Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Background

Glioblastoma Multiforme (GBM), a highly aggressive and prevalent brain cancer with a higher incidence in males, has limited treatment success due to drug resistance, inadequate targeting and penetration of cancer cells, and an incomplete understanding of its molecular pathways. GBM is a highly aggressive brain cancer with limited treatment options. This study investigates the anticancer potential of synthesized pyrazole compounds against GBM cells.

Methods

A series of pyrazole derivatives were synthesized and tested for their efficacy against GBM using MTT assays. Molecular docking studies were conducted to explore the binding interactions of these compounds with GBM receptors.

Results

Compounds and demonstrated significant anticancer activity, reducing cell viability more effectively than the control group. MTT assay results confirmed their potency. Molecular docking studies revealed strong binding interactions with GBM receptors, highlighting their potential as anticancer agents.

Conclusion

The study evaluated the anticancer activity of synthesized compounds on human GBM cells, with compounds and showing the most promising results. Pyrazole significantly reduced cell viability at high concentrations, while both pyrazoles and required higher doses to achieve substantial effects, as indicated by their IC values. Molecular docking studies confirmed strong binding interactions with the GBM receptor, and the pharmacokinetic properties suggest their potential as anticancer agents. These results highlight compounds and as candidates for further investigation.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064337582241103172720
2025-01-17
2025-09-02
Loading full text...

Full text loading...

