Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Aim

The aim is to halt the progression of liver cancer (Hepatocellular carcinoma) by suppressing the VEGF-R1 receptor using Myricetin and its designed analogues.

Background

VEGF/VEGFR autocrine signalling promotes the growth, progression, and metastasis of Hepatocellular carcinoma, making the development of molecularly targeted therapies highly feasible. Invasive and metastatic behaviours in various cancers, including hepatocellular carcinoma (HCC), are closely monitored through the use of VEGF signalling pathway inhibitors. Specifically in HCC, VEGFR-1 facilitates the invasive capabilities of cancer cells primarily by triggering the epithelial-mesenchymal transition (EMT) process. VEGFR-1 significantly influences the activity of proteolytic enzymes that are critical for the invasive behaviour of HCC cells. Notably, a novel mechanism has been discovered where VEGFR-1 activation leads to the upregulation of MMP-9, thereby enhancing the invasiveness of HCC cells. The scientists, in their study, have elaborated on the various antiangiogenic agents developed for the treatment of HCC. They have highlighted clinical trials that explore the efficacy of these treatments, which include the application of monoclonal antibodies and small-molecule kinase inhibitors designed to target specific pathways involved in tumour angiogenesis and growth.

Objective

Creating a pharmaceutical chemistry table regarding “Structure-Activity Relationship of New Compounds on anticancer”. To do so, Myricetin and its designed structured variants were used in molecular docking, molecular dynamics, cluster analyses, and 1H NMR estimation to specifically understand and enhance the mechanism of suppressing the VEGF-R1 receptor.

Methods

Proper ligands (Myricetin and its analogues) and receptor (VEGF-R1) preparations, and optimizations were done using the density functional theory (DFT)/B3LYP function along with the 6-31G(d,p) basis set principle in the latest software programs such as Gaussian 09, Gauss View 6.0 and Avogadro. Then using PyRx and Autodock Vina 1.1.2., many molecular docking trials were achieved with 100 posed simulations in each run. An extensive cluster analysis was performed to identify the most optimal docking poses with the highest accumulation and most favourable binding interactions, ensuring the accuracy of the study. The docking configurations that exhibited the most precise and accurate poses with lowest inhibition constants were chosen as initial structured data for subsequent Molecular Dynamics (MD) simulations for each drug candidate. To verify the molecular docking results, MD runs were achieved in our supercomputers and the trajectory analyses were made. The data confirmed what was found in molecular docking results, verifying the high efficiency of the druggable molecules’ inhibition towards VEGF-R1.

Results

Amine-derivatized Myricetin has a significantly high docking score (-10.56 kcal/mol) and great inhibition constant compared to pristine Myricetin (-4.77 kcal/mol) itself while Fluorine-derivatized Myricetin (-6.45 kcal/mol) has an affinity towards VEGF-R1 between the first two molecules. Thus, the structure-activity relationship concerning pharmaceutical chemistry aspects of all the molecules studied, yielded us a great insight into what Myricetin’s organic structure possesses towards inhibiting the progression of Liver Cancer. Also, ADME studies showed that both Amine and Fluorined-derivatized Myricetin molecules are good drug candidates.

Conclusion

This study highlighted the significant potential of Myricetin as an anti-cancer drug when modified with specific functional groups. Through comprehensive computational analyses, our research group enhanced Myricetin's inhibitory capabilities by derivatizing its Hydroxyl group with Amine and Fluorine, resulting in improved docking scores and inhibition constants. The findings from molecular docking and MD simulations provide a promising foundation for future and investigations of these molecules as potential drugs in cancer research.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064333811240928105309
2024-10-11
2025-10-31
Loading full text...

Full text loading...

