Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

The imidazole scaffold is a cornerstone in medicinal chemistry, widely recognized for its extensive range of biological activities and ability to form stable metal complexes. This review article provides a detailed overview of recent advancements in synthesizing, characterization, and biological evaluation of metal-complexed imidazole derivatives. We explored various synthetic strategies to create diverse metal-based imidazole complexes, emphasizing innovations that enhance efficiency and yield. Furthermore, we delve into the biological profiling of imidazole derivatives, summarizing key findings from studies investigating their antimicrobial, antifungal, anticancer, and other therapeutic properties. Special attention is given to metal coordination's role in modulating these compounds' biological activity. The review discusses the synthesis of imidazole-metal complexes, illustrating how metal ions such as copper, zinc, and iron enhance the pharmacological profiles of imidazole derivatives. Thus, the data from numerous studies was collated and analyzed to comprehensively understand the current landscape and future prospects in imidazole chemistry associated with metals. It is a valuable resource for researchers, guiding future investigations and fostering the development of novel metal-based imidazole therapeutics.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064332208241015154509
2024-10-30
2025-12-08
Loading full text...

Full text loading...

References

  1. PatelG. DewanganD.K. BhakatN. BanerjeeS. Green approaches for the synthesis of poly-functionalized imidazole derivatives: A comprehensive review.Curr. Res. Green Sust. Chem.2021410017510.1016/j.crgsc.2021.100175
    [Google Scholar]
  2. LiuH. YangS. LiT. MaS. WangP. WangG. SuS. DingY. YangL. ZhouX. YangS. Design, synthesis and bioactivity evaluation of novel 2-(pyrazol-4-yl)-1,3,4-oxadiazoles containing an Imidazole fragment as antibacterial agents.Molecules2023286244210.3390/molecules2806244236985415
    [Google Scholar]
  3. JainA.K. RavichandranV. SisodiyaM. AgrawalR.K. Synthesis and antibacterial evaluation of 2-substituted-4,5-diphenyl-N-alkyl imidazole derivatives.Asian Pac. J. Trop. Med.20103647147410.1016/S1995‑7645(10)60113‑7
    [Google Scholar]
  4. RamachandranR. RaniM. SenthanS. JeongY.T. KabilanS. Synthesis, spectral, crystal structure and in vitro antimicrobial evaluation of imidazole/benzotriazole substituted piperidin-4-one derivatives.Eur. J. Med. Chem.20114651926193410.1016/j.ejmech.2011.02.03621397368
    [Google Scholar]
  5. BamoroC. BambaF. Steve-EvanesK.T.D. AurélieV. VincentC. Design, synthesis and antibacterial activity evaluation of 4,5-Diphenyl-1H-imidazoles derivatives.Open J. Med. Chem.2021112172610.4236/ojmc.2021.112002
    [Google Scholar]
  6. YangW.C. LiJ. LiJ. ChenQ. YangG.F. Novel synthetic methods for N-cyano-1H-imidazole-4-carboxamides and their fungicidal activity.Bioorg. Med. Chem. Lett.20122231455145810.1016/j.bmcl.2011.11.11522189134
    [Google Scholar]
  7. AlkahtaniH.M. AbbasA.Y. WangS. Synthesis and biological evaluation of benzo[d]imidazole derivatives as potential anti-cancer agents.Bioorg. Med. Chem. Lett.20122231317132110.1016/j.bmcl.2011.12.08822225635
    [Google Scholar]
  8. AruchamyB. DragoC. RussoV. PitariG.M. RamaniP. AneeshT.P. BennyS. VishnuV.R. Imidazole-pyridine hybrids as potent anti-cancer agents.Eur. J. Pharm. Sci.202318010632310.1016/j.ejps.2022.10632336336277
    [Google Scholar]
  9. PandeyS. TripathiP. ParasharP. MauryaV. MalikM.Z. SinghR. YadavP. TandonV. Synthesis and biological evaluation of Novel 1 H -Benzo[ d]imidazole derivatives as potential anticancer agents targeting human topoisomerase I.ACS Omega2022732861288010.1021/acsomega.1c0574335097282