References

  1. GrochansS. CybulskaA.M. SimińskaD. KorbeckiJ. KojderK. ChlubekD. Baranowska-BosiackaI. Epidemiology of glioblastoma multiforme–literature review.Cancers (Basel)20221410241210.3390/cancers14102412 35626018
    [Google Scholar]
  2. RosińskaS. GavardJ. Tumor vessels fuel the fire in glioblastoma.Int. J. Mol. Sci.20212212651410.3390/ijms22126514 34204510
    [Google Scholar]
  3. De FeliceM. De MarinisP. MartinG. BruscellaS. De BellisA. PolieroL. TurittoG. Dramatic response to regorafenib in early glioblastoma progression: case report and review of the literature.Eur. Rev. Med. Pharmacol. Sci.2022261450085013 35916797
    [Google Scholar]
  4. MinnitiG. MuniR. LanzettaG. MarchettiP. EnriciR.M. Chemotherapy for glioblastoma: current treatment and future perspectives for cytotoxic and targeted agents.Anticancer Res.2009291251715184 20044633
    [Google Scholar]
  5. CruzJ.V.R. BatistaC. AfonsoB.H. Alexandre-MoreiraM.S. DuboisL.G. PontesB. Moura NetoV. MendesF.A. Obstacles to glioblastoma treatment two decades after temozolomide.Cancers (Basel)20221413320310.3390/cancers14133203 35804976
    [Google Scholar]
  6. FabroF. LamfersM.L.M. LeenstraS. Advancements, challenges, and future directions in tackling glioblastoma resistance to small kinase inhibitors.Cancers (Basel)202214360010.3390/cancers14030600 35158868
    [Google Scholar]
  7. LasorellaA. SansonM. IavaroneA. FGFR-TACC gene fusions in human glioma.Neuro-oncol.2016194now24010.1093/neuonc/now240 27852792
    [Google Scholar]
  8. CaiQ. FanH. LiX. GiannottaM. BachooR. QinZ. Optical modulation of the blood-brain barrier for glioblastoma treatment.Bio Protoc.2024141337e492010.21769/BioProtoc.4920 38268976
    [Google Scholar]
  9. BarenM.H. IbrahimS.A. Al-RooqiM.M. AhmedS.A. El-GamilM.M. HekalH.A. A new class of anticancer activity with computational studies for a novel bioactive aminophosphonates based on pyrazole moiety.Sci. Rep.20231311468010.1038/s41598‑023‑40265‑8 37673913
    [Google Scholar]
  10. KandhasamyK. SurajambikaR.R. VelayudhamP.K. Pyrazolo - pyrimidines as targeted anticancer scaffolds - a comprehensive review.Med. Chem.202420329331010.2174/0115734064251256231018104623 37885114
    [Google Scholar]
  11. HavrylyukD. RomanO. LesykR. Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazoline–thiazolidine-based hybrids.Eur. J. Med. Chem.201611314516610.1016/j.ejmech.2016.02.030 26922234
    [Google Scholar]
  12. CetinA. Pyrazole carboxylic acid and derivatives: synthesis and biological applications.Mini Rev. Org. Chem.20211819310910.2174/1570193X17999200507094857
    [Google Scholar]
  13. YoussefA.M. NeelandE.G. VillanuevaE.B. WhiteM.S. El-AshmawyI.M. PatrickB. KlegerisA. Abd-El-AzizA.S. Synthesis and biological evaluation of novel pyrazole compounds.Bioorg. Med. Chem.201018155685569610.1016/j.bmc.2010.06.018 20609589
    [Google Scholar]
  14. ZhangX.X. JinH. DengY.J. GaoX.H. LiY. ZhaoY.T. TaoK. HouT-P. Synthesis and biological evaluation of novel pyrazole carboxamide with diarylamine-modified scaffold as potent antifungal agents.Chin. Chem. Lett.20172881731173610.1016/j.cclet.2017.04.021
    [Google Scholar]
  15. SongH. LiuY. XiongL. LiY. YangN. WangQ. Design, synthesis, and insecticidal evaluation of new pyrazole derivatives containing imine, oxime ether, oxime ester, and dihydroisoxazoline groups based on the inhibitor binding pocket of respiratory complex I.J. Agric. Food Chem.201361378730873610.1021/jf402719z 23972278
    [Google Scholar]
  16. MaY. SunG. ChenD. PengX. ChenY.L. SuY. JiY. LiangJ. WangX. ChenL. DingJ. XiongB. AiJ. GengM. ShenJ. Design and optimization of a series of 1-sulfonylpyrazolo[4,3-b]pyridines as selective c-Met inhibitors.J. Med. Chem.20155852513252910.1021/jm502018y 25668160
    [Google Scholar]
  17. HuynhT. ChenZ. PangS. GengJ. BandieraT. BindiS. VianelloP. RolettoF. ThieffineS. GalvaniA. VaccaroW. PossM.A. TrainorG.L. LorenziM.V. GottardisM. JayaramanL. PurandareA.V. Optimization of pyrazole inhibitors of coactivator associated arginine methyltransferase 1 (CARM1).Bioorg. Med. Chem. Lett.200919112924292710.1016/j.bmcl.2009.04.075 19419866
    [Google Scholar]
  18. DoreA. AsproniB. ScampudduA. PinnaG.A. ChristoffersenC.T. LanggårdM. KehlerJ. Synthesis and SAR study of novel tricyclic pyrazoles as potent phosphodiesterase 10A inhibitors.Eur. J. Med. Chem.20148418119310.1016/j.ejmech.2014.07.020 25016376
    [Google Scholar]
  19. SamanS. SrivastavaN. YasirM. ChauhanI. A comprehensive review on current treatments and challenges involved in the treatment of ovarian cancer.Curr. Cancer Drug Targets202424214216610.2174/1568009623666230811093139 37642226
    [Google Scholar]
  20. DecuypèreE. PlougastelL. AudisioD. TaranF. Sydnone–alkyne cycloaddition: applications in synthesis and bioconjugation.Chem. Commun. (Camb.)20175384115151152710.1039/C7CC06405E 28959814
    [Google Scholar]
  21. Bildiriciİ. ŞenerA. AtalanE. BattalA. GençH. Synthesis and antibacterial activity of 4-benzoyl-1-(4-carboxy-phenyl)-5-phenyl-1H-pyrazole-3-carboxylic acid and derivatives.Med. Chem. Res.200918532734010.1007/s00044‑008‑9130‑3
    [Google Scholar]
