Skip to content
2000
Volume 1, Issue 3
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Over the past 10 years, classical computer-aided molecular design methods have not been frequently applied for the discovery of novel HIV-1 integrase (IN) inhibitors, due to the intrinsic challenges that this enzyme presents. Therefore, a novel approach that combines the chemical information of known integrase inhibitors with the enzyme's detailed 3D structure in a stepwise fashion is proposed: (I) use of a pharmacophore model (PM), which takes into account in a weighted fashion the chemical features of known ligands, in analogous manner to the to search the Maybridge and the NCI 3D databases; (II) drug-likeness optimization; (III) virtual high-throughput screening of the hits matching the PM query against 1QS4 wild-type IN structure using different Docking/Scoring combinations; (IV) visual inspection and selection of the hits in function of: binding free energies; binding mode type within the active site; retrieval among the best 20% hits in more than 6 Docking/Scoring protocols at the same time. This approach aims at a rational selection of new potential HIV-1 integrase inhibitors.

Loading

Article metrics loading...

/content/journals/mc/10.2174/1573406053765440
2005-05-01
2025-09-13
Loading full text...

Full text loading...

/content/journals/mc/10.2174/1573406053765440
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test