    [Google Scholar]
  10. TaheriB. TaghaviM. ZareiM. ChamkouriN. MojaddamiA. Imidazole and carbazole derivatives as potential anticancer agents: Molecular docking studies and cytotoxic activity evaluation.Bull. Chem. Soc. Ethiop.202034237738410.4314/bcse.v34i2.14
    [Google Scholar]
  11. ZhanP. LiuX. ZhuJ. FangZ. LiZ. PannecouqueC. ClercqE.D. Synthesis and biological evaluation of imidazole thioacetanilides as novel non-nucleoside HIV-1 reverse transcriptase inhibitors.Bioorg. Med. Chem.200917165775578110.1016/j.bmc.2009.07.02819643613
    [Google Scholar]
  12. AzimiS.G. BagherzadeG. SaberiM.R. TehranizadehZ. Discovery of new ligand with Quinoline Scaffold as potent allosteric inhibitor of HIV-1 and its copper complexes as a powerful catalyst for the synthesis of chiral Benzimidazole derivatives, and in Silico Anti-HIV-1 studies.Bioinorg. Chem. Appl.202320231288158210.1155/2023/288158237125145
    [Google Scholar]
  13. PatelH.M. NoolviM.N. SethiN.S. GadadA.K. CameotraS.S. Synthesis and antitubercular evaluation of imidazo[2,1- b][1,3,4]thiadiazole derivatives.Arab. J. Chem.201710S996S100210.1016/j.arabjc.2013.01.001
    [Google Scholar]
  14. PapadopoulouM.V. BloomerW.D. RosenzweigH.S. ArenaA. ArrietaF. RebolledoJ.C.J. SmithD.K. Nitrotriazole- and imidazole-based amides and sulfonamides as antitubercular agents.Antimicrob. Agents Chemother.201458116828683610.1128/AAC.03644‑1425182645
    [Google Scholar]
  15. NadafA.A. BulbuleS.R. YaseenM. NajareM.S. ManturS. KhaziI.A.M. Synthesis of 1,2‐disubstituted Imidazole derivatives as potent inhibitors of Mycobacterium tuberculosis and their in silico Studies.ChemistrySelect20216191510.1002/slct.202003731
    [Google Scholar]
  16. GisingJ. NilssonM.T. OdellL.R. YahiaouiS. LindhM. IyerH. SinhaA.M. SrinivasaB.R. LarhedM. MowbrayS.L. KarlénA. Trisubstituted imidazoles as Mycobacterium tuberculosis glutamine synthetase inhibitors.J. Med. Chem.20125562894289810.1021/jm201212h22369127
    [Google Scholar]
  17. AliS. AliM. KhanA. UllahS. WaqasM. Al-HarrasiA. LatifA. AhmadM. SaadiqM. Novel 5-(Arylideneamino)-1 H -Benzo[ d]imidazole-2-thiols as potent anti-diabetic agents: Synthesis, In vitro α-Glucosidase inhibition, and molecular docking studies.ACS Omega2022748434684347910.1021/acsomega.2c0385436506132
    [Google Scholar]
  18. AdibM. Design and synthesis of new fused carbazole-imidazole derivatives as anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic, and in silico studies.Bioorganic. Med. Chem. Lett.20192971310.1016/j.bmcl.2019.01.012
    [Google Scholar]
  19. SaccolitiF. MadiaV.N. TudinoV. De LeoA. PescatoriL. MessoreA. De VitaD. ScipioneL. BrunR. KaiserM. MäserP. CalvetC.M. JenningsG.K. PodustL.M. PepeG. CirilliR. FaggiC. Di MarcoA. BattistaM.R. SummaV. CostiR. Di SantoR. Design, synthesis, and biological evaluation of new 1-(Aryl-1 H -pyrrolyl)(phenyl)methyl-1 H -imidazole Derivatives as Antiprotozoal Agents.J. Med. Chem.20196231330134710.1021/acs.jmedchem.8b0146430615444
    [Google Scholar]
  20. AguirreG. BoianiM. CerecettoH. GerpeA. GonzálezM. SainzY.F. DenicolaA. de OcárizC.O. NogalJ.J. MonteroD. EscarioJ.A. Novel antiprotozoal products: Imidazole and benzimidazole N-oxide derivatives and related compounds.Arch. Pharm. (Weinheim)2004337525927010.1002/ardp.20030084015095419
    [Google Scholar]
  21. VermaB.K. KapoorS. KumarU. PandeyS. AryaP. Synthesis of new Imidazole derivatives as effective antimicrobial agents.Eur. J. Chem.2017511910.30750/ijpbr.5.1.1
    [Google Scholar]
  22. AnupamA. Al-BrattyM. AlhazmiH.A. AhmadS. MaityS. AlamM.S. AhsanW. Synthesis and biological evaluation of triphenyl-imidazoles as a new class of antimicrobial agents.Eur. J. Chem.20189436937410.5155/eurjchem.9.4.369‑374.1785
