Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Introduction

A series of novel 2-((3,5-diphenylpyrazin-2-yl)amino)-1-(piperidin-1-yl/pyrrolidin-1-yl)ethanone derivatives () were synthesized and evaluated for their tuberculosis activity using the standard strain H37Rv and two other clinically isolated multidrug-resistant strains with different resistances.

Methods

All compounds showed promising results in tuberculosis activity. Among them, and demonstrated remarkable activity at 5 μg/mL against H37Rv and three other MDR strains. The compounds , , and were sensitive, showing inhibition between 15-25 μg/mL against . growth. docking studies were conducted for using the 2FUM protein of .

Results

These studies revealed that compounds and exhibited strong interactions with the MTB protein, with binding energies of -9.85 kcal/mol and -10.74 kcal/mol, respectively, and inhibitory concentrations of 0.38 µM and 0.77 µM.

Conclusion

Moreover, these motifs also displayed good binding energy coupled with favorable minimum inhibitory concentrations (MIC).

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064337815241115050020
2024-11-22
2025-12-01
Loading full text...

Full text loading...

References

  1. Tuberculosis.Available from: https://www.who.int//news-room/fact-sheets/detail/tuberculosis/?gad_source=1&gclid=CjwKCAjw68K4BhAuEiwAylp3kol2OvLo35t8EbOvXrX5jgJoJAcw8dBkBY6ve5q7XP3ikZKwTPeV4BoCzHsQAvD_BwE(accessed on 8-10-2024)2016
  2. BiavaM. PorrettaG.C. PoceG. De LoguA. SaddiM. MeledduR. ManettiF. De RossiE. BottaM. 1,5-Diphenylpyrrole derivatives as antimycobacterial agents. Probing the influence on antimycobacterial activity of lipophilic substituents at the phenyl rings.J. Med. Chem.200851123644364810.1021/jm701560p 18494459
    [Google Scholar]
  3. BahugunaA. RawatD.S. An overview of new antitubercular drugs, drug candidates, and their targets.Med. Res. Rev.202040126329210.1002/med.21602
    [Google Scholar]
  4. (a KoulA. ArnoultE. LounisN. GuillemontJ. AndriesK. The challenge of new drug discovery for tuberculosis.Nature2011469733148349010.1038/nature0965721270886
    [Google Scholar]
  5. (b6. Singh V, Mizrahi V.Drug Discov. Today201622503
    [Google Scholar]
  6. PowlesM.A. AlloccoJ. YeungL. NareB. LiberatorP. SchmatzD. MK-4815, a potential new oral agent for treatment of malaria.Antimicrob. Agents Chemother.20125652414241910.1128/AAC.05326‑11 22314528
    [Google Scholar]
  7. WhiteN.J. PukrittayakameeS. PhyoA.P. RueangweerayutR. NostenF. JittamalaP. JeeyapantA. JainJ.P. LefèvreG. LiR. MagnussonB. DiaganaT.T. LeongF.J. Spiroindolone KAE609 for falciparum and vivax malaria.N. Engl. J. Med.2014371540341010.1056/NEJMoa1315860 25075833
    [Google Scholar]
  8. (a MitalA. NegiS.V. RamachandranU. Synthesis and biological evaluation of naphthalene-1,4-dione derivatives as potent antimycobacterial agents.Med. Chem.200845024310.2174/157340608785700243
    [Google Scholar]
  9. (b MileyG.P. PouS. WinterR. NilsenA. LiY. KellyJ.X. SticklesA.M. MatherM.W. ForquerI.P. PershingA.M. WhiteK. ShacklefordD. SaundersJ. ChenG. TingL.M. KimK. ZakharovL.N. DoniniC. BurrowsJ.N. VaidyaA.B. CharmanS.A. RiscoeM.K. ELQ-300 prodrugs for enhanced delivery and single-dose cure of malaria.Antimicrob. Agents Chemother.20155995555556010.1128/AAC.01183‑1526124159
    [Google Scholar]
  10. BélardS. RamharterM. DSM265: A novel drug for single-dose cure of Plasmodium falciparum malaria.Lancet Infect. Dis.201818881982010.1016/S1473‑3099(18)30374‑8 29909070
    [Google Scholar]
  11. PhyoA.P. JittamalaP. NostenF.H. PukrittayakameeS. ImwongM. WhiteN.J. DuparcS. MacintyreF. BakerM. MöhrleJ.J. Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: An open-label phase 2 trial.Lancet Infect. Dis.2016161616910.1016/S1473‑3099(15)00320‑5 26448141
    [Google Scholar]
