Novel derivatives of usnic acid effectively inhibiting reproduction of influenza A virus.Bioorg. Med. Chem.201422246826683610.1016/j.bmc.2014.10.033 25464881
    [Google Scholar]
  116. JadavS.S. KapteinS. TimiriA. De BurghgraeveT. BadavathV.N. GanesanR. SinhaB.N. NeytsJ. LeyssenP. JayaprakashV. Design, synthesis, optimization and antiviral activity of a class of hybrid dengue virus E protein inhibitors.Bioorg. Med. Chem. Lett.20152581747175210.1016/j.bmcl.2015.02.059 25791449
    [Google Scholar]
  117. NourazarianA.R. KangariP. SalmaninejadA. Roles of oxidative stress in the development and progression of breast cancer.Asian Pac. J. Cancer Prev.201415124745475110.7314/APJCP.2014.15.12.4745 24998536
    [Google Scholar]
  118. Lozada-GarcíaM. EnríquezR. Ramírez-ApánT. Nieto-CamachoA. Palacios-EspinosaJ. Custodio-GalvánZ. Soria-ArtecheO. Pérez-VillanuevaJ. Synthesis of curcuminoids and evaluation of their cytotoxic and antioxidant properties.Molecules201722463310.3390/molecules22040633 28420097
    [Google Scholar]
  119. SherinD.R. RajasekharanK.N. Mechanochemical synthesis and antioxidant activity of curcumin‐templated azoles.Arch. Pharm.20153481290891410.1002/ardp.201500305 26554539
    [Google Scholar]
  120. ZhaoY. CaoY. ChenH. ZhuangF. WuC. YoonG. ZhuW. SuY. ZhengS. LiuZ. CheonS.H. Synthesis, biological evaluation, and molecular docking study of novel allyl-retrochalcones as a new class of protein tyrosine phosphatase 1B inhibitors.Bioorg. Med. Chem.201927696397710.1016/j.bmc.2019.01.034 30737132
    [Google Scholar]
  121. De-la-Cruz-MartínezL. Duran-BecerraC. González-AndradeM. Páez-FrancoJ.C. Germán-AcacioJ.M. Espinosa-ChávezJ. Torres-ValenciaJ.M. Pérez-VillanuevaJ. Palacios-EspinosaJ.F. Soria-ArtecheO. Cortés-BenítezF. Indole- and pyrazole-glycyrrhetinic acid derivatives as PTP1B inhibitors: Synthesis, in vitro and in silico studies.Molecules20212614437510.3390/molecules26144375 34299651
    [Google Scholar]
  122. NidharM. SonkerP. SharmaV.P. KumarS. TewariA.K. Design, synthesis and in-silico & in vitro enzymatic inhibition assays of pyrazole-chalcone derivatives as dual inhibitors of α-amylase & DPP-4 enzyme.Chem. Zvesti20227631707172010.1007/s11696‑021‑01985‑1
    [Google Scholar]
  123. AhmedM. QadirM.A. HameedA. ArshadM.N. AsiriA.M. MuddassarM. Sulfonamides containing curcumin scaffold: Synthesis, characterization, carbonic anhydrase inhibition and molecular docking studies.Bioorg. Chem.20187621822710.1016/j.bioorg.2017.11.015 29190478
    [Google Scholar]
  124. TugrakM. GulH.I. AkinciogluH. GulcinI. New chalcone derivatives with pyrazole and sulfonamide pharmacophores as carbonic anhydrase inhibitors.Lett. Drug Des. Discov.202118219119810.2174/1570180817999201001160414
    [Google Scholar]
  125. BandayA.H. ShameemS.A. JeelaniS. Steroidal pyrazolines and pyrazoles as potential 5α-reductase inhibitors: Synthesis and biological evaluation.Steroids201492131910.1016/j.steroids.2014.09.004 25278254
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575359419241211092252
Loading
/content/journals/mrmc/10.2174/0113895575359419241211092252
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test