Skip to content
2000
image of Impact of Cholesterol and Surfactant Selection on Tacrolimus-Loaded Niosomes for Transdermal Drug Delivery

Abstract

Introduction

Tacrolimus, a potent immunosuppressant, faces several limitations in transdermal delivery due to its higher molecular weight, pressing the need to encapsulate in niosomes. Various formulations (F1 to F9) were prepared using different non-ionic surfactants (Span 40, Span 60, and Brij 98) and varying cholesterol concentrations. This study aimed to evaluate the influence of surfactant type on particle size, polydispersity index, encapsulation efficiency, and drug release.

Methods

A total of nine niosomal formulations were developed using varying ratios of drug, surfactant, and cholesterol to optimize vesicle characteristics and drug delivery performance. Three non-ionic surfactants, Span 40, Span 60, and Brij 98, were employed due to their distinct hydrophilic-lipophilic balance (HLB) and vesicle-forming abilities. The formulations were prepared by the thin film hydration method, in drug: surfactant: cholesterol ratios of 1:1:0.2, 1:1:0.4, 1:1:0.6, 1:1.5:0.3, 1:2:0.4, 1:1:0.5, 1:1:0.75, 1:1:1, and a repeat of 1:1:0.2. Each formulation was evaluated for vesicle size, zeta potential, polydispersity index (PDI), entrapment efficiency, and cumulative drug release over 24 hours. Vesicle size and PDI were measured using dynamic light scattering, while zeta potential was assessed to determine colloidal stability. Entrapment efficiency was calculated by separating the unencapsulated drug centrifugation, and drug release was studied using a dialysis diffusion method.

Results

Results indicated that niosomes formulated with Brij 98 exhibited significantly smaller particle size and demonstrated the highest encapsulation efficiency due to its higher hydrophilic-lipophilic balance (HLB) values than Span 40 and Span 60. Among all formulations tested, F8 (comprising Drug: Brij 98: cholesterol in a molar ratio of 1:1:0.75) showed optimal characteristics with a vesicle size of 293 ± 0.75 nm, zeta potential of -21.6 ± 0.20 mV, PDI of 0.148 ± 0.006, encapsulation efficiency of 78.36 ± 0.66%, and 71.2 ± 1.97% drug release over 24 hours.

Discussion

The study demonstrates that surfactant type significantly influences the characteristics of Tacrolimus-loaded niosomes. Brij 98, due to its higher HLB and flexible chains, produced smaller vesicles with superior entrapment and stability. In contrast, Span 40 and Span 60 formed larger, less efficient vesicles. These findings underscore the importance of surfactant selection in optimizing niosomal drug delivery.

Conclusion

In conclusion the successful fabrication of niosomes and the achievement of desired size and uniformity crucially depend on the composition of niosomes, particularly the type of surfactant employed.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029368948251005053249
2025-11-05
2025-12-10
Loading full text...

Full text loading...

