Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

In recent years, there has been a growing emphasis on the “back-to-nature” movement, which has brought biopolymers derived from natural sources into the spotlight. These biopolymers are gaining attention for their versatile surface-active properties, anti-adhesive capabilities, excellent biocompatibility, non-toxicity, biodegradability, and antimicrobial effectiveness against a wide range of oral microorganisms, including both bacteria and fungi. Researchers have been actively modifying these eco-friendly, nature-based biopolymers to enhance their interaction with surrounding cells and tissues, improving their performance . This has led to innovative applications in areas such as surface coatings, controlled drug delivery, tissue repair, and dental implant devices. These advancements hold the potential to pave the way for the development of novel drug delivery systems with enhanced therapeutic properties, ultimately supporting the creation of innovative formulations for clinical use. This review aims to provide an up-to-date overview of recent developments, explore potential future directions, and highlight the promising applications of nature-derived biopolymers in oral healthcare.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575359305241218113847
2025-01-02
2025-09-26
Loading full text...

Full text loading...

References

  1. Gomez-FloritM. PardoA. DominguesR.M.A. GraçaA.L. BaboP.S. ReisR.L. GomesM.E. Natural-based hydrogels for tissue engineering applications.Molecules20202524585810.3390/molecules25245858 33322369
    [Google Scholar]
  2. ManoJ.F. SilvaG.A. AzevedoH.S. MalafayaP.B. SousaR.A. SilvaS.S. BoeselL.F. OliveiraJ.M. SantosT.C. MarquesA.P. NevesN.M. ReisR.L. Natural origin biodegradable systems in tissue engineering and regenerative medicine: Present status and some moving trends.J. R. Soc. Interface2007417999103010.1098/rsif.2007.0220 17412675
    [Google Scholar]
  3. SaadanR. AlaouiC.H. QuraishiK.S. AfridiF. ChigrM. FatimiA. Recent progress in hydrogel-based bioinks for 3D bioprinting: A patent landscape analysis and technology updates.J. Res. Updates Polym. Sci.20241313014610.6000/1929‑5995.2024.13.14
    [Google Scholar]
  4. BhattA. MahadwadO. ParikhP. Effect of mixing methods and black conductive fillers on properties of natural rubber composites.J. Res. Updates Polym. Sci.20241317518610.6000/1929‑5995.2024.13.19
    [Google Scholar]
  5. MalafayaP.B. SilvaG.A. ReisR.L. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications.Adv. Drug Deliv. Rev.2007594-520723310.1016/j.addr.2007.03.012 17482309
    [Google Scholar]
  6. YuC. XuJ. HeidariG. JiangH. ShiY. WuA. MakvandiP. NeisianyR.E. ZareE.N. ShaoM. HuL. Injectable hydrogels based on biopolymers for the treatment of ocular diseases.Int. J. Biol. Macromol.2024269Pt 113208610.1016/j.ijbiomac.2024.132086 38705321
    [Google Scholar]
  7. Kalpana ManivannanR. SharmaN. KumarV. JayarajI. VimalS. UmeshM. A comprehensive review on natural macromolecular biopolymers for biomedical applications: Recent advancements, current challenges, and future outlooks.Carbohydr. Polym. Technol. Appl.2024810053610.1016/j.carpta.2024.100536
    [Google Scholar]
  8. HerinR.F. JuditA.S.S. SebastiammalS. ShabnaS. DhasS.S.J. BijuC.S. Functionalized ZnO NPs and biopolymers-coated ZnO NPs for drug delivery and biomedical applications-A review.Regen. Eng. Transl. Med.202412510.1007/s40883‑024‑00354‑0
    [Google Scholar]
  9. ChristinaK. SubbiahK. ArulrajP. KrishnanS.K. SathishkumarP. A sustainable and eco-friendly approach for environmental and energy management using biopolymers chitosan, lignin and cellulose - A review.Int. J. Biol. Macromol.2024257Pt 212855010.1016/j.ijbiomac.2023.128550 38056737
    [Google Scholar]