  12. (a D’AmbrosioL. CentisR. TiberiS. TadoliniM. DalcolmoM. RendonA. EspositoS. MiglioriG.B. Delamanid and bedaquiline to treat multidrug-resistant and extensively drug-resistant tuberculosis in children: A systematic review.J. Thorac. Dis.2017972093210110.21037/jtd.2017.06.1628840010
    [Google Scholar]
  13. (b EspositoS. BianchiniS. BlasiF. Bedaquiline and delamanid in tuberculosis.Expert Opin. Pharmacother.201516152319233010.1517/14656566.2015.1080240 26293803
    [Google Scholar]
  14. (a ConradieF. BagdasaryanT.R. BorisovS. HowellP. MikiashviliL. NgubaneN. SamoilovaA. SkornykovaS. TudorE. VariavaE. YablonskiyP. EverittD. WillsG.H. SunE. OlugbosiM. EgiziE. LiM. HolstaA. TimmJ. BatesonA. CrookA.M. FabianeS.M. HuntR. McHughT.D. TweedC.D. ForaidaS. MendelC.M. SpigelmanM. Bedaquiline–pretomanid-linezolid regimens for drug-resistant tuberculosis.N. Engl. J. Med.2022387981082310.1056/NEJMoa211943036053506
    [Google Scholar]
  15. (b ConradieF. DiaconA.H. NgubaneN. HowellP. EverittD. CrookA.M. MendelC.M. EgiziE. MoreiraJ. TimmJ. McHughT.D. WillsG.H. BatesonA. HuntR. Van NiekerkC. LiM. OlugbosiM. SpigelmanM. Treatment of highly drug-resistant pulmonary tuberculosis.N. Engl. J. Med.20203821089390210.1056/NEJMoa1901814 32130813
    [Google Scholar]
  16. ColeS.T. AlzariP.M. Microbiology. TB--a new target, a new drug.Science2005307570721421510.1126/science.1108379 15653490
    [Google Scholar]
  17. ZhangY. WadeM.M. ScorpioA. ZhangH. SunZ. Mode of action of pyrazinamide: Disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid.J. Antimicrob. Chemother.200352579079510.1093/jac/dkg446 14563891
    [Google Scholar]
  18. (a MartinD. Antimycobacterial evaluation of pyrazinoic acid reversible derivatives.Curr. Pharmaceut. Design.2011173235063514
    [Google Scholar]
  19. (b CynamonM.H. KlemensS.P. ChouT.S. GimiR.H. WelchJ.T. Antimycobacterial activity of a series of pyrazinoic acid esters.J. Med. Chem.19923571212121510.1021/jm00085a007 1560435
    [Google Scholar]
  20. MitchisonD.A. The action of antituberculosis drugs in short-course chemotherapy.Tubercle198566321922510.1016/0041‑3879(85)90040‑6 3931319
    [Google Scholar]
  21. ShiW. ChenJ. FengJ. CuiP. ZhangS. WengX. ZhangW. ZhangY. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis.Emerg. Microbes Infect.2014311810.1038/emi.2014.61 26038753
    [Google Scholar]
  22. NjireM. WangN. WangB. TanY. CaiX. LiuY. MugweruJ. GuoJ. HameedH.M.A. TanS. LiuJ. YewW.W. NuermbergerE. LamichhaneG. LiuJ. ZhangT. Pyrazinoic acid inhibits a bifunctional enzyme in Mycobacterium tuberculosis.Antimicrob. Agents Chemother.2017617e00070e1710.1128/AAC.00070‑17 28438933
    [Google Scholar]
  23. (a DeK. Novel pyrazino[2,3-b] pyrazines as mTOR kinase inhibitors fortreating cancer and other diseases.Curr. Med. Chem.20243134e260723219093
    [Google Scholar]
  24. (b VergaraF.M.F. LimaC.H.S. HenriquesM.G.M.O. CandéaA.L.P. LourençoM.C.S. FerreiraM.L. KaiserC.R. de SouzaM.V.N. Synthesis and antimycobacterial activity of N′-[(E)-(monosubstituted-benzylidene)]-2-pyrazinecarbohydrazide derivatives.Eur. J. Med. Chem.200944124954495910.1016/j.ejmech.2009.08.009 19765866
    [Google Scholar]
  25. GezginciM.H. MartinA.R. FranzblauS.G. Antimycobacterial activity of substituted isosteres of pyridine- and pyrazinecarboxylic acids. 2.J. Med. Chem.200144101560156310.1021/jm000350w 11334565
    [Google Scholar]
  26. (a Kucerova-ChlupacovaM. KunesJ. BuchtaV. VejsovaM. OpletalovaV. Novel pyrazine analogs of chalcones: Synthesis and evaluation of their antifungal and antimycobacterial activity.Molecules20152011104111710.3390/molecules2001110425587786
    [Google Scholar]
  27. (b MiniyarB. Unequivocal role of pyrazine ring in medicinally important compounds: A review.Mini Rev. Med. Chem.201313111607162510.2174/1389557511313110007
