Skip to content
2000
Volume 17, Issue 4
  • ISSN: 1876-4029
  • E-ISSN: 1876-4037

Abstract

Background

Uric acid is a key biomarker for diagnosing conditions, such as gout and kidney disorders, highlighting the need for precise and efficient detection methods. Nanomaterial-based biosensors, particularly those utilizing multi-walled carbon nanotubes (MWCNTs), copper oxide (CuO), and direct blue 71 (DB), offer notable advantages due to their exceptional sensitivity and selectivity.

Objective

This study aims to design and evaluate an advanced electrochemical sensor for uric acid detection, employing an MWCNTs/CuO/DB nanocomposite. By optimizing the component ratios, the nanocomposite leverages synergistic interactions to achieve a superior performance.

Methods

The MWCNTs/CuO/DB nanocomposite was synthesized and characterized using Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray Spectroscopy (EDX), and elemental mapping to confirm its structural integrity and composition. Cyclic Voltammetry was employed to assess the electrocatalytic behavior of the nanocomposite-modified glassy carbon electrode (GCE). The sensor demonstrated a linear response to uric acid concentrations ranging from 100 to 1000 μM, with excellent electrocatalytic activity.

Results

Material characterization revealed a uniform and well-dispersed structure of the MWCNTs, CuO nanoparticles, and DB within the nanocomposite. Electrochemical analyses showed a concentration-dependent response to uric acid, underscoring the sensitivity and reliability of the sensor for biosensing applications.

Conclusion

The MWCNTs/CuO/DB nanocomposite represents a highly promising electrochemical platform for uric acid detection, combining an intricate structure, precise elemental composition, and remarkable electrochemical performance. These findings highlight the potential of integrating advanced nanomaterials into biosensing systems for clinical diagnostics and broader applications in nanotechnology.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029359724250124065516
2025-02-11
2025-10-28
Loading full text...

Full text loading...