References

  1. AmalanathanM. RastogiV.K. Hubert JoeI. PalafoxM.A. TomarR. Density functional theory calculations and vibrational spectral analysis of 3,5-(dinitrobenzoic acid).Spectrochim. Acta A Mol. Biomol. Spectrosc.20117851437144410.1016/j.saa.2011.01.023 21330186
    [Google Scholar]
  2. Jones-PauleyM. VictorD.W.III KodaliS. Pushing the limits of treatment for hepatocellular carcinoma.Curr. Opin. Organ Transplant.20242913910.1097/MOT.0000000000001123 38032256
    [Google Scholar]
  3. DuS. CaoK. YanY. WangY. WangZ. LinD. Developments and current status of cell‐free DNA in the early detection and management of hepatocellular carcinoma.J. Gastroenterol. Hepatol.2023392jgh.1641610.1111/jgh.1641637990622
    [Google Scholar]
  4. LuY. LinB. LiM. The role of alpha-fetoprotein in the tumor microenvironment of hepatocellular carcinoma.Front. Oncol.202414136369510.3389/fonc.2024.1363695 38660138
    [Google Scholar]
  5. PessinoG. ScottiC. MaggiM. Hepatocellular carcinoma: Old and emerging therapeutic targets.Cancers (Basel)202416590110.3390/cancers16050901 38473265
    [Google Scholar]
  6. YanW. RaoD. FanF. LiangH. ZhangZ. DongH. Hepatitis B virus X protein and TGF-β: Partners in the carcinogenic journey of hepatocellular carcinoma.Front. Oncol.202414140743410.3389/fonc.2024.1407434 38962270
    [Google Scholar]
  7. PalazF. OzsozM. ZarrinparA. SahinI. CRISPR in targeted therapy and adoptive T cell immunotherapy for hepatocellular carcinoma.JHC202411975995
    [Google Scholar]
  8. XuX. LiuY. LiuY. YuY. YangM. LuL. ChanL. LiuB. Functional hydrogels for hepatocellular carcinoma: Therapy, imaging, and in vitro model.J. Nanobiotechnology202422138110.1186/s12951‑024‑02547‑9 38951911
    [Google Scholar]
  9. RossariF. FotiS. CameraS. PersanoM. Casadei-GardiniA. RiminiM. Treatment options for advanced hepatocellular carcinoma: The potential of biologics.Expert Opin. Biol. Ther.202424645547010.1080/14712598.2024.2363234 38913107
    [Google Scholar]
  10. AbdelhamedW. El-KassasM. Hepatitis B virus as a risk factor for hepatocellular carcinoma: There is still much work to do.Liver Res.202482839010.1016/j.livres.2024.05.004
    [Google Scholar]
  11. DavoodvandiA. SadeghiS. AlaviS.M.A. AlaviS.S. JafariA. KhanH. The therapeutic effects of berberine for gastrointestinal cancers. Asia-Pac.J. Clncl. Oncol.202420215216710.1111/ajco.13941
    [Google Scholar]
  12. Ghafouri-FardS. AskariA. HussenB.M. TaheriM. Akbari DilmaghaniN. Role of miR-424 in the carcinogenesis.Clin. Transl. Oncol.2023261163810.1007/s12094‑023‑03209‑2 37178445
    [Google Scholar]
  13. Gajos-MichniewiczA. CzyzM. WNT/β-catenin signaling in hepatocellular carcinoma: The aberrant activation, pathogenic roles, and therapeutic opportunities.Genes Dis.202411272774610.1016/j.gendis.2023.02.050 37692481
    [Google Scholar]
  14. PengC. YeZ. JuY. HuangX. ZhanC. WeiK. ZhangZ. Mechanism of action and treatment of type I interferon in hepatocellular carcinoma.Clin. Transl. Oncol.202326232633710.1007/s12094‑023‑03266‑7 37402970
    [Google Scholar]
  15. AbtahiM.S. FotouhiA. RezaeiN. AkalinH. OzkulY. Hossein-KhannazerN. VosoughM. Nano-based drug delivery systems in hepatocellular carcinoma.J. Drug Target.2024202411910.1080/1061186X.2024.2365937 38847573
    [Google Scholar]
  16. ChickR.C. RuffS.M. PawlikT.M. Neoadjuvant systemic therapy for hepatocellular carcinoma.Front. Immunol.202415135581210.3389/fimmu.2024.1355812 38495884
    [Google Scholar]