    [Google Scholar]
  28. (a TrumpD.L. PayneH. MillerK. de BonoJ.S. StephensonJ.III BurrisH.A.III NathanF. TaboadaM. MorrisT. HubnerA. Preliminary study of the specific endothelin a receptor antagonist zibotentan in combination with docetaxel in patients with metastatic castration‐resistant prostate cancer.Prostate201171121264127510.1002/pros.2134221271613
    [Google Scholar]
  29. (b DeK. Novel 1,4-dihydropyrido[2,3-b]pyrazine-2,3-dione derivatives for treating cancerand other disorders associated with KRAS activity. Anti-Canc. Agent.Med. Chem.2023238e281122211294
    [Google Scholar]
  30. SchechterL.E. LinQ. SmithD.L. ZhangG. ShanQ. PlattB. BrandtM.R. DawsonL.A. ColeD. BernotasR. RobichaudA. Rosenzweig-LipsonS. BeyerC.E. Neuropharmacological profile of novel and selective 5-HT6 receptor agonists: WAY-181187 and WAY-208466.Neuropsychopharmacology20083361323133510.1038/sj.npp.1301503
    [Google Scholar]
  31. (a BonanniG. CiccarielloM. ManciniP. PaceV. SagliaschiG. Concomitant ceco-appendicular and urinary tuberculosis. Description of two rare cases: Physiopathological and diagnostic remarks.Riv. Eur. Sci. Med. Farmacol.1993153-41711747761665
    [Google Scholar]
  32. (b SpaiaS. MagoulaI. TsapasG. VayonasG. Effect of pyrazinamide and probenecid on peritoneal urate transport kinetics during continuous ambulatory peritoneal dialysis.Perit. Dial. Int.2000201475210.1177/089686080002000109 10716583
    [Google Scholar]
  33. (a RevillP. SerradellN. BolosJ. RosaE. Telaprevir.Drugs Future200732978810.1358/dof.2007.032.09.1138229
    [Google Scholar]
  34. (b KrátkýM. In vitro antibacterial and antifungal activity of salicylanilide pyrazine-2-carboxylates.Med. Chem.20128473274110.2174/157340612801216346
    [Google Scholar]
  35. (a TripathyK.D. Essentials of Medical Pharmacology.Jaypee Brothers Medical Pub2008
    [Google Scholar]
  36. (b IidaK. ItohK. KumagaiY. OyasuR. HattoriK. KawaiK. ShimazuiT. AkazaH. YamamotoM. Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis.Cancer Res.200464186424643110.1158/0008‑5472.CAN‑04‑190615374950
    [Google Scholar]
  37. (c GrigoryM. Design, synthesis and pharmacological activity of new pyrrolo[1,2-a]pyrazine translocator protein (TSPO) ligands.Med. Chem.2022184e060821195344
    [Google Scholar]
  38. ForsB.K. Olofsson.Chem. Senses1985103287296
    [Google Scholar]
  39. CzernyM. GroschW. Potent odorants of raw Arabica coffee. Their changes during roasting.J. Agric. Food Chem.200048386887210.1021/jf990609n 10725165
    [Google Scholar]
  40. (a ReddyG.N. RanganathamA. ReddyE.K. SurendraH.D. SajithA.M. ShivarajY. ChandrasekhareK.B. Design, synthesis, and biological evaluation of 3, 5‐disubstituted 2‐pyrazineamide derivatives as antitubercular agents.J. Heterocycl. Chem.201956111710.1002/jhet.3461
    [Google Scholar]
  41. (b ReddyE.K. RemyaC. MantoshK. SajithA.M. OmkumarR.V. SadasivanC. AnwarS. Novel tacrine derivatives exhibiting improved acetylcholinesterase inhibition: Design, synthesis and biological evaluation.Eur. J. Med. Chem.201713936737710.1016/j.ejmech.2017.08.01328810188
    [Google Scholar]
  42. GangarapuN.R. RanganathamA. ReddyE.K. YellappaS. ChandrasekharK.B. 2‐Aminoaryl‐3,5‐diaryl pyrazines: Synthesis, biological evaluation against Mycobacterium tuberculosis and docking studies.Arch. Pharm. (Weinheim)20203537190036810.1002/ardp.201900368 32399980
    [Google Scholar]
  43. ReddyG.N. ReddyE.K. SajithA.M. ShivarajY. ChandrashekarK.B. NMI/MsCl‐mediated amide bond formation of aminopyrazines and aryl/heteroaryl carboxylic acids: Synthesis of biologically relevant pyrazine carboxamides.ChemistrySelect20172770610.1002/slct.201700801
    [Google Scholar]
  44. VenkataramanP. PrabhakarR. Niacin production test in mycobacteria: Replacement of benzidine-cyanogen bromide reagent by o-tolideine-cyanogen bromide.Indian J. Tuberc.197724153
