Skip to content
2000
Volume 13, Issue 4
  • ISSN: 1876-4029
  • E-ISSN: 1876-4037

Abstract

Background: Energy is a major concern in every aspect of our life. Solar energy is a renewable environmentally friendly source of energy. Therefore, solar cells are vastly studied with different technology and different material. Objective: The main objective here is to analyze InGaN material for solar cell applications with less complicated structures of MQW solar cells on revising solar cell with the recombination structure, I-V characteristics, and its efficiency. Methods: The device is simulated using SILVACO ATLAS, where the well and the barrier layers are inserted in the depletion region employing material combination of InGaN / GaN, which increases the solar cell performance parameter. This work focuses on the photogeneration rate, recombination in the active region as well as its current-voltage relation from the simulation. Results: With the increase in the number of QW periods in the active region of the device, the photovoltaic parameters especially conversion efficiency, increases significantly. Under space AM0 solar illumination, the cell efficiency increases up to 8.2 % for 20 MQWs with 20% Indium content for the InGaN/GaN structure. It enhances the External Quantum Efficiency (EQE) upto 36% at nearly 380nm wavelength range near the UV region. Conclusion: The modelled structure is efficiently simulated using TCAD SILVACO ATLAS, and the material Indium Gallium Nitride semiconductor shows an excellent solar cell performance with high solar radiation. It is also observed that with an increase in the number of well periods the solar cell performance increases, which demonstrates the feasibility of Indium Gallium Nitride solar cell with an additional MQW period as a power source.

Loading

Article metrics loading...

/content/journals/mns/10.2174/1876402912999200821133828
2021-12-01
2025-11-01
Loading full text...

Full text loading...

/content/journals/mns/10.2174/1876402912999200821133828
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test