Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Luminescent Lanthanide (III) (Ln (III)) bioprobes (LLBs) have been extensively used in the last two decades as intracellular molecular probes in bio-imaging for the efficient revelation of analytes, to signal intracellular events (enzymes/protein activity, antigen-antibody interaction), target specific organelles, and determine parameters of particular biophysical interest, to gain important insights on pathologies or diseases. The choice of using a luminescent Ln (III) coordination compound with respect to a common organic fluorophore is intimately connected to how their photophysical sensitization (antenna effect) can be finely tuned and especially triggered to respond (even quantitatively) to a certain biophysical event, condition or analyte. While there are other reviews focused on how to design chromophoric ligands for an efficient sensitization of Ln (III) ions, both in the visible and NIR region, this mini-review is application-driven: it is a small collection of particularly interesting examples where the LLB’s emissive information is acquired by imaging the emission intensity and/or the fluorescence lifetime (fluorescence lifetime imaging microscopy, FLIM).

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575350677250101060606
2025-01-29
2025-09-26
Loading full text...

Full text loading...

References

  1. AulsebrookM.L. GrahamB. GraceM.R. TuckK.L. Lanthanide complexes for luminescence-based sensing of low molecular weight analytes.Coord. Chem. Rev.201837519122010.1016/j.ccr.2017.11.018
    [Google Scholar]
  2. HewittS.H. ButlerS.J. Application of lanthanide luminescence in probing enzyme activity.Chem. Commun.201854506635664710.1039/C8CC02824A 29790500
    [Google Scholar]
  3. QiuX. XuJ. Cardoso Dos SantosM. HildebrandtN. Multiplexed biosensing and bioimaging using lanthanide-based time-gated forster resonance energy transfer.Acc. Chem. Res.202255455156410.1021/acs.accounts.1c00691 35084817
    [Google Scholar]
  4. SculimbreneB.R. ImperialiB. Lanthanide-binding tags as luminescent probes for studying protein interactions.J. Am. Chem. Soc.2006128227346735210.1021/ja061188a 16734490
    [Google Scholar]
  5. HuangC. LiT. LiangJ. HuangH. ZhangP. BanerjeeS. Recent advances in endoplasmic reticulum targeting metal complexes.Coord. Chem. Rev.202040821317810.1016/j.ccr.2020.213178
    [Google Scholar]
  6. ReddyM.L.P. BejoymohandasK.S. DivyaV. Luminescent lanthanide coordination compounds as potential mitochondria-targeting probes: Molecular engineering to bioimaging.Dyes Pigments202220511052810.1016/j.dyepig.2022.110528
    [Google Scholar]
  7. ParkerD. DickinsR.S. PuschmannH. CrosslandC. HowardJ.A.K. Being excited by lanthanide coordination complexes: aqua species, chirality, excited-state chemistry, and exchange dynamics.Chem. Rev.200210261977201010.1021/cr010452+ 12059260
    [Google Scholar]
  8. PiñolR. ZelerJ. BritesC.D.S. GuY. TéllezP. Carneiro NetoA.N. da SilvaT.E. Moreno-LoshuertosR. Fernandez-SilvaP. GallegoA.I. Martinez-LostaoL. MartínezA. CarlosL.D. MillánA. Real-time intracellular temperature imaging using lanthanide-bearing polymeric micelles.Nano Lett.20202096466647210.1021/acs.nanolett.0c02163 32787172
    [Google Scholar]
  9. ParkerD. FradgleyJ.D. WongK.L. The design of responsive luminescent lanthanide probes and sensors.Chem. Soc. Rev.202150148193821310.1039/D1CS00310K 34075982
    [Google Scholar]
  10. HasegawaM. OhmagariH. TanakaH. MachidaK. Luminescence of lanthanide complexes: From fundamental to prospective approaches related to water- and molecular-stimuli.J. Photochem. Photobiol. Photochem. Rev.20225010048410.1016/j.jphotochemrev.2022.100484
    [Google Scholar]