  22. Balça-SilvaJ. MatiasD. Do CarmoA. DuboisL.G. GonçalvesA.C. GirãoH. Silva CanedoN.H. CorreiaA.H. De SouzaJ.M. Sarmento-RibeiroA.B. LopesM.C. Moura-NetoV. Glioblastoma entities express subtle differences in molecular composition and response to treatment.Oncol. Rep.20173831341135210.3892/or.2017.5799 28714013
    [Google Scholar]
  23. DasS. MondalS. PatelT. HimajaA. AdhikariN. BanerjeeS. BaidyaS.K. DeA.K. GayenS. GhoshB. JhaT. Derivatives of D(−) glutamine-based MMP-2 inhibitors as an effective remedy for the management of chronic myeloid leukemia-Part-I: Synthesis, biological screening and in silico binding interaction analysis.Eur. J. Med. Chem.202427411656310.1016/j.ejmech.2024.116563 38843586
    [Google Scholar]
  24. CetinA. KurtH. Synthesis, antibacterial activity and molecular docking studies of new pyrazole derivatives.Lett. Drug Des. Discov.202017674575610.2174/1570180816666190905155510
    [Google Scholar]
  25. TürkanF. CetinA. RozbickiP. OğuzE. WolińskaE. BranowskaD. Pharmacological assessment of disulfide–triazine hybrids: synthesis, enzyme inhibition, and molecular docking study.Med. Chem. Res.20243371205121710.1007/s00044‑024‑03251‑x
    [Google Scholar]
  26. AnantaJ.S. PaulmuruganR. MassoudT.F. Temozolomide-loaded PLGA nanoparticles to treat glioblastoma cells: a biophysical and cell culture evaluation.Neurol. Res.2016381515910.1080/01616412.2015.1133025 26905383
    [Google Scholar]
  27. RamchandaniS. NazI. DhudhaN. GargM. An overview of the potential anticancer properties of cardamonin.Explor. Target. Antitumor Ther.202016413426
    [Google Scholar]
  28. BibakB. ShakeriF. KeshavarziZ. MollazadehH. JavidH. Jalili-NikM. SathyapalanT. AfshariA.R. SahebkarA. Anticancer mechanisms of Berberine: a good choice for glioblastoma multiforme therapy.Curr. Med. Chem.202229264507452810.2174/0929867329666220224112811 35209812
    [Google Scholar]
  29. WuW. KlockowJ.L. ZhangM. LafortuneF. ChangE. JinL. WuY. Daldrup-LinkH.E. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance.Pharmacol. Res.202117110578010.1016/j.phrs.2021.105780 34302977
    [Google Scholar]
  30. PatilR. DasS. StanleyA. YadavL. SudhakarA. VarmaA.K. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing.PLoS One201058e1202910.1371/journal.pone.0012029 20808434
    [Google Scholar]
  31. Hosseini NasabN. AzimianF. ShimR.S. EomY.S. ShahF.H. KimS.J. Synthesis, anticancer evaluation, and molecular docking studies of thiazolyl-pyrazoline derivatives.Bioorg. Med. Chem. Lett.20238012910510.1016/j.bmcl.2022.129105 36513215
    [Google Scholar]
  32. SadriA. Is target-based drug discovery efficient? Discovery and “off-target” mechanisms of all drugs.J. Med. Chem.20236618126511267710.1021/acs.jmedchem.2c01737 37672650
    [Google Scholar]
  33. AlmohaimeedH.M. AlmarsA.I. Al AbdulmonemW. AlghshamR.S. AljohaniA.S.M. AlharbiY.M. BadahdahF.A. AlkhudhairyB.S.M. SolimanM.H. Molecular dynamics exploration of Lupenone: therapeutic implications for glioblastoma multiforme and Alzheimer’s amyloid beta pathogenesis.Metab. Brain Dis.2023391778810.1007/s11011‑023‑01319‑y 38129732
    [Google Scholar]
  34. LiY.L. YanL.J. ChenH.X. RuanB.K. DaoP. DuZ.Y. DongC.Z. MeunierB. Design, synthesis and evaluation of novel pyrimidinylaminothiophene derivatives as FGFR1 inhibitors against human glioblastoma multiforme.Eur. J. Med. Chem.202326011576410.1016/j.ejmech.2023.115764 37651879
    [Google Scholar]
  35. TsujiS. KudoU. HatakeyamaR. ShodaK. NakamuraS. ShimazawaM. Linagliptin decreased the tumor progression on glioblastoma model.Biochem. Biophys. Res. Commun.202471114989710.1016/j.bbrc.2024.149897 38608433
    [Google Scholar]
  36. VolkamerA. KuhnD. RippmannF. RareyM. DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment.Bioinformatics201228152074207510.1093/bioinformatics/bts310 22628523
    [Google Scholar]
  37. AminS. AdhikariN. AgrawalR. JhaT. GayenS.R. JhaT. GayenS. Possible binding mode analysis of Pyrazolo-triazole hybrids as potential anticancer agents through validated molecular docking and 3D-QSAR modeling approaches.Lett. Drug Des. Discov.201714551552710.2174/1570180813666160916153017
    [Google Scholar]
  38. CetinA. DonmezA. DalarA. BildiriciI. Amino acid and dicyclohexylurea linked pyrazole analogues: Synthesis, in silico and in vitro studies.ChemistrySelect202386e20220492610.1002/slct.202204926
    [Google Scholar]
  39. SeymaS.Z. BildiriciN. CetinA. BildiriciI. GABA-AT inhibitors: Design, synthesis, pharmacological characterization, molecular docking and ADMET studies.ChemistrySelect2023835e20230268310.1002/slct.202302683
    [Google Scholar]
  40. RozbickiP. OğuzE. WolińskaE. TürkanF. CetinA. BranowskaD. Synthesis and examination of 1,2,4‐triazine‐sulfonamide hybrids as potential inhibitory drugs: Inhibition effects on AChE and GST enzymes in silico and in vitro conditions.Arch. Pharm. (Weinheim)20243579240018210.1002/ardp.202400182 38771105
    [Google Scholar]
/content/journals/mc/10.2174/0115734064337582241103172720
Loading
/content/journals/mc/10.2174/0115734064337582241103172720
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Anticancer; brain diseases; heterocyclic; pharmacologic activity; pyrazole; spectroscopy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test