Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Taxol is a compound with a rigid, tetracyclic structure of diterpene, which is characterized by significant antitumor properties. Firstly, Taxol has been isolated by extraction from the bark of the yew tree. However, the low level of availability obligated the researchers' world to uncover alternative techniques of Taxol obtainment. In the last few years, many synthetic and semi-synthetic methodologies have been elaborated. Nowadays, many novel biotechnological approaches using cell suspension cultures and biotransformation are initiated and expanded. These processes are very beneficial. The reason is that both the final product and the yield of the process have high levels. Such approaches are very distinctive and they help achieve significant quantities of natural compounds, which often exist in small amounts in plants. Moreover, a very important aspect of Taxol development is nanotechnology. The use of this method has many benefits - the retention time is protracted and the concentration of a drug in tumor tissue is raised. This is due to the specific targeting of nanomolecules. What is essential for patients is that systemic side effects are reduced and the healthy biological systems and tissues do not damage. Also, the paper presents new directions with the application of Artificial Intelligence methods.

Every year, new concepts are created for obtaining Taxol and developing methods to significantly increase its bioavailability.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575300365240828065816
2025-03-01
2025-11-05
Loading full text...

Full text loading...

References

  1. ScheinC.H. Repurposing approved drugs for cancer therapy.Br. Med. Bull.20211371132710.1093/bmb/ldaa04533517358
    [Google Scholar]
  2. SugiyamaY. KameshitaI. Multi-PK antibodies: Powerful analytical tools to explore the protein kinase world.Biochem. Biophys. Rep.201711404510.1016/j.bbrep.2017.06.00528955766
    [Google Scholar]
  3. BraunW. ScheinC.H. Membrane interaction and functional plasticity of inositol polyphosphate 5-phosphatases.Structure201422566466610.1016/j.str.2014.04.00824807076
    [Google Scholar]
  4. ChangR. MurrayN. Management of anthracycline extravasation into the pleural space.Oxf. Med. Case Rep.2016201610omw07910.1093/omcr/omw07927699056
    [Google Scholar]
  5. TuranliB. GrøtliM. BorenJ. NielsenJ. UhlenM. ArgaK.Y. MardinogluA. Drug repositioning for effective prostate cancer treatment.Front. Physiol.2018950052010.3389/fphys.2018.0050029867548
    [Google Scholar]
  6. GłowniakK. Skalicka-WoźniakK. WidelskiJ. Squeezed from the yew....Panacea20132627
    [Google Scholar]
  7. GinsbergJ. The discovery of Camptothecin and Taxol.WashingtonAmerican Chemical Society200323
    [Google Scholar]
  8. WaniM.C. TaylorH.L. WallM.E. CoggonP. McPhailA.T. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia.J. Am. Chem. Soc.19719392325232710.1021/ja00738a0455553076
    [Google Scholar]
  9. SamaranayakeG. NeidighK.A. KingstonD.G.I. Modified taxols, 8. Deacylation and reacylation of baccatin III.J. Nat. Prod.199356688489810.1021/np50096a0128102392
    [Google Scholar]
  10. SharmaA. BhatiaS.K. BanyalA. ChananaI. KumarA. ChandD. KulshresthaS. KumarP. An overview on Taxol production technology and its applications as anticancer agent.Biotechnol. Bioprocess Eng.; BBE202227570672810.1007/s12257‑022‑0063‑3
    [Google Scholar]
  11. HoltonR.A. SomozaC. KimH.B. LiangF. BiedigerR.J. BoatmanP.D. ShindoM. SmithC.C. KimS. NadizadehH. SuzukiY. TaoC. VuP. TangS. ZhangP. MurthiK.K. GentileL.N. JyanweiH.L. First total synthesis of taxol. 1. Functionalization of the B ring.J. Am. Chem. Soc.199411641597159810.1021/ja00083a066