  10. GarcíaM.C. Drug delivery systems based on nonimmunogenic biopolymers. Engineering of Biomaterials for Drug Delivery Systems.Elsevier201831734410.1016/B978‑0‑08‑101750‑0.00012‑X
    [Google Scholar]
  11. BalasamyS. GanapathyD. AtchudanR. AryaS. SundramoorthyA.K. Chitosan/MXene composite scaffolds for bone regeneration in oral cancer treatment - a review.Curr. Cancer Ther. Rev.202410.2174/0115733947326282240924003811
    [Google Scholar]
  12. Ali AhmedA.B. AdelM. TalatiA. KumarM.S. AbdulrahimK. AbdulhameedM.M. Seaweed polysaccharides and their production and applications. Seaweed Polysaccharides.Elsevier201736938210.1016/B978‑0‑12‑809816‑5.00020‑7
    [Google Scholar]
  13. OprișO. MormileC. LungI. StegarescuA. SoranM.L. SoranA. An overview of biopolymers for drug delivery applications.Appl. Sci.2024144138310.3390/app14041383
    [Google Scholar]
  14. PonnammaD. SadasivuniK.K. AlMaadeedM.A. Introduction of biopolymer composites: What to do in electronics? Biopolymer Composites in Electronics.Elsevier201711210.1016/B978‑0‑12‑809261‑3.00001‑2
    [Google Scholar]
  15. GrenM. Wound Healing Biomaterials.Biomaterials20162
    [Google Scholar]
  16. VarmaK. GopiS. Biopolymers and their role in medicinal and pharmaceutical applications.Biopolymers and Their Industrial Applications.Elsevier202117519110.1016/B978‑0‑12‑819240‑5.00007‑9
    [Google Scholar]
  17. TemesgenS. RennertM. TesfayeT. NaseM. Review on spinning of biopolymer fibers from starch.Polymers2021137112110.3390/polym13071121 33915955
    [Google Scholar]
  18. GustafssonJ. LandbergM. BátoriV. ÅkessonD. TaherzadehM.J. ZamaniA. Development of bio-based films and 3D objects from apple pomace.Polymers201911228910.3390/polym11020289 30960273
    [Google Scholar]
  19. UdayakumarG.P. MuthusamyS. SelvaganeshB. SivarajasekarN. RambabuK. BanatF. SivamaniS. SivakumarN. Hosseini-BandegharaeiA. ShowP.L. Biopolymers and composites: Properties, characterization and their applications in food, medical and pharmaceutical industries.J. Environ. Chem. Eng.20219410532210.1016/j.jece.2021.105322
    [Google Scholar]
  20. AmenorfeL.P. AgorkuE.S. SarpongF. VoegborloR.B. Innovative exploration of additive incorporated biopolymer-based composites.Sci. Afr.202217e0135910.1016/j.sciaf.2022.e01359
    [Google Scholar]
  21. KaruppasamyB.D. RegerN.C. MunisamyS. PerumalS. SundramoorthyA.K. RamalingamS. AtchudanR. Marine-based bioactive self-healing hydrogel with tunable properties for tissue engineering and regenerative medicine.J. Drug Deliv. Sci. Technol.202410110626710.1016/j.jddst.2024.106267
    [Google Scholar]
  22. GeorgeA. SanjayM.R. SrisukR. ParameswaranpillaiJ. SiengchinS. A comprehensive review on chemical properties and applications of biopolymers and their composites.Int. J. Biol. Macromol.202015432933810.1016/j.ijbiomac.2020.03.120 32179114
    [Google Scholar]
  23. AltalhiT. Green sustainable process for chemical and environmental engineering and science.Elsevier202310.1016/C2021‑0‑02835‑2
    [Google Scholar]
  24. PraveenB. VivekanandC. SabapathyS.R. Spontaneous rupture of one slip of flexor digitorum superficialis causing triggering.Indian J. Plast. Surg.201447227227310.4103/0970‑0358.138988 25190932
    [Google Scholar]
  25. CervinoG. FiorilloL. HerfordA.S. LainoL. TroianoG. AmorosoG. CrimiS. MatareseM. D’AmicoC. Nastro SiniscalchiE. CicciùM. Alginate materials and dental impression technique: A current state of the art and application to dental practice.Mar. Drugs20181711810.3390/md17010018 30597945
    [Google Scholar]
  26. BurzynskiJ.A. FirestoneA.R. BeckF.M. FieldsH.W.Jr DeguchiT. Comparison of digital intraoral scanners and alginate impressions: Time and patient satisfaction.Am. J. Orthod. Dentofacial Orthop.2018153453454110.1016/j.ajodo.2017.08.017 29602345
    [Google Scholar]