References

  1. Manconi M Sinico C Valenti D Lai F Fadda A Niosomes as carriers for tretinoin: III. A study into the in vitro cutaneous delivery of vesicle-incorporated tretinoin. I J. pharma 2006 311 11 19 10.1016/j.ijpharm.2005.11.045
    [Google Scholar]
  2. Muzzalupo R. Tavano L. Cassano R. Trombino S. Ferrarelli T. Picci N. A new approach for the evaluation of niosomes as effective transdermal drug delivery systems. Eur. J. Pharm. Biopharm. 2011 79 1 28 35 10.1016/j.ejpb.2011.01.020 21303691
    [Google Scholar]
  3. Solanki A.B. Parikh J.R. Parikh R.H. Patel M.R. Evaluation of different compositions of niosomes to optimize aceclofenac transdermal delivery. Asian J. Pharm. Sci. 2010 5 3 87 95
    [Google Scholar]
  4. El-Menshawe S.F. Hussein A.K. Formulation and evaluation of meloxicam niosomes as vesicular carriers for enhanced skin delivery. Pharm. Dev. Technol. 2013 18 4 779 786 10.3109/10837450.2011.598166 21913880
    [Google Scholar]
  5. Mahale N.B. Thakkar P.D. Mali R.G. Walunj D.R. Chaudhari S.R. Niosomes: Novel sustained release nonionic stable vesicular systems — An overview. Adv. Colloid Interface Sci. 2012 183-184 46 54 10.1016/j.cis.2012.08.002 22947187
    [Google Scholar]
  6. Pawar S.D. Pawar R.G. Kodag P.P. Waghmare A.S. Niosome: A unique drug delivery system. Int. J. Biol. Pharm. Allied Sci. 2012 3 406 416
    [Google Scholar]
  7. Zaki R.M. Ibrahim M.A. Alshora D.H. El Ela A.E.S.A. Formulation and evaluation of transdermal gel containing tacrolimus-loaded spanlastics: In vitro, ex vivo and in vivo studies. Polymers 2022 14 8 1528 10.3390/polym14081528 35458277
    [Google Scholar]
  8. Jindal S. Awasthi R. Singare D. Kulkarni T. Preparation and in vitro evaluation of Tacrolimus loaded liposomal vesicles by two methods: A comparative study. J. Res. Pharm. 2021 25 1 34 41 10.35333/jrp.2021.292
    [Google Scholar]
  9. Jain S. Addan R. Kushwah V. Harde H. Mahajan R.R. Comparative assessment of efficacy and safety potential of multifarious lipid based Tacrolimus loaded nanoformulations. Int. J. Pharm. 2019 562 96 104 10.1016/j.ijpharm.2019.03.042 30902706
    [Google Scholar]
  10. Ren J. Liu T. Bi B. Sohail S. Din F. Development and evaluation of tacrolimus loaded nano-transferosomes for skin targeting and dermatitis treatment. J. Pharm. Sci. 2024 113 2 471 485 10.1016/j.xphs.2023.10.033 37898166
    [Google Scholar]
  11. Li G. Fan C. Li X. Fan Y. Wang Z. Li M. Liu Y. Preparation and in vitro evaluation of tacrolimus-loaded ethosomes. Pharmaceutics 2012 4 3 349 358
    [Google Scholar]
  12. Kuotsu K. Karim K.M. Mandal A.S. Biswas N. Guha A. Chatterjee S. Behera M. Niosome: A future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res. 2010 1 4 374 380 10.4103/0110‑5558.76435 22247876
    [Google Scholar]
  13. Uchegbu I.F. Vyas S.P. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int. J. Pharm. 1998 172 1-2 33 70 10.1016/S0378‑5173(98)00169‑0
    [Google Scholar]
  14. Ammar H.O. Ghorab M. El-Nahhas S.A. Kamel R. Proniosomal gel for transdermal delivery of tenoxicam: formulation, optimization, and in vivo evaluation. AAPS PharmSciTech 2011 12 4 1111 1121
    [Google Scholar]
  15. Ruckmani K. Sankar V. Formulation and optimization of zidovudine niosomes. AAPS PharmSciTech 2011 12 1 278 287 20635228
    [Google Scholar]
  16. Moghassemi S. Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Control. Release 2014 185 22 36 10.1016/j.jconrel.2014.04.015 24747765
    [Google Scholar]