  17. De MattosA.Z. BombassaroI.Z. VogelA. DebesJ.D. Hepatocellular carcinoma-the role of the underlying liver disease in clinical practice.World J. Gastroenterol.202430192488249510.3748/wjg.v30.i19.2488 38817660
    [Google Scholar]
  18. DuJ.S. HsuS.H. WangS.N. The current and prospective adjuvant therapies for hepatocellular carcinoma.Cancers (Basel)2024167142210.3390/cancers16071422 38611100
    [Google Scholar]
  19. FengF. ZhaoY. Hepatocellular carcinoma: Prevention, diagnosis, and treatment.Med. Princ. Pract.202411010.1159/000539349 38772352
    [Google Scholar]
  20. FortunyM. Sanduzzi‐ZamparelliM. ReigM. Systemic therapies in hepatocellular carcinoma: A revolution?United European Gastroenterol. J.202412225226010.1002/ueg2.12510
    [Google Scholar]
  21. GaoW. WangJ. XuY. YuH. YiS. BaiC. CongQ. ZhuY. Research progress in the metabolic reprogramming of hepatocellular carcinoma (Review).Mol. Med. Rep.202430113110.3892/mmr.2024.13255 38818815
    [Google Scholar]
  22. SharmaK.K. Diagnosis of the initial stage of hepatocellular carcinoma: A review.Curr. Pharm. Des.20243012217081724
    [Google Scholar]
  23. TeufelA. KudoM. QianY. DazaJ. RodriguezI. ReissfelderC. RidruejoE. EbertM.P. Current trends and advancements in the management of hepatocellular carcinoma.Dig. Dis.202442434936010.1159/000538815 38599204
    [Google Scholar]
  24. SankarK. GongJ. OsipovA. MilesS.A. KosariK. NissenN.N. HendifarA.E. KoltsovaE.K. YangJ.D. Recent advances in the management of hepatocellular carcinoma.Clin. Mol. Hepatol.202330111510.3350/cmh.2023.0125 37482076
    [Google Scholar]
  25. MirS.A. DarA. HamidL. NisarN. MalikJ.A. AliT. BaderG.N. Flavonoids as promising molecules in the cancer therapy: An insight.Curr. Res. Pharmacol. Drug Discov.2024610016710.1016/j.crphar.2023.100167 38144883
    [Google Scholar]
  26. HatoT. ZhuA.X. DudaD.G. Rationally combining anti-VEGF therapy with checkpoint inhibitors in hepatocellular carcinoma.Immunotherapy20168329931310.2217/imt.15.126 26865127
    [Google Scholar]
  27. LiuL. QinS. ZhengY. HanL. ZhangM. LuoN. LiuZ. GuN. GuX. YinX. Molecular targeting of VEGF/VEGFR signaling by the anti-VEGF monoclonal antibody BD0801 inhibits the growth and induces apoptosis of human hepatocellular carcinoma cells in vitro and in vivo.Cancer Biol. Ther.201718316617610.1080/15384047.2017.1282019 28368741
    [Google Scholar]
  28. MossentaM. BusatoD. BabociL. Di CintioF. ToffoliG. Dal BoM. New insight into therapies targeting angiogenesis in hepatocellular carcinoma.Cancers (Basel)2019118108610.3390/cancers11081086 31370258
    [Google Scholar]
  29. ScartozziM. FaloppiL. SvegliatiB.G. LoretelliC. PiscagliaF. IavaroneM. ToniuttoP. FavaG. De MinicisS. MandolesiA. BianconiM. GiampieriR. GranitoA. FacchettiF. BitettoD. MarinelliS. VenerandiL. VavassoriS. GeminiS. D’ErricoA. ColomboM. BolondiL. BearziI. BenedettiA. CascinuS. VEGF and VEGFR genotyping in the prediction of clinical outcome for HCC patients receiving sorafenib: The ALICE‐1 study.Int. J. Cancer201413551247125610.1002/ijc.28772 24510746
    [Google Scholar]
  30. LiT. ZhuY. HanL. RenW. LiuH. QinC. VEGFR-1 activation-induced MMP-9-dependent invasion in hepatocellular carcinoma.Future Oncol.201511233143315710.2217/fon.15.263 26551737
    [Google Scholar]
  31. CeciC. AtzoriM.G. LacalP.M. GrazianiG. Role of VEGFs/VEGFR-1 signaling and its inhibition in modulating tumor invasion: Experimental evidence in different metastatic cancer models.IJMS20202141388
