Skip to content
2000
Volume 4, Issue 4
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

An in silico model for predicting human cytochrome P450 2B6-substrate interactions was generated based on a novel scheme, which was initially devised to predict the hERG liability (reported in Leong, M. K., Chem. Res. Toxicol., 2007, 20, 217.) using pharmacophore ensemble/support vector machine to take into account the protein conformational flexibility while interacting with structurally diverse substrates. This is of critical importance yet never being addressed by any analogue-based molecular modeling studies before. Thirty-seven molecules were chosen from the literature and scrutinized for structural integrity and data consistency, of which 26 were treated as the training set to generate models, which were subject to validation by the other 11 molecules as the test set. The predicted pKm values by the final PhE/SVM model were in good agreement with observed values. In addition, this in silico model produced an r2 of 0.84 and a 10-fold cross-validation q2 of 0.66 for the training set and an r2 of 0.87 for the test set, asserting the fact that this PhE/SVM model is an accurate model to predict the human P450 2B6-substrates interactions and can be used as a robust prediction tool to facilitate drug discovery.

Loading

Article metrics loading...

/content/journals/mc/10.2174/157340608784872226
2008-07-01
2025-09-01
Loading full text...

Full text loading...

/content/journals/mc/10.2174/157340608784872226
Loading

  • Article Type:
    Research Article
Keyword(s): cytochrome 2B6; in silico; Pharmacophore ensemble; plasticity; support vector machine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test