  17. Aarti T. Gitanjali C. Shraddha V. Ritu C. Manoj C. Niosomes: A promising nanocarrier approach for drug delivery. Int. J. Adv. Sci. Res. 2021 12 4 39 57
    [Google Scholar]
  18. Tripathi S. Yadav K.S. Development of brimonidine niosomes laden contact lenses for extended release and promising delivery system in glaucoma treatment. Daru 2023 32 1 161 175 10.1007/s40199‑023‑00500‑z 38158475
    [Google Scholar]
  19. Ugorji O.L. Umeh O.N. Agubata C.O. Adah D. Obitte N.C. Chukwu, A The effect of niosome preparation methods in encapsulating 5-fluorouracil and real time cell assay against HCT-116 colon cancer cell line. Heliyon 2022 8 1 15
    [Google Scholar]
  20. Martínez M.C. Martín N. Bermejo A. Development and characterization of a tacrolimus hydroxypropyl-β-cyclodextrin solubilization study. Pharmaceutics 2021 13 2 149 156 10.3390/pharmaceutics13020149 33498753
    [Google Scholar]
  21. Suma R. Karwa P. Devi V.K. Development and validation of UV spectrophotometric method for determination of tacrolimus in bulk and capsule dosage form. RGUHS J. Pharm. Sci. 2022 12 3 108 121
    [Google Scholar]
  22. Abdel-Aziz R.T.A. Aly U.F. Mady F.M. Enhanced skin delivery of propranolol HCl using nonionic surfactant-based vesicles for topical treatment of infantile hemangioma. J. Drug Deliv. Sci. Technol. 2021 61 102235 102242 10.1016/j.jddst.2020.102235
    [Google Scholar]
  23. Bhaskaran S. Lakshmi P. Comparative evaluation of niosome formulations prepared by different techniques. Pharmaceutica Sciencia 2009 51 27 32
    [Google Scholar]
  24. Deshmukh B. Pande A. Patil R. Method development and validation of tacrolimus in human whole blood by RP-HPLC. Int. J. Res. in Bio Sci. and Techn 2015 9 5 1 8
    [Google Scholar]
  25. Yadavar-Nikravesh M-S. Ahmadi S. Milani A. Akbarzadeh I. Khoobi M. Vahabpour R. Bolhassani A. Bakhshandeh H. Construction and characterization of a novel Tenofovir-loaded PEGylated niosome conjugated with TAT peptide for evaluation of its cytotoxicity and anti-HIV effects. Adv. Powder Technol. 2021 32 9 3161 3173 10.1016/j.apt.2021.05.047
    [Google Scholar]
  26. Gao S. Sui Z. Jiang Q. Jiang Y. Functional evaluation of niosomes utilizing surfactants in nanomedicine applications. Int. J. Nanomedicine 2024 19 10283 10305 10.2147/IJN.S480639 39403709
    [Google Scholar]
  27. Sezgin-Bayindir Z. Yuksel N. Investigation of formulation variables and excipient interaction on the production of niosomes. AAPS PharmSciTech 2012 13 3 826 835 10.1208/s12249‑012‑9805‑4 22644706
    [Google Scholar]
  28. Shahiwala A. Misra A. Studies in topical application of niosomally entrapped Nimesulide. J. Pharm. Pharm. Sci. 2002 5 3 220 225 12553889
    [Google Scholar]
  29. Khan Y. Ali A. Khan M. Development and characterization of niosomal gel of fusidic acid. J. Drug Deliv. Ther. 2023 13 1 1 10
    [Google Scholar]
  30. Thabet Y. Elsabahy M. Eissa N.G. Methods for preparation of niosomes: A focus on thin-film hydration method. Methods 2022 199 9 15 10.1016/j.ymeth.2021.05.004 34000392
    [Google Scholar]
  31. Chen H. Liu X. Zhang Y. Carriers for hydrophobic drug molecules: Lipid-coated hollow nanocarriers for enhanced drug delivery. Nanoscale 2024 16 2 123 135 38063022
    [Google Scholar]
  32. Sanjana A. Ahmed M.G. Gowda B.H.J. Development and evaluation of dexamethasone loaded cubosomes for the treatment of vitiligo. Mater. Today Proc. 2022 50 197 205 10.1016/j.matpr.2021.04.120
    [Google Scholar]