  27. WuX. LiL. TaoW. HongH. ZhangL. ZhengS. YangR. LiQ. LiX. QiuH. ChenJ. Built-up sodium alginate/chlorhexidine multilayer coating on dental implants with initiating anti-infection and cyto-compatibility sequentially for soft-tissue sealing.Biomater. Adv.202315121349110.1016/j.bioadv.2023.213491 37295195
    [Google Scholar]
  28. ShahidU. NisarA. RehmanM.A.U. OmerS. TayyabaQ. ShafiqueM.A. IqbalS. Development of a Ce-doped hydroxyapatite–sodium alginate biocomposite for bone and dental implants.New J. Chem.202347157217722410.1039/D2NJ06203H
    [Google Scholar]
  29. XiaY. ZhangZ. ZhouK. LinZ. ShuR. XuY. ZengZ. ChangJ. XieY. Cuprorivaite/hardystonite/alginate composite hydrogel with thermionic effect for the treatment of peri-implant lesion.Regen. Biomater.202411rbae02810.1093/rb/rbae028 38605852
    [Google Scholar]
  30. PramanikS. KharcheS. MoreN. RanglaniD. SinghG. KapusettiG. Natural biopolymers for bone tissue engineering: A brief review.Engineered Regeneration20234219320410.1016/j.engreg.2022.12.002
    [Google Scholar]
  31. ChenX. SunL. WangH. CaoS. ShangT. YanH. LinQ. Nano-SiO2 reinforced alginate-chitosan-gelatin nanocomposite hydrogels with improved physicochemical properties and biological activity.Colloids Surf. B Biointerfaces202322811341310.1016/j.colsurfb.2023.113413 37343505
    [Google Scholar]
  32. ZhuQ. ChenX. LiuZ. LiZ. LiD. YanH. LinQ. Development of alginate-chitosan composite scaffold incorporation of bacterial cellulose for bone tissue engineering.Int. J. Polym. Mater.202372429630710.1080/00914037.2021.2007384
    [Google Scholar]
  33. Umar Aslam KhanM. HaiderS. HaiderA. Izwan Abd RazakS. Rafiq Abdul KadirM. ShahS.A. JavedA. ShakirI. Al-ZahraniA.A. Development of porous, antibacterial and biocompatible GO/n-HAp/bacterial cellulose/β-glucan biocomp-osite scaffold for bone tissue engineering.Arab. J. Chem.202114210292410.1016/j.arabjc.2020.102924
    [Google Scholar]
  34. BasuP. NarendrakumarU. ArunachalamR. DeviS. ManjubalaI. Characterization and evaluation of carboxymethyl cellulose-based films for healing of full-thickness wounds in normal and diabetic rats.ACS Omega2018310126221263210.1021/acsomega.8b02015 30411013
    [Google Scholar]
  35. PatelD.K. DuttaS.D. HexiuJ. GangulyK. LimK.T. Bioactive electrospun nanocomposite scaffolds of poly (lactic acid)/cellulose nanocrystals for bone tissue engineering.Int. J. Biol. Macromol.20201621429144110.1016/j.ijbiomac.2020.07.246 32755711
    [Google Scholar]
  36. Hospodiuk-KarwowskiM. BokhariS.M.Q. ChiK. MoncalK.K. OzbolatV. OzbolatI.T. CatchmarkJ.M. Dual-charge bacterial cellulose as a potential 3D printable material for soft tissue engineering, Compos.B Eng.2022231109598
    [Google Scholar]
  37. SofiH.S. AkramT. ShabirN. VasitaR. JadhavA.H. SheikhF.A. Regenerated cellulose nanofibers from cellulose acetate: Incorporating hydroxyapatite (HAp) and silver (Ag) nanoparticles (NPs), as a scaffold for tissue engineering applications.Mater. Sci. Eng. C202111811154710.1016/j.msec.2020.111547 33255098
    [Google Scholar]
  38. ParamasivamG. PalemV.V. MeenakshyS. SureshL.K. GangopadhyayM. AntherjanamS. SundramoorthyA.K. Advances on carbon nanomaterials and their applications in medical diagnosis and drug delivery.Colloids Surf. B Biointerfaces202424111403210.1016/j.colsurfb.2024.114032 38905812
    [Google Scholar]
  39. FazalT. MurtazaB.N. ShahM. IqbalS. RehmanM. JaberF. DeraA.A. AwwadN.S. IbrahiumH.A. Recent developments in natural biopolymer based drug delivery systems.RSC Advances20231333230872312110.1039/D3RA03369D 37529365
    [Google Scholar]
  40. KaurM. SharmaA. PuriV. AggarwalG. MamanP. HuanbuttaK. NagpalM. SangnimT. Chitosan-based polymer blends for drug delivery systems.Polymers2023159202810.3390/polym15092028 37177176
    [Google Scholar]