  11. MooreE.G. SamuelA.P.S. RaymondK.N. From antenna to assay: Lessons learned in lanthanide luminescence.Acc. Chem. Res.200942454255210.1021/ar800211j 19323456
    [Google Scholar]
  12. CharbonnièreL. MameriS. KadjaneP. Platas-IglesiasC. ZiesselR. Tuning the coordination sphere around highly luminescent lanthanide complexes.Inorg. Chem.20084793748376210.1021/ic702472n 18393412
    [Google Scholar]
  13. ThibonA. PierreV.C. Principles of responsive lanthanide-based luminescent probes for cellular imaging.Anal. Bioanal. Chem.2009394110712010.1007/s00216‑009‑2683‑2 19283368
    [Google Scholar]
  14. BinnemansK. Interpretation of europium(III) spectra.Coord. Chem. Rev.201529514510.1016/j.ccr.2015.02.015
    [Google Scholar]
  15. WickramaratneT.M. PierreV.C. Turning an aptamer into a light-switch probe with a single bioconjugation.Bioconjug. Chem.2015261637010.1021/bc5003899 25427946
    [Google Scholar]
  16. CottonS. The Lanthanide Elements and Simple Binary Compounds Lanthanide and Actinide Chemistry20062333
    [Google Scholar]
  17. LignerG. MohanR. KnittelS. DuportailG. Hypersensitivity of terbium and europium ions luminescence in biological substrates.Spectrochim. Acta A199046579780210.1016/0584‑8539(90)80037‑Y
    [Google Scholar]
  18. ShuvaevS. StarckM. ParkerD. Responsive, water‐soluble europium (III) luminescent probes.Chemistry201723429974998910.1002/chem.201700567 28471496
    [Google Scholar]
  19. HeffernM.C. MatosziukL.M. MeadeT.J. Lanthanide probes for bioresponsive imaging.Chem. Rev.201411484496453910.1021/cr400477t 24328202
    [Google Scholar]
  20. ArmelaoL. QuiciS. BarigellettiF. AccorsiG. BottaroG. CavazziniM. TondelloE. Design of luminescent lanthanide complexes: From molecules to highly efficient photo-emitting materials.Coord. Chem. Rev.20102545-648750510.1016/j.ccr.2009.07.025
    [Google Scholar]
  21. BünzliJ-C.G. On the design of highly luminescent lanthanide complexes.Coord. Chem. Rev.2015293-294194710.1016/j.ccr.2014.10.013
    [Google Scholar]
  22. ButlerS.J. ParkerD. Anion binding in water at lanthanide centres: From structure and selectivity to signalling and sensing.Chem. Soc. Rev.20134241652166610.1039/C2CS35144G 22760156
    [Google Scholar]
  23. XuB. TangX. ZhouJ. ChenW. LiuH. JuZ. LiuW. A “turn-on” lanthanide complex chemosensor for recognition of lead(II) based on the formation of nanoparticles.Dalton Trans.20164547188591886610.1039/C6DT02835G 27722522
    [Google Scholar]
  24. CombyS. TuckS.A. TrumanL.K. KotovaO. GunnlaugssonT. New trick for an old ligand! The sensing of Zn(II) using a lanthanide based ternary Yb(III)-cyclen-8-hydroxyquinoline system as a dual emissive probe for displacement assay.Inorg. Chem.20125119101581016810.1021/ic300697w 22974321
    [Google Scholar]
  25. PershagenE. NordholmJ. BorbasK.E. Luminescent lanthanide complexes with analyte-triggered antenna formation.J. Am. Chem. Soc.2012134249832983510.1021/ja3004045 22339236
    [Google Scholar]
  26. MontgomeryC.P. MurrayB.S. NewE.J. PalR. ParkerD. Cell-penetrating metal complex optical probes: targeted and responsive systems based on lanthanide luminescence.Acc. Chem. Res.200942792593710.1021/ar800174z 19191558
    [Google Scholar]
  27. MalikidogoK.P. CharnayT. NdiayeD. ChoiJ.H. BridouL. ChartierB. ErbekS. MicouinG. BanyaszA. MauryO. Martel-FrachetV. GrichineA. SénèqueO. Efficient cytosolic delivery of luminescent lanthanide bioprobes in live cells for two-photon microscopy.Chem. Sci.202415259694970210.1039/D4SC00896K 38939128
    [Google Scholar]
  28. WaltonJ.W. BourdolleA. ButlerS.J. SoulieM. DelbiancoM. McMahonB.K. PalR. PuschmannH. ZwierJ.M. LamarqueL. MauryO. AndraudC. ParkerD. Very bright europium complexes that stain cellular mitochondria.Chem. Commun.201349161600160210.1039/c2cc35247h 23336102
    [Google Scholar]