    [Google Scholar]
  23. AwasthiA. RahmanM.A. Bhagavan RajuM. Synthesis, in silico studies, and in vitro anti-inflammatory activity of novel Imidazole derivatives targeting p38 MAP Kinase.ACS Omega2023820177881779910.1021/acsomega.3c0060537251188
    [Google Scholar]
  24. HusainA. DrabuS. KumarN. AlamM.M. BawaS. Synthesis and biological evaluation of di- and tri-substituted imidazoles as safer anti-inflammatory-antifungal agents.J. Pharm. Bioallied Sci.20135215416110.4103/0975‑7406.11182223833522
    [Google Scholar]
  25. GabaM. SinghD. SinghS. SharmaV. GabaP. Synthesis and pharmacological evaluation of novel 5-substituted-1-(phenylsulfonyl)-2-methylbenzimidazole derivatives as anti-inflammatory and analgesic agents.Eur. J. Med. Chem.20104562245224910.1016/j.ejmech.2010.01.06720172630
    [Google Scholar]
  26. AcharK.C.S. HosamaniK.M. SeetharamareddyH.R. In-vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives.Eur. J. Med. Chem.20104552048205410.1016/j.ejmech.2010.01.02920133024
    [Google Scholar]
  27. HamdaniH.E. AmaneM.E. Preparation, spectral, antimicrobial properties and anticancer molecular docking studies of new metal complexes [M(caffeine)4] (PF6)2; M = Fe(II), Co(II), Mn(II), Cd(II), Zn(II), Cu(II), Ni(II).J. Mol. Struct.2019118426227010.1016/j.molstruc.2019.02.049
    [Google Scholar]
  28. Al-HazmiG.A.A. Abou-MelhaK.S. AlthagafiI. El-MetwalyN. ShaabanF. AbdulM.S. El-BindaryA.A. Synthesis and structural characterization of oxovanadium(IV) complexes of dimedone derivatives.Appl. Organomet. Chem.2020348e567210.1002/aoc.5672
    [Google Scholar]
  29. El-GammalO.A. MohamedF.S. RezkG.N. El-BindaryA.A. Synthesis, characterization, catalytic, DNA binding and antibacterial activities of Co(II), Ni(II) and Cu(II) complexes with new Schiff base ligand.J. Mol. Liq.202132611522310.1016/j.molliq.2020.115223
    [Google Scholar]
  30. El-GammalO.A. MohamedF.S. RezkG.N. El-BindaryA.A. Structural characterization and biological activity of a new metal complexes based of Schiff base.J. Mol. Liq.202133011552210.1016/j.molliq.2021.115522
    [Google Scholar]
  31. KongotM. ReddyD.S. SinghV. PatelR. SinghalN.K. KumarA. Oxidovanadium (IV) and iron (III) complexes with O2N2 donor linkage as plausible antidiabetic candidates: Synthesis, structural characterizations, glucose uptake and model biological media studies.Appl. Organomet. Chem.2020342e532710.1002/aoc.5327
    [Google Scholar]
  32. NageshG.Y. Mahendra RajK. MruthyunjayaswamyB.H.M. Synthesis, characterization, thermal study and biological evaluation of Cu(II), Co(II), Ni(II) and Zn(II) complexes of Schiff base ligand containing thiazole moiety.J. Mol. Struct.2015107942343210.1016/j.molstruc.2014.09.013
    [Google Scholar]
  33. SiwachA. VermaP.K. Synthesis and therapeutic potential of imidazole containing compounds.BMC Chem.20211511210.1186/s13065‑020‑00730‑133602331
    [Google Scholar]
  34. VermaA. JoshiS. SinghD. Imidazole: Having versatile biological activities.J. Chem.20132013132941210.1155/2013/329412
    [Google Scholar]
  35. TolomeuH.V. FragaC.A.M. Imidazole: Synthesis, functionalization and physicochemical properties of a privileged structure in medicinal chemistry.Molecules202328283810.3390/molecules2802083836677894
    [Google Scholar]
  36. JabbarH.S. Al-EdanA.K. KadhumA.A.H. RoslamW.N. SobriM. Synthesis and characterization of Imidazole derivatives and catalysis using chemical pharmaceutical compounds.J. Adv. Res. Dyn. Control Syst.2019111928
    [Google Scholar]
  37. SlassiS. Fix-TaillerA. LarcherG. AmineA. El-GhayouryA. Imidazole and Azo-based Schiff bases ligands as highly active antifungal and antioxidant components.Heteroatom Chem.2019306686217010.1155/2019/6862170
    [Google Scholar]