  41. ChenL. DengX. TianL. XieJ. XiangY. LiangX. JiangL. JiangL. Preparation and properties of chitosan/dialdehyde sodium alginate/dopamine magnetic drug-delivery hydrogels.Colloids Surf. A Physicochem. Eng. Asp.202468013273910.1016/j.colsurfa.2023.132739
    [Google Scholar]
  42. OshiM.A. LeeJ. KimJ. HasanN. ImE. JungY. YooJ.W. PH-responsive alginate-based microparticles for colon-targeted delivery of pure cyclosporine A crystals to treat ulcerative colitis.Pharmaceutics2021139141210.3390/pharmaceutics13091412 34575488
    [Google Scholar]
  43. BalistreriG.N. CampbellI.R. LiX. AmorimJ. ZhangS. NanceE. RoumeliE. Bacterial cellulose nanoparticles as a sustainable drug delivery platform for protein-based therapeutics.RSC Applied Polymers20242217218310.1039/D3LP00184A
    [Google Scholar]
  44. GardikiotisI. CojocaruF.D. MihaiC.T. BalanV. DodiG. Borrowing the features of biopolymers for emerging wound healing dressings: A review.Int. J. Mol. Sci.20222315877810.3390/ijms23158778 35955912
    [Google Scholar]
  45. ZhouK. ZhangZ. XueJ. ShangJ. DingD. ZhangW. LiuZ. YanF. ChengN. Hybrid Ag nanoparticles/polyoxometalate-polydopamine nano-flowers loaded chitosan/gelatin hydrogel scaffolds with synergistic photothermal/chemodynamic/Ag+ anti-bacterial action for accelerated wound healing.Int. J. Biol. Macromol.202222113514810.1016/j.ijbiomac.2022.08.151 36029962
    [Google Scholar]
  46. WangC. LiangC. WangR. YaoX. GuoP. YuanW. LiuY. SongY. LiZ. XieX. The fabrication of a highly efficient self-healing hydrogel from natural biopolymers loaded with exosomes for the synergistic promotion of severe wound healing.Biomater. Sci.20208131332410.1039/C9BM01207A 31701966
    [Google Scholar]
  47. KhanY. OstfeldA.E. LochnerC.M. PierreA. AriasA.C. Monitoring of vital signs with flexible and wearable medical devices.Adv. Mater.201628224373439510.1002/adma.201504366 26867696
    [Google Scholar]
  48. MadhivananK. GanapathyD. SundramoorthyA.K. Molecularly imprinted polymers based sensors for identification of various cancer biomarkers.Oral Oncology Reports2024910021110.1016/j.oor.2024.100211
    [Google Scholar]
  49. SundramoorthyA.K. AtchudanR. Analysis of circulating tumor cells (CTCs) using biosensors made of conducting polymer, poly(3,4-ethylenedioxythiophene), with antifouling properties in human blood.Oral Oncol.202213410613810.1016/j.oraloncology.2022.106138 36182723
    [Google Scholar]
  50. RogersJ. BaoZ. LeeT.W. Wearable bioelectronics: Opportunities for chemistry.Acc. Chem. Res.201952352152210.1021/acs.accounts.9b00048 30884949
    [Google Scholar]
  51. MengG. LongF. ZengZ. KongL. ZhaoB. YanJ. YangL. YangY. LiuX.Y. YanZ. LinN. Silk fibroin based wearable electrochemical sensors with biomimetic enzyme-like activity constructed for durable and on-site health monitoring.Biosens. Bioelectron.202322811519810.1016/j.bios.2023.115198 36921388
    [Google Scholar]
  52. DandegaonkarG. AhmedA. SunL. AdakB. MukhopadhyayS. Cellulose based flexible and wearable sensors for health monitoring.Mater. Adv.2022393766378310.1039/D1MA01210J
    [Google Scholar]
  53. PramanikS. SaliV. Connecting the dots in drug delivery: A tour d’horizon of chitosan-based nanocarriers system.Int. J. Biol. Macromol.202116910312110.1016/j.ijbiomac.2020.12.083 33338522
    [Google Scholar]
  54. AbourehabM.A.S. PramanikS. AbdelgawadM.A. AbualsoudB.M. KadiA. AnsariM.J. DeepakA. Recent advances of chitosan formulations in biomedical applications.Int. J. Mol. Sci.202223181097510.3390/ijms231810975 36142887
    [Google Scholar]
  55. AbourehabM.A.S. RajendranR.R. SinghA. PramanikS. ShrivastavP. AnsariM.J. ManneR. AmaralL.S. DeepakA. Alginate as a promising biopolymer in drug delivery and wound healing: A review of the state-of-the-art.Int. J. Mol. Sci.20222316903510.3390/ijms23169035 36012297
    [Google Scholar]