  29. LiuM. YeZ. XinC. YuanJ. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes.Anal. Chim. Acta201376114915610.1016/j.aca.2012.11.025 23312326
    [Google Scholar]
  30. TangZ. SongB. MaH. ShiY. YuanJ. A ratiometric time-gated luminescence probe for hydrogen sulfide based on copper(II)-coupled lanthanide complexes.Anal. Chim. Acta2019104915216010.1016/j.aca.2018.10.048 30612646
    [Google Scholar]
  31. SongC. YeZ. WangG. YuanJ. GuanY. A lanthanide-complex-based ratiometric luminescent probe specific for peroxynitrite.Chemistry201016226464647210.1002/chem.201000528 20486239
    [Google Scholar]
  32. LiL. BhatiaM. ZhuY.Z. ZhuY.C. RamnathR.D. WangZ.J. AnuarF.B.M. WhitemanM. Salto-TellezM. MooreP.K. Hydrogen sulfide is a novel mediator of lipopolysaccharide‐induced inflammation in the mouse.FASEB J.20051991196119810.1096/fj.04‑3583fje 15863703
    [Google Scholar]
  33. TangZ. SongB. ZhangW. GuoL. YuanJ. Precise monitoring of drug-induced kidney injury using an endoplasmic reticulum-targetable ratiometric time-gated luminescence probe for superoxide anions.Anal. Chem.20199121140191402810.1021/acs.analchem.9b03602 31578849
    [Google Scholar]
  34. DaiZ. TianL. YeZ. SongB. ZhangR. YuanJ. A lanthanide complex-based ratiometric luminescence probe for time-gated luminescence detection of intracellular thiols.Anal. Chem.20138523116581166410.1021/ac403370g 24187960
    [Google Scholar]
  35. XueB. BrownC.J. DunkerA.K. UverskyV.N. Intrinsically disordered regions of p53 family are highly diversified in evolution.Biochim. Biophys. Acta. Proteins Proteomics20131834472573810.1016/j.bbapap.2013.01.012 23352836
    [Google Scholar]
  36. KlotmanP.E. BoatmanJ.E. VolppB.D. BakerJ.D. YargerW.E. Captopril enhances aminoglycoside nephrotoxicity in potassium-depleted rats.Kidney Int.198528211812710.1038/ki.1985.130 2422431
    [Google Scholar]
  37. Al-QarawiA.A. Abdel-RahmanH. MousaH.M. AliB.H. El-MougyS.A. Nephroprotective action of Phoenix dactylifera. in gentamicin-induced nephrotoxicity.Pharm. Biol.200846422723010.1080/13880200701739322
    [Google Scholar]
  38. BuiA.T. GrichineA. DuperrayA. LidonP. RiobéF. AndraudC. MauryO. Terbium (III) luminescent complexes as millisecond-scale viscosity probes for lifetime imaging.J. Am. Chem. Soc.2017139237693769610.1021/jacs.7b02951 28551987
    [Google Scholar]
  39. BuiA.T. GrichineA. BrasseletS. DuperrayA. AndraudC. MauryO. Unexpected efficiency of a luminescent samarium (III) complex for combined visible and near‐infrared biphotonic microscopy.Chemistry20152149177571776110.1002/chem.201503711 26489885
    [Google Scholar]
  40. WalterE.R.H. WilliamsJ.A.G. ParkerD. Solvent polarity and oxygen sensitivity, rather than viscosity, determine lifetimes of biaryl-sensitised terbium luminescence.Chem. Commun.201753100133441334710.1039/C7CC08361K 29189843
    [Google Scholar]
  41. ZubenkoG.S. KoppU. SetoT. FirestoneL.L. Platelet membrane fluidity individuals at risk for Alzheimer’s disease: A comparison of results from fluorescence spectroscopy and electron spin resonance spectroscopy.Psychopharmacology1999145217518010.1007/s002130051046 10463318
    [Google Scholar]
  42. ChoiJ.H. FremyG. CharnayT. FayadN. PécautJ. ErbekS. HildebrandtN. Martel-FrachetV. GrichineA. SénèqueO. Luminescent peptide/lanthanide (III) complex conjugates with push–pull antennas: Application to one- and two-photon microscopy imaging.Inorg. Chem.20226150206742068910.1021/acs.inorgchem.2c03646 36475655
    [Google Scholar]
  43. PalR. ParkerD. A ratiometric optical imaging probe for intracellular pH based on modulation of europium emission.Org. Biomol. Chem.2008661020103310.1039/b718993a 18327327
    [Google Scholar]
  44. HamonN. RouxA. BeylerM. MulatierJ.C. AndraudC. NguyenC. MaynadierM. BettacheN. DuperrayA. GrichineA. BrasseletS. Gary-BoboM. MauryO. TripierR. Pyclen-based Ln (III) complexes as highly luminescent bioprobes for in vitro and in vivo one-and two-photon bioimaging applications.J. Am. Chem. Soc.202014222101841019710.1021/jacs.0c03496 32368907