    [Google Scholar]
  45. WayneL.G. EngelH.W.B. GrassiC. GrossW. HawkinsJ. JenkinsP.A. KaPPLERW. KleebergH.H. KrasnowI. NelE.E. PattynS.R. RichardsP.A. ShowalterS. SlosarekM. SzaboI. TarnokI. TsukamuraM. VergmannB. WolinskyE. Highly reproducible techniques for use in systemic bacteriology in the genus Mycobacterium: Tests for niacin and catalase, and for resistance to isoniazid, thiophen-2-carboxylic acid hrdrazide, hydroxylamine and p-nitro benzoate.Int. J. Syst. Bacteriol.197626331131810.1099/00207713‑26‑3‑311
    [Google Scholar]
  46. VenkataramanP. NarayanaA.S.L. PrabhakarR. TripathyS.P. Comparison of plain egg medium with Lowenstein-Jensen medium in the isolation of M. tuberculosis from sputum.Indian J. Med. Res.197970875879 120316
    [Google Scholar]
  47. MitchisonD.A. AllenB.W. ManickavasagarD.E. Selective Kirchner’s medium in the culture of specimens other than sputm for mycobacteria.J. Clin. Pathol.1983361357136110.1136/jcp.36.12.1357 6418768
    [Google Scholar]
  48. The public health service national tuberculosis reference laboratory and the national laboratory network; minimum requirements, role and operation in a low-income country;International Union against Tuberculosis and Lung Disease (IUATLD)1998
    [Google Scholar]
  49. Manual of technical standards and procedures for tuberculosis bacteriology. Part III Sensitivity of M. tuberculosis to anti-TB drugsPAHOMarlinez, Argentina1998
    [Google Scholar]
  50. TumiattiV. MinariniA. BolognesiM.L. MilelliA. RosiniM. MelchiorreC. Tacrine derivatives and Alzheimer’s disease.Curr. Med. Chem.201017171825183810.2174/092986710791111206 20345341
    [Google Scholar]
  51. WalshD.M. SelkoeD.J. Deciphering the molecular basis of memory failure in Alzheimer’s disease.Neuron200444118119310.1016/j.neuron.2004.09.010 15450169
    [Google Scholar]
  52. ErtlP. RohdeB. SelzerP. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties.J. Med. Chem.200043203714371710.1021/jm000942e 11020286
    [Google Scholar]
  53. DainaA. ZoeteV. A BOILED‐egg to predict gastrointestinal absorption and brain penetration of small molecules.ChemMedChem201611111117112110.1002/cmdc.201600182 27218427
    [Google Scholar]
  54. RitchieT.J. MacdonaldS.J.F. PeaceS. PickettS.D. LuscombeC.N. Increasing small molecule drug developability in sub-optimal chemical space.MedChemComm.20134467310.1039/c3md00003f
    [Google Scholar]
  55. YalkowskyS.H. ValvaniS.C. Solubility and partitioning I: Solubility of nonelectrolytes in water.J. Pharm. Sci.198069891292210.1002/jps.2600690814 7400936
    [Google Scholar]
  56. DelaneyJ.S. ESOL: Estimating aqueous solubility directly from molecular structure.J. Chem. Inf. Comput. Sci.20044431000100510.1021/ci034243x 15154768
    [Google Scholar]
  57. SavjaniK.T. GajjarA.K. SavjaniJ.K. Drug solubility: Importance and enhancement techniques.ISRN Pharm.2012201211010.5402/2012/195727 22830056
    [Google Scholar]
  58. OttavianiG. GoslingD.J. PatissierC. RoddeS. ZhouL. FallerB. What is modulating solubility in simulated intestinal fluids?Eur. J. Pharm. Sci.2010413-445245710.1016/j.ejps.2010.07.012 20656026
    [Google Scholar]
  59. AliJ. CamilleriP. BrownM.B. HuttA.J. KirtonS.B. Revisiting the general solubility equation: in silico prediction of aqueous solubility incorporating the effect of topographical polar surface area.J. Chem. Inf. Model.201252242042810.1021/ci200387c 22196228
    [Google Scholar]
  60. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
/content/journals/mc/10.2174/0115734064337815241115050020
Loading
/content/journals/mc/10.2174/0115734064337815241115050020
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): ADMET; docking studies; H37Rv; MIC; Pyrazine; tuberculosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test