  56. KunduB. KurlandN.E. BanoS. PatraC. EngelF.B. YadavalliV.K. KunduS.C. Silk proteins for biomedical applications: Bioengineering perspectives.Prog. Polym. Sci.201439225126710.1016/j.progpolymsci.2013.09.002
    [Google Scholar]
  57. ShrivastavP. PramanikS. VaidyaG. AbdelgawadM.A. GhoneimM.M. SinghA. AbualsoudB.M. AmaralL.S. AbourehabM.A.S. Bacterial cellulose as a potential biopolymer in biomedical applications: A state-of-the-art review.J. Mater. Chem. B Mater. Biol. Med.202210173199324110.1039/D1TB02709C 35445674
    [Google Scholar]
  58. DovedytisM. LiuZ.J. BartlettS. Hyaluronic acid and its biomedical applications: A review.Engineered Regeneration2020110211310.1016/j.engreg.2020.10.001
    [Google Scholar]
  59. Rezvani GhomiE. NourbakhshN. Akbari KenariM. ZareM. RamakrishnaS. Collagen‐based biomaterials for biomedical applications.J. Biomed. Mater. Res. B Appl. Biomater.2021109121986199910.1002/jbm.b.34881 34028179
    [Google Scholar]
  60. SaediS. ShokriM. RhimJ.W. Preparation of carrageenan-based antimicrobial films incorporated with sulfur nanoparticles.Korean J. Packag. Sci. Technol.202026312513110.20909/kopast.2020.26.3.125
    [Google Scholar]
  61. MannaS. JanaS. Carrageenan-based nanomaterials in drug delivery applications. Biopolymer-based Nanomaterials in Drug Delivery and Biomedical Applications.Elsevier202136538210.1016/B978‑0‑12‑820874‑8.00007‑5
    [Google Scholar]
  62. ZhangT. ZhangX. MaoM. LiJ. WeiT. SunH. Chitosan/hydroxyapatite composite coatings on porous Ti6Al4V titanium implants: In vitro and in vivo studies.J. Periodontal Implant Sci.202050639240510.5051/jpis.1905680284 33350179
    [Google Scholar]
  63. RanaA.K. GuptaV.K. HartP. ThakurV.K. Cellulose-alginate hydrogels and their nanocomposites for water remediation and biomedical applications.Environ. Res.202424311788910.1016/j.envres.2023.117889 38086501
    [Google Scholar]
  64. QuilumbangoA. BriceñoS. PonceJ.F. VizueteK. DebutA. BotasJ.A. GonzálezG. Chitosan-collagen-cerium hydroxyapatite nanocomposites for In-vitro gentamicin drug delivery and antibacterial properties.Carbon Trends20241610039210.1016/j.cartre.2024.100392
    [Google Scholar]
  65. ChungT.W. ChengC.L. LiuY.H. HuangY.C. ChenW.P. PandaA.K. ChenW.L. Dopamine-dependent functions of hyaluronic acid/dopamine/silk fibroin hydrogels that highly enhance N-acetyl-L-cysteine (NAC) delivered from nasal cavity to brain tissue through a near-infrared photothermal effect on the NAC-loaded hydrogels.Biomater. Adv.202315421361510.1016/j.bioadv.2023.213615 37716334
    [Google Scholar]
  66. CuiC. FuQ. MengL. HaoS. DaiR. YangJ. Recent progress in natural biopolymers conductive hydrogels for flexible wearable sensors and energy devices: Materials, structures, and performance.ACS Appl. Bio Mater.2021418512110.1021/acsabm.0c00807 35014278
    [Google Scholar]
  67. FatimiA. OkoroO.V. PodstawczykD. Siminska-StannyJ. ShavandiA. Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: A review.Gels20228317910.3390/gels8030179 35323292
    [Google Scholar]
  68. HanH. LouZ. WangQ. XuL. LiY. Introducing rich heterojunction surfaces to enhance the high-frequency electromagnetic attenuation response of flexible fiber-based wearable absorbers.Adv. Fiber Mater.20246373975710.1007/s42765‑024‑00387‑8
    [Google Scholar]
  69. ZhaoY. LouZ. WangQ. YuanT. ChenM. HanH. WuX. XuL. LiY. Fabrication of a bamboo-based glulam based on reconstitution unit innovation: Mechanical property investigation and carbon footprint evaluation.Ind. Crops Prod.202320211704610.1016/j.indcrop.2023.117046
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575359305241218113847
Loading
/content/journals/mrmc/10.2174/0113895575359305241218113847
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomedicals uses; Biopolymers; dentistry; drug delivery; eco-friendly; tissue repair
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test