    [Google Scholar]
  12. NassarS. El-AhmadyS.H. NassarA.H. Al-AziziM.M. Studying the possible biotransformation of the cytotoxic diterpenoid paclitaxel using Jatropha curcas cell suspension culture.Eur. J. Med. Plants20133224125310.9734/EJMP/2013/2881
    [Google Scholar]
  13. VennilaR. MuthumaryJ. Taxol from Pestalotiopsis pauciseta VM1, an endophytic fungus of Tabebuia pentaphylla.Biomed. Prev. Nutri.20111210310810.1016/j.bionut.2010.12.005
    [Google Scholar]
  14. ZhaoY. YuR.M. SchroederC. SadlerI. UngerM. SunX.F. RankinD.W.H. StöckigtJ. Biotransformation of paclitaxel (taxol) by the cell suspension cultures of Rauwolfia serpentina.Acta Bot. Sin.2004461113831386
    [Google Scholar]
  15. ŻwawiakJ. ZaprutkoL. A brief history of taxol.J. Med. Sci.2014831475210.20883/medical.e43
    [Google Scholar]
  16. Barrales-CureñoH.J. Ramos ValdiviaA.C. Soto HernándezM. Increased production of taxoids in suspension cultures of Taxus globosa after elicitation.Future Pharmacol.202221455410.3390/futurepharmacol2010004
    [Google Scholar]
  17. LiaoZ. ChenM. SunX. TangK. Micropropagation of endangered plant species.Methods Mol. Biol.200631817918516673915
    [Google Scholar]
  18. Gallego-JaraJ. Lozano-TerolG. Sola-MartínezR.A. Cánovas-DíazM. de Diego PuenteT. A compressive review about Taxol: History and future challenges.Molecules202025245986601010.3390/molecules2524598633348838
    [Google Scholar]
  19. Mohammadi BallakutiN. GhanatiF. Zare-MaivanH. AlipourM. MoghaddamM. AbdolmalekiP. Taxoid profile in endophytic fungi isolated from Corylus avellana, introduces potential source for the production of Taxol in semi-synthetic approaches.Sci. Rep.20221219390940110.1038/s41598‑022‑13602‑635672438
    [Google Scholar]
  20. KumarP. SinghB. ThakurV. ThakurA. ThakurN. PandeyD. ChandD. Hyper-production of taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the Northern Himalayan region.Biotechnol. Rep.201924e0039510.1016/j.btre.2019.e0039531799144
    [Google Scholar]
  21. WangJ. LiG. LuH. ZhengZ. HuangY. SuW. Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei.FEMS Microbiol. Lett.2000193224925310.1111/j.1574‑6968.2000.tb09432.x11111032
    [Google Scholar]
  22. SunD. RanX. WangJ. Isolation and identification of a taxol-producing endophytic fungus from Podocarpus.Wei Sheng Wu Hsueh Pao200848558959518652289
    [Google Scholar]
  23. MalikS. CusidóR.M. MirjaliliM.H. MoyanoE. PalazónJ. BonfillM. Production of the anticancer drug taxol in Taxus baccata suspension cultures: A review.Process Biochem.2011461233410.1016/j.procbio.2010.09.004
    [Google Scholar]
  24. ElavarasiA. RathnaG.S. KalaiselvamM. Taxol producing mangrove endophytic fungi Fusarium oxysporum from Rhizophora annamalayana.Asian Pac. J. Trop. Biomed.201222S1081S108510.1016/S2221‑1691(12)60365‑7
    [Google Scholar]
  25. ZhouX. ZhuH. LiuL. LinJ. TangK. A review: Recent advances and future prospects of taxol-producing endophytic fungi.Appl. Microbiol. Biotechnol.20108661707171710.1007/s00253‑010‑2546‑y20358192
    [Google Scholar]
  26. MutandaI. LiJ. XuF. WangY. Recent advances in metabolic engineering, protein engineering, and transcriptome-guided insights toward synthetic production of taxol.Front. Bioeng. Biotechnol.2021963226910.3389/fbioe.2021.63226933614616
    [Google Scholar]
  27. LiJ.Y. SidhuR.S. BollonA. StrobelG.A. Stimulation of taxol production in liquid cultures of Pestalotiopsis microspora.Mycol. Res.1998102446146410.1017/S0953756297005078
    [Google Scholar]
  28. SubbanK. SubramaniR. SrinivasanV.P.M. JohnpaulM. ChelliahJ. Salicylic acid as an effective elicitor for improved taxol production in endophytic fungus Pestalotiopsis microspora.PLoS One2019142e021273610.1371/journal.pone.021273630794656