References

  1. ChittoorG. VorugantiV.S. Hyperuricemia and Gout. Principles of Nutrigenetics and Nutrigenomics.Elsevier202038939410.1016/B978‑0‑12‑804572‑5.00053‑7
    [Google Scholar]
  2. PalatiniP. VirdisA. BorghiC. Risk of cardiovascular mortality associated with very high HDL-cholesterol level and hyperuricemia in chronic kidney disease.Nutr. Metab. Cardiovasc. Dis.202333491591610.1016/j.numecd.2023.02.017 36948940
    [Google Scholar]
  3. SoniP. GoyalV. KoppV. Hyperuricemia unravelled: Elevated uric acid levels and its implications on health.Hyperuricemia Unravelled: Elevated Uric Acid Levels and Its Implications on Health2024I1748310.62830/MMJ1‑4‑12B
    [Google Scholar]
  4. RomanY.M. The role of uric acid in human health: Insights from the Uricase gene.J. Pers. Med.2023139140910.3390/jpm13091409 37763176
    [Google Scholar]
  5. SongY. TangL. HanJ. GaoY. TangB. ShaoM. YuanW. GeW. HuangX. YaoT. BianX. LiS. CaoW. ZhangH. Uric acid provides protective role in red blood cells by antioxidant defense: A hypothetical analysis.Oxid. Med. Cell. Longev.2019201911210.1155/2019/3435174 31049132
    [Google Scholar]
  6. SyamA. JafarN. PalutturiS. MariaI.L. MumangA.A. The effect of pumpkin seeds (Cucurbita Moschata) on uric acid level in hyperuricemia patients. J. Nutr. Food Secur.,202410.18502/jnfs.v9i3.16149
    [Google Scholar]
  7. VinothV. WuJ.J. AnandanS. Sensitive electrochemical determination of dopamine and uric acid using AuNPs (EDAS) –rGO nanocomposites.Anal. Methods20168224379439010.1039/C6AY00335D
    [Google Scholar]
  8. HanB. PanM. LiuX. LiuJ. CuiT. ChenQ. Electrochemical detection for uric acid based on β-lactoglobulin-functionalized multiwall carbon nanotubes synthesis with PtNPs nanocomposite.Materials (Basel)201912221410.3390/ma12020214 30634585
    [Google Scholar]
  9. RamanathanS. LauW.J. GohP.S. GopinathS.C.B. RawindranH. OmarM.F. IsmailA.F. BreadmoreM.C. SeeH.H. Tailoring molecularly imprinted polymer on titanium-multiwalled carbon nanotube functionalized gold electrode for enhanced chlorophyll determination in microalgae health assessment.Mikrochim. Acta20241911058610.1007/s00604‑024‑06662‑0 39251454
    [Google Scholar]
  10. VigneshK. KumarS.A. NapoleonA.A. KuoC.Y. YusufK. GovindasamyM. Ultrasensitive detection of ornidazole–antibiotic drug residues in water using NiMOFs functionalized MWCNT modified electrode.Microchem. J.202419710990810990810.1016/j.microc.2024.109908
    [Google Scholar]
  11. PeterX.T. KuoC.Y. MalarP. GovindasamyM. RajajiU. YusufK. Electrochemical detection of antimalarial drug (Amodiaquine) using Dy-MOF@MWCNTs composites to prevent erythrocytic stages of plasmodium species in human bodies.Microchem. J.202420211079011079010.1016/j.microc.2024.110790
    [Google Scholar]
  12. KumarS.A. WangS.F. ChangY.T. LuH.C. YehC.T. Electrochemical properties of myoglobin deposited on multi-walled carbon nanotube/ciprofloxacin film.Colloids Surf. B Biointerfaces201182252653110.1016/j.colsurfb.2010.10.011 21115278
    [Google Scholar]
  13. KumarS. SidhuH.K. PaulA.K. BhardwajN. ThakurN.S. DeepA. Bioengineered multi-walled carbon nanotube (MWCNT) based biosensors and applications thereof.Sensors & Diagnostics2023261390141310.1039/D3SD00176H
    [Google Scholar]
  14. MwaurahM.M. MathiyarasuJ. Vinu MohanA.M. MWCNTs-Beta-Cyclodextrin-reduced graphene oxide gel based electrochemical sensor for simultaneous detection of dopamine and uric acid in human sweat samples.Carbohydr. Polym.202535012306012306010.1016/j.carbpol.2024.123060 39647960
    [Google Scholar]
  15. IsmailS. KhalidM. UllahW. TahirS. BoukhrisI. El-RayysA. AhmedI. YounasM. Al-BuriahiM.S. AshiqM.G.B. Physical properties of ultrasonic assisted MWCNT/Ni0.5Co0.5Pr0.2Fe1.8O4 nanocomposites for future energy storage applications.Inorg. Chem. Commun.202517211365111365110.1016/j.inoche.2024.113651
    [Google Scholar]
  16. ParamasivamG. PalemV.V. MeenakshyS. SureshL.K. GangopadhyayM. AntherjanamS. SundramoorthyA.K. Advances on carbon nanomaterials and their applications in medical diagnosis and drug delivery.Colloids Surf. B Biointerfaces202424111403211403210.1016/j.colsurfb.2024.114032 38905812
    [Google Scholar]