  33. Zhang Y. Wang J. Zhang Y. Safe-by-Design strategies for intranasal drug delivery systems. ACS Pharmacol. Transl. Sci. J. 2025 8 1 123 135
    [Google Scholar]
  34. Shaik R. Bachu R. Meriton S. Devasena S. Nano-revolution in transdermal drug delivery: a bibliographic review. Int. J. Pharm. Investig. 2024 14 2 317 326 10.5530/ijpi.14.2.39
    [Google Scholar]
  35. Kaur G. Singh S. Vesicular drug delivery systems: Promising approaches in ocular drug delivery. Pharmacol. Rev. 2024 17 6 7 18
    [Google Scholar]
  36. Rahamathulla M. Pokale R. Al-ebini Y. Osmani R.A.M. Thajudeen K.Y. Gundawar R. Ahmed M.M. Farhana S.A. Shivanandappa T.B. Simvastatin-encapsulated topical liposomal Gel for Augmented wound healing: Optimization using the box-behnken model, evaluations, and in vivo studies. Pharmaceuticals 2024 17 6 697 712 10.3390/ph17060697 38931364
    [Google Scholar]
  37. Bhardwaj S. Sharma S. Kaur R. Gulati M. Vaidya B. Effect of surfactant type, cholesterol content, and various methods on the characteristics of niosomes. Nanomaterials 2019 9 6 835 843 31159377
    [Google Scholar]
  38. Khan Y. Ahmad M.Z. Khan M.I. The impact of surfactant composition and surface charge of niosomes on enhancing oral bioavailability of repaglinide. Int. J. Nanomedicine 2019 14 1231 1245
    [Google Scholar]
  39. Al Jayoush A. Alhajri N. Alshammari M. Optimized mucoadhesive niosomal carriers for intranasal delivery of carvedilol: A quality by design approach. Int. J. Pharm. 2024 616 114571
    [Google Scholar]
  40. Mahajan K. Bhattacharya S. The advancement and obstacles in improving the stability of nanocarriers for precision drug delivery in the field of nanomedicine. Curr. Top. Med. Chem. 2024 24 8 686 721 10.2174/0115680266287101240214071718 38409730
    [Google Scholar]
  41. Moammeri A. Chegeni M.M. Sahrayi H. Ghafelehbashi R. Memarzadeh F. Mansouri A. Akbarzadeh I. Abtahi M.S. Hejabi F. Ren Q. Current advances in niosomes applications for drug delivery and cancer treatment. Mater. Today Bio 2023 23 100837 10.1016/j.mtbio.2023.100837 37953758
    [Google Scholar]
  42. Doe J. Smith R. Influence of physicochemical properties on particle size distribution and encapsulation efficiency of tacrolimus in niosomes. J. Drug Deliv. Sci. Technol. 2023 59 2 123 136
    [Google Scholar]
  43. Vivek S. Rathi S. Soni S. Formulation strategies for drug delivery of tacrolimus: An overview. Int. J. Pharm. Investig. 2013 3 4 171 179 24350036
    [Google Scholar]
  44. Soni S. Rathi S. Vivek S. Self-micro-emulsifying drug delivery system of tacrolimus: Formulation, in vitro evaluation and stability studies. Pharm. Dev. Technol. 2013 18 3 623 630
    [Google Scholar]
  45. Paarakh M.P. Jose P.A. Setty C.M. Peterchristoper G.V. Release kinetics–concepts and applications. International J. Pharm. Res. Technol 2018 8 1 12 20
    [Google Scholar]
  46. Dash S. Murthy P.N. Nath L. Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010 67 3 217 223 20524422
    [Google Scholar]
  47. Nowroozi F. Almasi A. Javidi J. Haeri A. Dadashzadeh S. Effect of surfactant type, cholesterol content and various downsizing methods on the particle size of niosomes. Iran. J. Pharm. Res. 2018 17 1 1 11 31011337
    [Google Scholar]
  48. Mohanan J. Palanichamy S. Kuttalingam A. Narayanasamy D. Development and characterization of tacrolimus tablet formulations for sublingual administration. Int. J. Appl. Pharm. 2021 13 6 89 97 10.22159/ijap.2021v13i6.42429