    [Google Scholar]
  29. GelderblomH. VerweijJ. NooterK. SparreboomA. CremophorE.L. Eur. J. Cancer200137131590159810.1016/S0959‑8049(01)00171‑X11527683
    [Google Scholar]
  30. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.D.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181917110410.1186/s12951‑018‑0392‑8
    [Google Scholar]
  31. ChopraH. MohantaY.K. RautaP.R. AhmedR. MahantaS. MishraP.K. PandaP. RabaanA.A. AlshehriA.A. OthmanB. AlshahraniM.A. AlqahtaniA.S. AL BashaB.A.; Dhama, K. An insight into advances in developing nanotechnology based therapeutics, drug delivery, diagnostics and vaccines: Multidimensional applications in tuberculosis disease management.Pharmaceuticals202316458161910.3390/ph1604058137111338
    [Google Scholar]
  32. BaigN. KammakakamI. FalathW. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges.Mater. Adv.2021261821187110.1039/D0MA00807A
    [Google Scholar]
  33. KuperkarK. PatelD. AtanaseL.I. BahadurP. Amphiphilic block copolymers: Their structures, and self-assembly to polymeric micelles and polymersomes as drug delivery vehicles.Polymers202214214702472310.3390/polym1421470236365696
    [Google Scholar]
  34. BoseA. Roy BurmanD. SikdarB. PatraP. Nanomicelles: Types, properties and applications in drug delivery.IET Nanobiotechnol.2021151192710.1049/nbt2.1201834694727
    [Google Scholar]
  35. YusufA. AlmotairyA.R.Z. HenidiH. AlshehriO.Y. AldughaimM.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems.Polymers20231571596162210.3390/polym1507159637050210
    [Google Scholar]
  36. WangJ. LiX. WuW. XuX.M. XuH. ZhangT. Recent progress of paclitaxel delivery systems: Covalent and noncovalent approaches.Adv. Ther.202365220028110.1002/adtp.202200281
    [Google Scholar]
  37. VishnuP. RoyV. Safety and efficacy of nab -paclitaxel in the treatment of patients with breast cancer.Breast Cancer20115BCBCR.S585710.4137/BCBCR.S585721603258
    [Google Scholar]
  38. HassaninI. ElzoghbyA. Albumin-based nanoparticles: A promising strategy to overcome cancer drug resistance.Cancer Drug Resist.20203493094610.20517/cdr.2020.6835582218
    [Google Scholar]
  39. KianfarE. Protein nanoparticles in drug delivery: Animal protein, plant proteins and protein cages, albumin nanoparticles.J. Nanobiotechnology202119115919210.1186/s12951‑021‑00896‑334051806
    [Google Scholar]
  40. ZhaoP. WangY. WuA. RaoY. HuangY. Roles of albumin‐binding proteins in cancer progression and biomimetic targeted drug delivery.ChemBioChem201819171796180510.1002/cbic.20180020129920893
    [Google Scholar]
  41. RazaF. ZafarH. KhanM.W. UllahA. KhanA.U. BaseerA. FareedR. SohailM. Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy.Mater. Adv.2022352268229010.1039/D1MA00961C
    [Google Scholar]
  42. LuH. ZhaS. ZhangW. WangQ. JiangD. XuX. ZhengX. QiuM. ShanC. A systematic review and meta-analysis of nab-paclitaxel mono-chemotherapy for metastatic breast cancer.BMC Cancer202121183084510.1186/s12885‑021‑08441‑z34275458
    [Google Scholar]
  43. MaP. MumperR.J. Paclitaxel nano-delivery systems: A comprehensive review.J. Nanomed. Nanotechnol.2013421000164100019910.4172/2157‑7439.100016424163786
    [Google Scholar]
  44. ZhaoM. LeiC. YangY. BuX. MaH. GongH. LiuJ. FangX. HuZ. FangQ. Abraxane, the nanoparticle formulation of paclitaxel can induce drug resistance by up-regulation of P-gp.PLoS One2015107e013142910.1371/journal.pone.013142926182353
    [Google Scholar]
  45. OliveiraR.R. CintraE.R. Sousa-JuniorA.A. MoreiraL.C. da SilvaA.C.G. de SouzaA.L.R. ValadaresM.C. CarriãoM.S. BakuzisA.F. LimaE.M. Paclitaxel-loaded lipid-coated magnetic nanoparticles for dual chemo-magnetic hyperthermia therapy of melanoma.Pharmaceutics202315381883710.3390/pharmaceutics1503081836986678