  17. BarraA. FerreiraN.M. PoçasF. Ruiz-HitzkyE. NunesC. FerreiraP. Boosting through-plane electrical conductivity: Chitosan composite films with carbon-sepiolite and multiwalled carbon nanotubes.Carbon202523111969111969110.1016/j.carbon.2024.119691
    [Google Scholar]
  18. ThakurC.K. KarthikeyanC. AshbyC.R.Jr NeupaneR. SinghV. BabuR.J. Narayana MoorthyN.S.H. TiwariA.K. Ligand-conjugated multiwalled carbon nanotubes for cancer targeted drug delivery.Front. Pharmacol.202415141739910.3389/fphar.2024.1417399 39119607
    [Google Scholar]
  19. KimY.J. ChoiS.H. ChoiS.J. Enhanced electrochemical detection of heavy metal ions via post-synthetic schiff base modification of MWCNT-MOF composites.J. Sensor Sci. Technol.202433536637210.46670/JSST.2024.33.5.366
    [Google Scholar]
  20. ZhangH. YanZ. ZhangT. WangJ. WangX. ChenY. ZhuS. LiZ. ChenY. HongW. ZhaoY. ChenS. HongQ. XuY. GuoX. Bioinspired high-linearity, wide-sensing-range flexible stretchable bioelectronics based on MWCNTs/GR/Nd2Fe14 B/PDMS nanocomposites for human-computer interaction and biomechanics detection.ACS Sens.2024983947395710.1021/acssensors.4c00664 39046188
    [Google Scholar]
  21. Sheikh-MohseniM.A. PirsaS. Nanostructured conducting polymer/copper oxide as a modifier for fabrication of L‐DOPA and uric acid electrochemical sensor.Electroanalysis20162892075208010.1002/elan.201600089
    [Google Scholar]
  22. ÖzcanÖ. İnciİ. AşçiY.S. Multiwall carbon nanotube for adsorption of acetic acid.J. Chem. Eng. Data201358358358710.1021/je301064t
    [Google Scholar]
  23. KimJ. YooH. Pham BaV.A. ShinN. HongS. Dye-functionalized sol-gel matrix on carbon nanotubes for refreshable and flexible gas sensors.Sci. Rep.2018811195810.1038/s41598‑018‑30481‑y 30097627
    [Google Scholar]
  24. LiuC. XuZ. LiuL. Covalent bonded graphene/neutral red nanocomposite prepared by one‐step electrochemical method and its electrocatalytic properties toward uric acid.Electroanalysis20183061017102110.1002/elan.201700817
    [Google Scholar]
  25. FarooqM. ShujahS. TahirK. HussainS.T. KhanA.U. AlmarhoonZ.M. AlabboshK.F. AlanaziA.A. AlthagafiT.M. ZakiM.E.A. Phytoassisted synthesis of CuO and Ag–CuO nanocomposite, characterization, chemical sensing of ammonia, degradation of methylene blue.Sci. Rep.2024141161810.1038/s41598‑024‑51391‑2 38238395
    [Google Scholar]
  26. MuruganR.V. SridharanG. AtchudanR. AryaS. NallaswamyD. SundramoorthyA.K. A facile synthesis of bimetallic copper-silver nanocomposite and their application in ascorbic acid detection.Curr. Nanosci.202421230931810.2174/0115734137281377240103062220
    [Google Scholar]
  27. de SousaD.V.M. OrlandoR.M. PereiraF.V. Layer-by-layer assembly of PDDA/MWCNTs thin films as an efficient strategy for extraction of organic compounds from complex samples.J. Chromatogr. A2024171746470510.1016/j.chroma.2024.464705 38310702
    [Google Scholar]
  28. ArvinteA. LungociA.L. CoroabaA. PintealaM. Electrochemical sensor for tryptophan determination based on trimetallic-CuZnCo-nanoparticle-modified electrodes.Molecules20232912810.3390/molecules29010028 38202611
    [Google Scholar]
  29. SridharanG. MuruganR.V. AtchudanR. AryaS. SundramoorthyA.K. Electrochemical detection of dopamine using green synthesized gold nanoparticles from Strobilanthes kunthiana’s leaf extract.Nano Life2025152245001510.1142/S1793984424500156
    [Google Scholar]
  30. KelleyW.N. WeinerI.M. Uric Acid.Springer2012
    [Google Scholar]
  31. Mohd SaidiN. NorizanM.N. AbdullahN. JanudinN. KasimN.A.M. OsmanM.J. MohamadI.S. Characterizations of MWCNTs nanofluids on the effect of surface oxidative treatments.Nanomaterials (Basel)2022127107110.3390/nano12071071 35407189
    [Google Scholar]
  32. AmbedkarA.K. GautamD. VikalS. SinghM. KumarA. SangerA. SharmaK. SinghB.P. GautamY.K. Ocimum sanctum leaf extract-assisted green synthesis of Pd-Doped CuO nanoparticles for highly sensitive and selective NO2 gas sensors.ACS Omega2023832296632967310.1021/acsomega.3c03765 37599967
    [Google Scholar]
  33. PandithA. JayaprakashG.K. ALOthmanZ.A. Surface-modified CuO nanoparticles for photocatalysis and highly efficient energy storage devices.Environ. Sci. Pollut. Res. Int.20233015433204333010.1007/s11356‑023‑25131‑4 36656476
    [Google Scholar]