    [Google Scholar]
  32. ZhuangP.Y. ShenJ. ZhuX.D. LuL. WangL. TangZ.Y. Prognostic roles of cross-talk between peritumoral hepatocytes and stromal cells in hepatocellular carcinoma involving peritumoral VEGF-C, VEGFR-1 and VEGFR-3.PLoS ONE201385e64598
    [Google Scholar]
  33. PalshetkarA.D. RasalA.U. MuruganA. DesaiN.D. Natural product-derived phytochemicals as potential inhibitors of angiotensinconverting enzyme 2 (ACE2): Promising drug candidates for COVID-19.Curr. Drug Ther.202318110315910.2174/1574885518666230502103159
    [Google Scholar]
  34. BibiS. KhanM.S. El-KafrawyS.A. AlandijanyT.A. El-DalyM.M. YousafiQ. FatimaD. FaizoA.A. BajraiL.H. AzharE.I. Virtual screening and molecular dynamics simulation analysis of Forsythoside A as a plant-derived inhibitor of SARS-CoV-2 3CLpro.Saudi Pharm. J.2022307979100210.1016/j.jsps.2022.05.003 35637849
    [Google Scholar]
  35. BibiS. HasanM.M. WangY.B. PapadakosS.P. YuH. Cordycepin as a promising inhibitor of SARS-CoV-2 RNA dependent RNA polymerase (RdRp).Curr. Med. Chem.2022291152162
    [Google Scholar]
  36. AkashS. BibiS. YousafiQ. IhsanA. MustafaR. FarooqU. KabraA. AlanaziM.M. AlanaziA.S. Al KamalyO. Ligand-based drug design of Pinocembrin derivatives against monkey-pox disease.Arab. J. Chem.2023161110524110.1016/j.arabjc.2023.105241
    [Google Scholar]
  37. SamantaS. ChakrabortyS. BagchiD. Pathogenesis of neurodegenerative diseases and the protective role of natural bioactive components.J. Am. Nutr. Assoc.2024431203210.1080/27697061.2023.2203235 37186678
    [Google Scholar]
  38. AlbadraniH.M. ChauhanP. AshiqueS. BabuM.A. IqbalD. AlmutaryA.G. AbomughaidM.M. KamalM. Paiva-SantosA.C. AlsaweedM. HamedM. SachdevaP. DewanjeeS. JhaS.K. OjhaS. SlamaP. JhaN.K. Mechanistic insights into the potential role of dietary polyphenols and their nanoformulation in the management of Alzheimer’s disease.Biomed. Pharmacother.202417411637610.1016/j.biopha.2024.116376 38508080
    [Google Scholar]
  39. IslamF. RoyS. ZehraviM. PaulS. SutradharH. YaidikarL. KumarB.R. DogiparthiL.K. PremaS. NainuF. RabS.O. DoukaniK. EmranT.B. Polyphenols targeting MAP kinase signaling pathway in neurological diseases: Understanding molecular mechanisms and therapeutic targets.Mol. Neurobiol.20246152686270610.1007/s12035‑023‑03706‑z 37922063
    [Google Scholar]
  40. LiuZ. LiuW. HanM. WangM. LiY. YaoY. DuanY. A comprehensive review of natural product-derived compounds acting on P2X7R: The promising therapeutic drugs in disorders.Phytomedicine202412815533410.1016/j.phymed.2023.155334 38554573
    [Google Scholar]
  41. AyipoY.O. ChongC.F. AbdulameedH.T. MordiM.N. Bioactive alkaloidal and phenolic phytochemicals as promising epidrugs for diabetes mellitus 2: A review of recent development.Fitoterapia202417510592210.1016/j.fitote.2024.105922 38552806
    [Google Scholar]
  42. AbdullahA. BiswasP. Molecular dynamics simulation and pharmacoinformatic integrated analysis of bioactive phytochemicals from Azadirachta indica (Neem) to treat diabetes mellitus. Marc (Vlaic).J. Chem.202320233417070310.1155/2023/4170703
    [Google Scholar]
  43. CarneiroB.T. De CastroF.N.A.M. BenettiF. NimaG. SuzukiT.Y.U. AndréC.B. Flavonoids effects against bacteria associated to periodontal disease and dental caries: A scoping review.Biofouling20244029911310.1080/08927014.2024.2321965 38425046
    [Google Scholar]