    [Google Scholar]
  45. LaRochelleJ.R. CobbG.B. SteinauerA. RhoadesE. SchepartzA. Fluorescence correlation spectroscopy reveals highly efficient cytosolic delivery of certain penta-arg proteins and stapled peptides.J. Am. Chem. Soc.201513772536254110.1021/ja510391n 25679876
    [Google Scholar]
  46. AppelbaumJ.S. LaRochelleJ.R. SmithB.A. BalkinD.M. HolubJ.M. SchepartzA. Arginine topology controls escape of minimally cationic proteins from early endosomes to the cytoplasm.Chem. Biol.201219781983010.1016/j.chembiol.2012.05.022 22840770
    [Google Scholar]
  47. MarksJ.R. PlaconeJ. HristovaK. WimleyW.C. Spontaneous membrane-translocating peptides by orthogonal high-throughput screening.J. Am. Chem. Soc.2011133238995900410.1021/ja2017416 21545169
    [Google Scholar]
  48. MacchiS. SignoreG. BoccardiC. Di RienzoC. BeltramF. CardarelliF. Spontaneous membrane-translocating peptides: influence of peptide self-aggregation and cargo polarity.Sci. Rep.2015511691410.1038/srep16914 26567719
    [Google Scholar]
  49. StarckM. FradgleyJ.D. Di VitaS. MoselyJ.A. PalR. ParkerD. Targeted luminescent europium peptide conjugates: Comparative analysis using maleimide and para-nitropyridyl linkages for organelle staining.Bioconjug. Chem.202031222924010.1021/acs.bioconjchem.9b00735 31751113
    [Google Scholar]
  50. O’MalleyW.I. AbdelkaderE.H. AulsebrookM.L. RubbianiR. LohC.T. GraceM.R. SpicciaL. GasserG. OttingG. TuckK.L. GrahamB. Luminescent alkyne-bearing terbium (III) complexes and their application to bioorthogonal protein labeling.Inorg. Chem.20165541674168210.1021/acs.inorgchem.5b02605 26821062
    [Google Scholar]
  51. LeygueN. PicardC. FaureP. BourrierE. LamarqueL. ZwierJ.M. GalaupC. Design of novel tripyridinophane-based Eu (III) complexes as efficient luminescent labels for bioassay applications.Org. Biomol. Chem.202120118219510.1039/D1OB02092G 34878481
    [Google Scholar]
  52. RajendranM. YapiciE. MillerL.W. Lanthanide-based imaging of protein-protein interactions in live cells.Inorg. Chem.20145341839185310.1021/ic4018739 24144069
    [Google Scholar]
  53. XuJ. CorneillieT.M. MooreE.G. LawG.L. ButlinN.G. RaymondK.N. Octadentate cages of Tb(III) 2-hydroxyisophthalamides: A new standard for luminescent lanthanide labels.J. Am. Chem. Soc.201113349199001991010.1021/ja2079898 22010878
    [Google Scholar]
  54. GeißlerD. StuflerS. LöhmannsröbenH.G. HildebrandtN. Six-color time-resolved Förster resonance energy transfer for ultrasensitive multiplexed biosensing.J. Am. Chem. Soc.201313531102110910.1021/ja310317n 23231786
    [Google Scholar]
  55. MillerL.W. CaiY. SheetzM.P. CornishV.W. In vivo protein labeling with trimethoprim conjugates: A flexible chemical tag.Nat. Methods20052425525710.1038/nmeth749 15782216
    [Google Scholar]
  56. CallowayN.T. ChoobM. SanzA. SheetzM.P. MillerL.W. CornishV.W. Optimized fluorescent trimethoprim derivatives for in vivo protein labeling.ChemBioChem20078776777410.1002/cbic.200600414 17378009
    [Google Scholar]
  57. ReddyD.R. Pedró RosaL.E. MillerL.W. Luminescent trimethoprim-polyaminocarboxylate lanthanide complex conjugates for selective protein labeling and time-resolved bioassays.Bioconjug. Chem.20112271402140910.1021/bc200131k 21619068
    [Google Scholar]
  58. WangY.U.L.I. Noise‐induced systematic errors in ratio imaging: serious artefacts and correction with multi‐resolution denoising.J. Microsc.2007228212313110.1111/j.1365‑2818.2007.01834.x 17970912
    [Google Scholar]
  59. De MatosL.L. TrufelliD.C. De MatosM.G.L. da Silva PinhalM.A. Immunohistochemistry as an important tool in biomarkers detection and clinical practice.Biomarker insights20105S218510.4137/BMI.S2185