  34. KumarS.A. LoP.H. ChenS.M. Electrochemical selective determination of ascorbic acid at redox active polymer modified electrode derived from direct blue 71.Biosens. Bioelectron.200824451852310.1016/j.bios.2008.05.007 18586483
    [Google Scholar]
  35. ChikaraE. YoshikiS. OkihiroS. HisashiF. NaomichiO. Wide Range PH fiber sensor with congo-Red- and methyl-Red-doped poly (Methyl Methacrylate) cladding.Jpn. J. Appl. Phys.199736
    [Google Scholar]
  36. XavierM.P. VallejoB. MarazuelaM.D. Moreno-BondiM.C. BaldiniF. FalaiA. Fiber optic monitoring of carbamate pesticides using porous glass with covalently bound chlorophenol red.Biosens. Bioelectron.2000141289590510.1016/S0956‑5663(99)00066‑4 10722147
    [Google Scholar]
  37. SunC.L. ChangC.T. LeeH.H. ZhouJ. WangJ. ShamT.K. PongW.F. Microwave-assisted synthesis of a core-shell MWCNT/GONR heterostructure for the electrochemical detection of ascorbic acid, dopamine, and uric acid.ACS Nano20115107788779510.1021/nn2015908 21910421
    [Google Scholar]
  38. MullaniS.B. TawadeA.K. TayadeS.N. SharmaK.K.K. DeshmukhS.P. MullaniN.B. MaliS.S. HongC.K. SwamyB.E.K. DelekarS.D. Synthesis of Ni2+ ion doped ZnO–MWCNTs nanocomposites using an in situ sol–gel method: An ultra sensitive non-enzymatic uric acid sensing electrode material.RSC Advances20201061369493696110.1039/D0RA06290A 35521260
    [Google Scholar]
  39. MuruganN. JeromeR. PreethikaM. SundaramurthyA. SundramoorthyA.K. 2D-titanium carbide (MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid.J. Mater. Sci. Technol.20217212213110.1016/j.jmst.2020.07.037
    [Google Scholar]
  40. NasirizadehN. ShekariZ. ZareH.R. MakaremS. Electrocatalytic determination of dopamine in the presence of uric acid using an indenedione derivative and multiwall carbon nanotubes spiked in carbon paste electrode.Mater. Sci. Eng. C20133331491149710.1016/j.msec.2012.12.051 23827600
    [Google Scholar]
  41. MuruganN. Chan-ParkM.B. SundramoorthyA.K. Electrochemical detection of uric acid on exfoliated nanosheets of graphitic-like carbon nitride (g-C3N4) based sensor.J. Electrochem. Soc.20191669B3163B317010.1149/2.0261909jes
    [Google Scholar]
  42. SridharanG. GodwinC.J.T. AtchudanR. AryaS. GovindasamyM. OsmanS.M. SundramoorthyA.K. Iron oxide decorated hexagonal boron nitride modified electrochemical sensor for the detection of nitrofurantoin in human urine samples.J. Taiwan Inst. Chem. Eng.202416310532010.1016/j.jtice.2023.105320
    [Google Scholar]
  43. PonnaiahS.K. PeriakaruppanP. VellaichamyB. New electrochemical sensor based on a silver-doped iron oxide nanocomposite coupled with polyaniline and its sensing application for picomolar-level detection of uric acid in human blood and urine samples.J. Phys. Chem. B2018122123037304610.1021/acs.jpcb.7b11504 29498856
    [Google Scholar]
  44. GhanbariK. MoloudiM. Flower-like ZnO decorated polyaniline/reduced graphene oxide nanocomposites for simultaneous determination of dopamine and uric acid.Anal. Biochem.20165129110210.1016/j.ab.2016.08.014 27555438
    [Google Scholar]
  45. Veera Manohara ReddyY. SravaniB. AgarwalS. GuptaV.K. MadhaviG. Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO2 @Fe3O4 modified carbon paste electrode.J. Electroanal. Chem. (Lausanne)201882016817510.1016/j.jelechem.2018.04.059
    [Google Scholar]
  46. GhanbariK. HajianA. Electrochemical characterization of Au/ZnO/PPy/RGO nanocomposite and its application for simultaneous determination of ascorbic acid, epinephrine, and uric acid.J. Electroanal. Chem. (Lausanne)201780146647910.1016/j.jelechem.2017.07.024
    [Google Scholar]
  47. LiuY. ZhangY. WangC. ZengX. LeiJ. HouJ. HuoD. HouC. Co single-atom nanozymes for the simultaneous electrochemical detection of uric acid and dopamine in biofluids.ACS Appl. Nano Mater.2024766273628310.1021/acsanm.3c06213
    [Google Scholar]
  48. HuangL. RenY. YangZ. ZengR. TangD. Ultrasensitive electrochemical detection of uric acid based on cobalt-embedded nitrogen-doped carbon.New J. Chem.20234731147261473210.1039/D3NJ02805D
    [Google Scholar]
/content/journals/mns/10.2174/0118764029359724250124065516
Loading
/content/journals/mns/10.2174/0118764029359724250124065516
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test