  44. GuptaA. JainP. NagoriK. AdnanM. Ajazuddin, Treatment strategies for psoriasis using flavonoids from traditional Chinese medicine.Pharmacol. Res. Mod. Chin. Med.20241210046310.1016/j.prmcm.2024.100463
    [Google Scholar]
  45. YarmohammadiF. HesariM. ShackebaeiD. The role of mTOR in doxorubicin-altered cardiac metabolism: A promising therapeutic target of natural compounds.Cardiovasc. Toxicol.202424214615710.1007/s12012‑023‑09820‑7 38108960
    [Google Scholar]
  46. XuY. XinJ. SunY. WangX. SunL. ZhaoF. NiuC. LiuS. Mechanisms of sepsis-induced acute lung injury and advancements of natural small molecules in its treatment.Pharmaceuticals (Basel)2024174472 38675431
    [Google Scholar]
  47. HasnatH. ShompaS.A. Flavonoids: A treasure house of prospective pharmacological potentials.Heliyon2024106e27533
    [Google Scholar]
  48. HeY.X. LiuM.N. WangY.Y. WuH. WeiM. XueJ.Y. ZouY. ZhouX. ChenH. LiZ. Hovenia dulcis: A Chinese medicine that plays an essential role in alcohol-associated liver disease.Front. Pharmacol.202415133763310.3389/fphar.2024.1337633 38650630
    [Google Scholar]
  49. OzkanG. CeyhanT. ÇatalkayaG. RajanL. UllahH. DagliaM. Encapsulated phenolic compounds: Clinical efficacy of a novel delivery method.Phytochem. Rev.2024202409909510.1007/s11101‑023‑
    [Google Scholar]
  50. IksenW.W. WitayateerapornW. HardiantiB. PongrakhananonV. Comprehensive review of Bcl‐2 family proteins in cancer apoptosis: Therapeutic strategies and promising updates of natural bioactive compounds and small molecules.Phytother. Res.20243852249227510.1002/ptr.8157 38415799
    [Google Scholar]
  51. SenrungA. TripathiT. AggarwalN. JanjuaD. YadavJ. ChaudharyA. Phytochemicals showing antiangiogenic effect in pre-clinical models andtheir potential as an alternative to existing therapeutics.Curr. Top. Med. Chem.2024244259300
    [Google Scholar]
  52. SharmaJ. BhargavaP. MishraP. BhatiaJ. AryaD.S. Molecular mechanisms of flavonoids in myocardial ischemia reperfusion injury: Evidence from in-vitro and in-vivo studies.Vascul. Pharmacol.202415510737810.1016/j.vph.2024.107378 38729253
    [Google Scholar]
  53. ZhangG. WangQ. JiangB. YaoL. WuW. ZhangX. WanD. GuY. Progress of medicinal plants and their active metabolites in ischemia-reperfusion injury of stroke: A novel therapeutic strategy based on regulation of crosstalk between mitophagy and ferroptosis.Front. Pharmacol.202415137444510.3389/fphar.2024.1374445 38650626
    [Google Scholar]
  54. ZhaoX.Y. WangJ.Q. NeelyG.G. ShiY.C. WangQ.P. Natural compounds as obesity pharmacotherapies.Phytother. Res.202438279783810.1002/ptr.8083 38083970
    [Google Scholar]
  55. SunZ.G. YaoC.J. UllahI. ZhuH.L. Recent advances in natural products with anti-leukemia and anti-lymphoma activities.Mini. Rev. Med. Chem.202424666467110.2174/0113895575258798230927061557
    [Google Scholar]
  56. TanS.P. KengX.Y. Bryan LimC.W. TanH.Y. Traditional Uses, phytochemistry and pharmacological activities of tradescantia spathacea-X.Rec. Nat. Prod.2024217620010.25135/rnp.436.2311.2983
    [Google Scholar]
  57. WendlochaD. KubinaR. KrzykawskiK. Mielczarek-PalaczA. Selected flavonols targeting cell death pathways in cancer therapy: The latest achievements in research on apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis.Nutrients2024168120110.3390/nu16081201 38674891
    [Google Scholar]
  58. SethiyaN.K. GhiloriaN. SrivastavA. BishtD. ChaudharyS.K. WaliaV. Therapeutic potential of myricetin in the treatment of neurological, neuropsychiatric, and neurodegenerative disorders.CNS Neurol. Disord. Drug Targets20242387865882