    [Google Scholar]
  46. Sharifi-RadJ. QuispeC. PatraJ.K. SinghY.D. PandaM.K. DasG. AdetunjiC.O. MichaelO.S. SytarO. PolitoL. ŽivkovićJ. Cruz-MartinsN. Klimek-SzczykutowiczM. EkiertH. ChoudharyM.I. AyatollahiS.A. TynybekovB. KobarfardF. MunteanA.C. GrozeaI. DaştanS.D. ButnariuM. SzopaA. CalinaD. Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy.Oxid. Med. Cell. Longev.2021202112410.1155/2021/368770034707776
    [Google Scholar]
  47. FengX. ChenX. ZhengX. ZhuH. QiQ. LiuS. ZhangH. CheJ. Latest trend of milk derived exosomes: Cargos, functions, and applications.Front. Nutr.2021874729474730610.3389/fnut.2021.74729434778341
    [Google Scholar]
  48. RustandiT. PrihandiwatiE. NugrohoF. HayatiF. AfrianiN. AlfianR. AisyahN. NiahR. RahimA. As-ShiddiqH. Application of artificial intelligence in the development of Jamu traditional Indonesian medicine as a more effective drug.Front. Artif. Intell.20236127497510.3389/frai.2023.127497538028667
    [Google Scholar]
  49. ChenX. LeungY-L.A. ShenJ. Artificial intelligence and its application for cardiovascular diseases in Chinese medicine.Digit. Chin. Med.20225436737610.1016/j.dcmed.2022.12.003
    [Google Scholar]
  50. ErlinaL. ParamitaR.I. KusumaW.A. FadilahF. TedjoA. PratomoI.P. RamadhantiN.S. NasutionA.K. SuradoF.K. FitriawanA. IstiadiK.A. YanuarA. Virtual screening of Indonesian herbal compounds as COVID-19 supportive therapy: Machine learning and pharmacophore modeling approaches.BMC Complement. Altern. Med.202222120722610.1186/s12906‑022‑03686‑y35922786
    [Google Scholar]
  51. ZhuH. Big data and artificial intelligence modelling for drug discovery.Annu. Rev. Pharmacol. Toxicol.202060157358910.1146/annurev‑pharmtox‑010919‑02332431518513
    [Google Scholar]
  52. SalehiM. FarhadiS. MoieniA. SafaieN. AhmadiH. Mathematical modeling of growth and paclitaxel biosynthesis in Corylus avellana cell culture responding to fungal elicitors using multilayer perceptron-genetic algorithm.Front. Plant Sci.202011114810.3389/fpls.2020.0114832849706
    [Google Scholar]
  53. GallegoA. MalikS. YousefzadiM. MakhzoumA. Tremouillaux-GuillerJ. BonfillM. Taxol from Corylus avellana: Paving the way for a new source of this anti-cancer drug.Plant Cell Tissue Organ Cult.2017129111610.1007/s11240‑016‑1164‑5
    [Google Scholar]
  54. SalehiM. MoieniA. SafaieN. A novel medium for enhancing callus growth of hazel (Corylus avellana L.).Sci. Rep.2017711559810.1038/s41598‑017‑15703‑z29142273
    [Google Scholar]
  55. SalehiM. MoieniA. SafaieN. Elicitors derived from hazel (Corylus avellana L.) cell suspension culture enhance growth and paclitaxel production of Epicoccum nigrum.Sci. Rep.2018811205310.1038/s41598‑018‑29762‑330104672
    [Google Scholar]
  56. TorkamaniM. JafariM. AbbaspourN. HeidaryR. SafaieN. Enhanced production of valerenic acid in hairy root culture of Valeriana officinalis by elicitation.Open Life Sci.20149985386310.2478/s11535‑014‑0320‑3
    [Google Scholar]
  57. SalehiM. NaghaviM.R. BahmankarM. A review of Ferula species: Biochemical characteristics, pharmaceutical and industrial applications, and suggestions for biotechnologists.Ind. Crops Prod.201913911151110.1016/j.indcrop.2019.111511
    [Google Scholar]
  58. StruikP.C. YinX. VisserP. Complex quality traits: Now time to model.Trends Plant Sci.2005101151351610.1016/j.tplants.2005.09.00516216542
    [Google Scholar]
  59. GallegoP.P. GagoJ. LandíM. Artificial neural networks technology to model and predict plant biology process.Artificial Neural Networks-Methodological Advances and Biomedical Applications.Rijeka, CroatiaIntech Open Access Publisher2011197217