    [Google Scholar]
  60. MoniciM. Cell and tissue autofluorescence research and diagnostic applications.Biotechnol. Annu. Rev.20051122725610.1016/S1387‑2656(05)11007‑2 16216779
    [Google Scholar]
  61. SuF. LuoX. DuZ. ChenZ. LiuY. JinX. GuoZ. LuJ. JinD. High-contrast luminescent immunohistochemistry using PEGylated lanthanide complexes.Anal. Chem.20229450175871759410.1021/acs.analchem.2c04058 36464815
    [Google Scholar]
  62. ZhangL. WangY. YeZ. JinD. YuanJ. New class of tetradentate β-diketonate-europium complexes that can be covalently bound to proteins for time-gated fluorometric application.Bioconjug. Chem.20122361244125110.1021/bc300075t 22646704
    [Google Scholar]
  63. NingY. ChengS. WangJ.X. LiuY.W. FengW. LiF. ZhangJ.L. Fluorescence lifetime imaging of upper gastrointestinal pH in vivo with a lanthanide based near-infrared τ probe.Chem. Sci.201910154227423510.1039/C9SC00220K 31057751
    [Google Scholar]
  64. HuJ.Y. NingY. MengY.S. ZhangJ. WuZ.Y. GaoS. ZhangJ.L. Highly near-IR emissive ytterbium (III) complexes with unprecedented quantum yields.Chem. Sci.2017842702270910.1039/C6SC05021B 28694956
    [Google Scholar]
  65. McConnellE.L. BasitA.W. MurdanS. Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments.J. Pharm. Pharmacol.2008601637010.1211/jpp.60.1.0008 18088506
    [Google Scholar]
  66. JinG.Q. SunD. XiaX. JiangZ.F. ChengB. NingY. WangF. ZhaoY. ChenX. ZhangJ.L. Bioorthogonal lanthanide molecular probes for near‐infrared fluorescence and mass spectrometry imaging.Angew. Chem. Int. Ed.20226143e20220870710.1002/anie.202208707 35989247
    [Google Scholar]
  67. DieterichD.C. HodasJ.J.L. GouzerG. ShadrinI.Y. NgoJ.T. TrillerA. TirrellD.A. SchumanE.M. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons.Nat. Neurosci.201013789790510.1038/nn.2580 20543841
    [Google Scholar]
  68. LaughlinS.T. BertozziC.R. Imaging the glycome.Proc. Natl. Acad. Sci. USA20091061121710.1073/pnas.0811481106 19104067
    [Google Scholar]
  69. ChengB. TangQ. ZhangC. ChenX. Glycan labeling and analysis in cells and in vivo.Annu. Rev. Anal. Chem.202114136338710.1146/annurev‑anchem‑091620‑091314 34314224
    [Google Scholar]
  70. SalicA. MitchisonT.J. A chemical method for fast and sensitive detection of DNA synthesis in vivo.Proc. Natl. Acad. Sci. USA200810572415242010.1073/pnas.0712168105 18272492
    [Google Scholar]
  71. JaoC.Y. SalicA. Exploring RNA transcription and turnover in vivo by using click chemistry.Proc. Natl. Acad. Sci. USA200810541157791578410.1073/pnas.0808480105 18840688
    [Google Scholar]
  72. LacerdaS. DelalandeA. EliseevaS.V. PallierA. BonnetC.S. SzeremetaF. MêmeS. PichonC. PetoudS. TóthÉ. Doxorubicin‐sensitized luminescence of NIR‐emitting ytterbium liposomes: Towards direct monitoring of drug release.Angew. Chem. Int. Ed.20216044235742357710.1002/anie.202109408 34387934
    [Google Scholar]
  73. AllenT.M. CullisP.R. Liposomal drug delivery systems: From concept to clinical applications.Adv. Drug Deliv. Rev.2013651364810.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  74. BonnetC.S. TóthÉ. Towards highly efficient, intelligent and bimodal imaging probes: Novel approaches provided by lanthanide coordination chemistry.C. R. Chim.2010136-770071410.1016/j.crci.2010.03.026
    [Google Scholar]
  75. MartinićI. EliseevaS.V. ColletG. LuoT.Y. RosiN. PetoudS. One approach for two: Toward the creation of near-infrared imaging agents and rapid screening of lanthanide (III) ion sensitizers using polystyrene nanobeads.ACS Appl. Bio Mater.2019241667167510.1021/acsabm.9b00053 35026901
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575350677250101060606
Loading
/content/journals/mrmc/10.2174/0113895575350677250101060606
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test