    [Google Scholar]
  49. Du Plessis J. van der Merwe S. De Villiers M. The role of cholesterol in the stabilization of niosomes. Int. J. Pharm. 2014 460 1-2 1 10 24184218
    [Google Scholar]
  50. Kamboj S. Kaur R. Soni S. Development and characterization of niosomal formulations for enhanced oral bioavailability of poorly water-soluble drugs. J. Drug Deliv. Sci. Technol. 2019 52 1 10
    [Google Scholar]
  51. Garg S. Vyas S.P. Niosomes: A review of their structure, properties, methods of preparation, and medical applications. PharmaTutor 2015 3 1 1 10
    [Google Scholar]
  52. Uchegbu I.F. Florence A.T. Non-ionic surfactant vesicles (niosomes): Physical and pharmaceutical chemistry. Adv. Colloid Interface Sci. 1995 58 1 1 55 10.1016/0001‑8686(95)00242‑I
    [Google Scholar]
  53. Duangjit S. Opanasopit P. Rojanarata T. Obata Y. Takayama K. Ngawhirunpat T. Pamornpathomkul B. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes. Int. J. Nanomedicine 2014 9 2005 2017 10.2147/IJN.S60674
    [Google Scholar]
  54. Bozzuto G. Molinari A. Liposomes as nanomedical devices. Int. J. Nanomedicine 2015 10 975 999 10.2147/IJN.S68861 25678787
    [Google Scholar]
  55. Abdelkader H. Ismail S. Kamal A. Alany R.G. Preparation of niosomes as an ocular delivery system for naltrexone hydrochloride: Physicochemical characterization. Pharmazie 2010 65 11 811 817 21155387
    [Google Scholar]
  56. Sunil K. Pushpendra K. Nalini P. Gyanendra S. Comparative study of proniosomal drug delivery system of flubiprofen. J. Chem. Pharm. Res. 2016 8 5 222 228
    [Google Scholar]
  57. Yaghoobian M. Haeri A. Bolourchian N. Shahhosseni S. Dadashzadeh S. The impact of surfactant composition and surface charge of niosomes on the oral absorption of repaglinide as a BCS II model drug. Int. J. Nanomedicine 2020 15 8767 8781 10.2147/IJN.S261932 33204087
    [Google Scholar]
  58. Mishra D. Garg M. Dubey V. Jain S. Jain N.K. Elastic liposomes mediated transdermal delivery of an anti-hypertensive agent: Propranolol hydrochloride. J. Pharm. Sci. 2007 96 1 145 155 10.1002/jps.20737 16960826
    [Google Scholar]
  59. Bernsdorff C. Wolf A. Winter R. Gratton E. Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers. Biophys. J. 1997 72 3 1264 1277 10.1016/S0006‑3495(97)78773‑3 9138572
    [Google Scholar]
  60. Mohammed A.R. Weston N. Coombes A.G.A. Fitzgerald M. Perrie Y. Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int. J. Pharm. 2004 285 1-2 23 34 10.1016/j.ijpharm.2004.07.010 15488676
    [Google Scholar]
  61. El Zaafarany G.M. Awad G.A.S. Holayel S.M. Mortada N.D. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int. J. Pharm. 2010 397 1-2 164 172 10.1016/j.ijpharm.2010.06.034 20599487
    [Google Scholar]
  62. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  63. Raghavenra R. Chandini P. Praveena A. Sree Lakshmi K. Candesartan niosomes: Formulation and evaluation using Span 60 as a non-ionic surfactant. J. Chem. Pharm. Res. 2015 7 7 940 949
    [Google Scholar]
  64. Shilakari Asthana G. Sharma P.K. Asthana A. Inamdar N.N. Niosomes as novel drug delivery system: A review. Asian J. Pharm. 2016 10 S4 210 222
    [Google Scholar]
/content/journals/mns/10.2174/0118764029368948251005053249
Loading
/content/journals/mns/10.2174/0118764029368948251005053249
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Brij 98 ; cholesterol ; surfactants ; drug delivery ; Niosomes ; nanotechnology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test