    [Google Scholar]
  59. IslamA. RahatI. Anurag RejeethC. SharmaD. SharmaA. Recent advcances on plant-based bioengineered nanoparticles using secondary metabolites and their potential in lung cancer management.J. Future Foods20255112010.1016/j.jfutfo.2024.01.001
    [Google Scholar]
  60. LiK. XiaT. JiangY. WangN. LaiL. XuS. YueX. XinH. A review on ethnopharmacology, phytochemistry, pharmacology and potential uses of Portulaca oleracea L.J. Ethnopharmacol.2024319Pt 211721110.1016/j.jep.2023.117211 37739100
    [Google Scholar]
  61. JiangX. YangQ. Recent advances in glycoside hydrolase family 20 and 84 inhibitors: Structures, inhibitory mechanisms and biological activities.Bioorg. Chem.202414210687010.1016/j.bioorg.2023.106870
    [Google Scholar]
  62. XiaT. ZhuR. Multiple molecular and cellular mechanisms of the antitumour effect of dihydromyricetin (Review).Biomed. Rep.20242058210.3892/br.2024.1769 38628627
    [Google Scholar]
  63. TrivediA. HasanA. AhmadR. SiddiquiS. SrivastavaA. MisraA. MirS.S. Flavonoid myricetin as potent anticancer Agent: A possibility towards development of potential anticancer nutraceuticals.Chin. J. Integr. Med.2024301758410.1007/s11655‑023‑3701‑5 37340205
    [Google Scholar]
  64. VanjarapuH.D. DukkipatiS. PandyV. A review on phytochemical, biological, and pharma-cological effects of Psidium guajava Linn. (Guava).IJPSN20241711710.37285/ijpsn.2024.17.1.7
    [Google Scholar]
  65. RainaJ. FirdousA. SinghG. KumarR. KaurC. Role of polyphenols in the management of diabetic complications.Phytomedicine202412215515510.1016/j.phymed.2023.155155 37922790
    [Google Scholar]
  66. SarjeraoB.B. SuranaS.S. A comprehensive review on Elaeocarpus floribundus Blume.Curr. Trad. Med.2024102323610.2174/2215083809666230228112737
    [Google Scholar]
  67. WahiA. BishnoiM. RainaN. SinghM.A. VermaP. GuptaP.K. Recent updates on nano-phyto-formulations based therapeutic intervention for cancer treatment.Oncol. Res.20243211947
    [Google Scholar]
  68. GawliK. BojjaK.S. Molecules and targets of antidiabetic interest.Phytomed. Plus20244110050610.1016/j.phyplu.2023.100506
    [Google Scholar]
  69. GongY. ShiZ.N. YuJ. HeX.F. MengX.H. WuQ.X. ZhuY. The genus Scorzonera L. (Asteraceae): A comprehensive review on traditional uses, phytochemistry, pharmacology, toxicology, chemotaxonomy, and other applications.J. Ethnopharmacol.202432011678710.1016/j.jep.2023.116787 37390877
    [Google Scholar]
  70. BouyahyaA. BakrimS. ChamkhiI. TahaD. El OmariN. El MneyiyN. El HachlafiN. El-ShazlyM. KhalidA. AbdallaA.N. GohK.W. MingL.C. GohB.H. AannizT. Bioactive substances of cyanobacteria and microalgae: Sources, metabolism, and anticancer mechanism insights.Biomed. Pharmacother.202417011598910.1016/j.biopha.2023.115989 38103309
    [Google Scholar]
  71. AngeloL.S. KurzrockR. Vascular endothelial growth factor and its relationship to inflammatory mediators.Clin. Cancer Res.200713102825283010.1158/1078‑0432.CCR‑06‑2416 17504979
    [Google Scholar]
  72. JavedZ. KhanK. Herrera-BravoJ. NaeemS. IqbalM.J. RazaQ. SadiaH. RazaS. BhinderM. CalinaD. Sharifi-RadJ. ChoW.C. Myricetin: Targeting signaling networks in cancer and its implication in chemotherapy.Cancer Cell Int.202222123910.1186/s12935‑022‑02663‑2 35902860
    [Google Scholar]
  73. ShibuyaM. VEGF-VEGFR system as a target for suppressing inflammation and other diseases.Endocr. Metab. Immune Disord. Drug Targets201515213514410.2174/1871530315666150316121956