    [Google Scholar]
  60. QiangweiX.I.N. The research of the relationship between artificial intelligence and human brain.Advances in Artificial IntelligenceBig Data and Algorithm; IOS Press Ebooks2023373119125
    [Google Scholar]
  61. OsamaK. MishraB.N. SomvanshiP. Machine learning techniques in plant biology.PlantOmics: The Omics of Plant Science.New DelhiSpringer2015731754
    [Google Scholar]
  62. JamshidiS. YadollahiA. AhmadiH. ArabM.M. EftekhariM. Predicting in vitro culture medium macro-nutrients composition for pear rootstocks using regression analysis and neural network models.Front. Plant Sci.2016727428610.3389/fpls.2016.0027427066013
    [Google Scholar]
  63. ArabM.M. YadollahiA. EftekhariM. AhmadiH. AkbariM. KhoramiS.S. Modeling and optimizing a new culture medium for in vitro rooting of G× N15 Prunus rootstock using artificial neural network-genetic algorithm.Sci. Rep.201881997710.1038/s41598‑018‑27858‑429311619
    [Google Scholar]
  64. SnyderJ.P. NettlesJ.H. CornettB. DowningK.H. NogalesE. The binding conformation of Taxol in β-tubulin: A model based on electron crystallographic density.Proc. Natl. Acad. Sci. USA20019895312531610.1073/pnas.05130939811309480
    [Google Scholar]
  65. HoY. TzouD.L.M. ChuF.I. Solid‐state NMR studies of the molecular structure of Taxol.Magn. Reson. Chem.200644658158510.1002/mrc.178916508916
    [Google Scholar]
  66. PandyR. KumarS.S. SureshP. AnnarajJ. PandiM. VellasamyS. SagadevanS. Screening and characterization of fungal taxol-producing endophytic fungi for evaluation of antimicrobial and anticancer activities.Open Chem.20232112022034410.1515/chem‑2022‑0344
    [Google Scholar]
  67. McClureT.D. SchramK.H. ReimerM.L.J. The mass spectrometry of taxol.J. Am. Soc. Mass Spectrom.19923667267910.1016/1044‑0305(92)85009‑924234572
    [Google Scholar]
  68. GangadeviV. MuthumaryJ. Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb.World J. Microbiol. Biotechnol.200824571772410.1007/s11274‑007‑9530‑4
    [Google Scholar]
  69. ChmurnyG.N. HiltonB.D. BrobstS. LookS.A. WitherupK.M. BeutlerJ.A. 1H- and 13C-nmr assignments for taxol, 7-epi-taxol, and cephalomannine.J. Nat. Prod.199255441442310.1021/np50082a0021355110
    [Google Scholar]
  70. FalzoneC.J. BenesiA.J. LecomteJ.T.J. Characterization of taxol in methylene chloride by nmr spectroscopy.Tetrahedron Lett.19923391169117210.1016/S0040‑4039(00)91887‑2
    [Google Scholar]
  71. KingstonD.G.I. Taxol, a molecule for all seasons.Chem. Commun.2001101086788010.1039/b100070p
    [Google Scholar]
  72. MaY. YuS. NiS. ZhangB. KungA.C.F. GaoJ. LuA. ZhangG. Targeting strategies for enhancing paclitaxel specificity in chemotherapy.Front. Cell Dev. Biol.2021962691062692710.3389/fcell.2021.62691033855017
    [Google Scholar]
  73. HarrimanG.C.B. JalluriR.K. GranewaldG.L. Vander VeldeD.G. GeorgG.I. HimesR.H. The chemistry of the taxane diterpene: Stereoselective synthesis of 10-deacetoxy-11,12-epoxypaclitaxel.Tetrahedron Lett.199536498909891210.1016/0040‑4039(95)01928‑B
    [Google Scholar]
  74. ZhangD. YangR. WangS. DongZ. Paclitaxel: New uses for an old drug.Drug Des. Devel. Ther.2014827928424591817
    [Google Scholar]
  75. ImamuraY. TakaokaK. KomoriY. NagatomoM. InoueM. Total synthesis of taxol enabled by inter‐ and intramolecular radical coupling reactions.Angew. Chem. Int. Ed.20236210e20221911410.1002/anie.20221911436646637
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575300365240828065816
Loading
/content/journals/mrmc/10.2174/0113895575300365240828065816
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): abraxane; anticancer activity; Diterpenes; nanotechnology; paclitaxel; taxol
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test