    [Google Scholar]
  74. Azimi-NezhadM. StathopoulouM.G. BonnefondA. RancierM. SalehA. LamontJ. FitzgeraldP. NdiayeN.C. Visvikis-SiestS. Associations of vascular endothelial growth factor (VEGF) with adhesion and inflammation molecules in a healthy population.Cytokine201361260260710.1016/j.cyto.2012.10.024 23201487
    [Google Scholar]
  75. BeckeA.D. Density-functional thermochemistry. III. The role of exact exchange.J. Chem. Phys.19939875648565210.1063/1.464913
    [Google Scholar]
  76. FrischM.J. TrucksG.W. SchlegelH.B. ScuseriaG.E. RobbM.A. CheesemanJ.R. Gaussian 09, Revision D.01.Wallingford, CTGaussian, Inc.2009
    [Google Scholar]
  77. DenningtonR. KeithT.A. MillamJ.M. GaussView 6.2019Available From: https://gaussian.com/gaussview6/
    [Google Scholar]
  78. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  79. DesmondD. Shaw Research: New York.2017Available From: https://www.deshawresearch.com/downloads/download_desmond.cgi/
  80. ŞenelP. AgarS. SayinV.O. AltayF. YurtseverM. GölcüA. Elucidation of binding interactions and mechanism of Fludarabine with dsDNA via multispectroscopic and molecular docking studies.J. Pharm. Biomed. Anal.202017911299410.1016/j.jpba.2019.112994 31791837
    [Google Scholar]
  81. ŞenelP. AgarS. İşY.S. AltayF. GölcüA. YurtseverM. Deciphering the mechanism and binding interactions of Pemetrexed with dsDNA with DNA-targeted chemotherapeutics via spectroscopic, analytical, and simulation studies.J. Pharm. Biomed. Anal.202220911449010.1016/j.jpba.2021.114490 34875572
    [Google Scholar]
  82. AgarS. AkkurtB. UlukayaE. The inhibition mechanism of pancreatic ductal adenocarcinoma via LXR receptors: A multifaceted approach integrating molecular docking, molecular dynamics and post-MD inter-molecular contact analysis.Asian Pac. J. Cancer Prev.202324124103410910.31557/APJCP.2023.24.12.4103 38156844
    [Google Scholar]
  83. CheraghiS. ŞenelP. Dogan TopalB. AgarS. MajidianM. YurtseverM. Bellur AticiE. GölcüA. OzkanS. Elucidation of DNA-eltrombopag binding: Electrochemical, spectroscopic and molecular docking techniques.Biosensors (Basel)202313330010.3390/bios13030300 36979512
    [Google Scholar]
  84. ŞenelP. AgarS. YurtseverM. GölcüA. Voltammetric quantification, spectroscopic, and DFT studies on the binding of the antineoplastic drug Azacitidine with DNA.J. Pharm. Biomed. Anal.202423711574610.1016/j.jpba.2023.115746 37862849
    [Google Scholar]
  85. AgarS. AkkurtB. UlukayaE. New organic chemistry drug design to suppress nonalcoholic steatohepatitis.J. Turkish Chem. Soc. Sec. A: Chem.2024112139540310.18596/jotcsa.1395403
    [Google Scholar]
  86. AgarS. AkkurtB. AlparslanL. De novo drug design to suppress coronavirus RNA-glycoprotein via PNA-calcitonin.J. Turkish Chem. Soc. Sec. A: Chem.202411262363210.18596/jotcsa.1406290
    [Google Scholar]
  87. LiG.S. Martins-CostaM.T.C. MillotC. Ruiz-LópezM.F. AM1/TIP3P molecular dynamics simulation of imidazole proton-relay processes in aqueous solution.Chem. Phys. Lett.19982971-2384410.1016/S0009‑2614(98)01128‑2
    [Google Scholar]
  88. MartynaG.J. TobiasD.J. KleinM.L. Constant pressure molecular dynamics algorithms.J. Chem. Phys.199410154177418910.1063/1.467468
    [Google Scholar]
/content/journals/mc/10.2174/0115734064333811240928105309
Loading
/content/journals/mc/10.2174/0115734064333811240928105309
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test