  38. BouchalB. AbrigachF. TakfaouiA. ElidrissiM. ElidrissiM. DixneufP.H. DoucetH. TouzaniR. BellaouiM. Identification of novel antifungal agents: Antimicrobial evaluation, SAR, ADME-Tox and molecular docking studies of a series of imidazole derivatives.BMC Chem.201913110010.1186/s13065‑019‑0623‑631410411
    [Google Scholar]
  39. RamachandranS. PandaM. MukherjeeK. ChoudhuryN.R. TantryS.J. KedariC.K. RamachandranV. SharmaS. RamyaV.K. GupthaS. SambandamurthyV.K. Synthesis and structure activity relationship of imidazo[1,2-a]pyridine-8-carboxamides as a novel antimycobacterial lead series.Bioorg. Med. Chem. Lett.201323174996500110.1016/j.bmcl.2013.06.04323867166
    [Google Scholar]
  40. VeerasamyR. RoyA. KarunakaranR. RajakH. Structure-activity relationship analysis of benzimidazoles as emerging anti-inflammatory agents: An overview.Pharmaceuticals202114766310.3390/ph1407066334358089
    [Google Scholar]
  41. PoyrazS. YıldırımM. ErsatirM. Recent pharmacological insights about imidazole hybrids: A comprehensive review.Med. Chem. Res.202433683986810.1007/s00044‑024‑03230‑2
    [Google Scholar]
  42. SaxerS. MarestinC. MercierR. DupuyJ. The multicomponent Debus-Radziszewski reaction in macromolecular chemistry.Polym. Chem.20189151927193310.1039/C8PY00173A
    [Google Scholar]
  43. BenincoriT. BrennaE. SannicoloF. Studies on Wallach’s imidazole synthesis.J. Chem. Soc., Perkin Trans. 11993667510.1039/p19930000675
    [Google Scholar]
  44. BhatnagarA. SharmaP.K. KumarN. A review on “Imidazoles”: Their chemistry and pharmacological potentials.Int. J. Pharm. Tech. Res.20113268
    [Google Scholar]
  45. NalageS. KalyankarM.B. PatilV.S. BhosaleS.V. DeshmukhS.U. PawarR.P. An Efficient noncatalytic protocol for the synthesis of trisubstituted imidazole in polyethylene glycol using microwaves~!2009-11-14~!2010-03-10~!2010-09-16~!Open Catal. J.201031586110.2174/1876214X01003010058
    [Google Scholar]
  46. DeviM.M. DeviK.S. SinghO.M. SinghT.P. Synthesis of imidazole derivatives in the last 5 years: An update.Heterocycl. Commun.20243012022017310.1515/hc‑2022‑0173
    [Google Scholar]
  47. AlshehriN.S. SharfalddinA.A. DomyatiD. BasalehA.S. HussienM.A. Experiment versus theory of copper (II) complexes based imidazole derivatives as anti-cancer agents.J. Indian Chem. Soc.2022991010069210.1016/j.jics.2022.100692
    [Google Scholar]
  48. SelwinR. ReshmaR. ArishD. ElumalaiV. Antimicrobial, photocatalytic action and molecular docking studies of imidazole-based Schiff base complexes.Results Chem.2022410058310.1016/j.rechem.2022.100583
    [Google Scholar]
  49. DesaiD.G. SurejaD.K. SethA.K. PrajapatiB.R. MolviK.I. Synthesis of Co (II) complex of some novel 5-nitroimidazole derivatives for its antibacterial activity.J. Integrated Health Sci.2016412630
    [Google Scholar]
  50. AbdulghaniA.J. HussainR.K. Synthesis and characterization of schiff base metal complexes derived from Cefotaxime with 1 H -Indole-2, 3-Dione (Isatin) And.Sch. Res. Libr.2015783
    [Google Scholar]
  51. MahdiM.A. JasimL.S. MohamedM.H. Synthesis and anticancer activity evaluation of novel ligand 2- [2 - (5-Chloro Carboxy Phenyl) Azo] 1-Methyl Imidazole (1-Mecpai) with some metal complexes.Syst. Rev. Pharm.2020111979
    [Google Scholar]
  52. RehmanS. IkramM. RehmanS. FaizA. Shahnawaz. Synthesis, characterization and antimicrobial studies of transition metal complexes of Imidazole derivative.Bull. Chem. Soc. Ethiop.201024201
    [Google Scholar]
  53. RadhaV.P. JoneS. ChitraS. Synthesis, characterization and biological investigations of novel Schiff base ligands containing imidazoline moiety and their Co(II) and Cu(II) complexes.J. Mol. Struct.2018116524625810.1016/j.molstruc.2018.03.109
    [Google Scholar]
  54. NguyenV.T. HuynhT.K.C. HoG.T.T. NguyenT.H.A. Le AnhT. DaoD.Q. MaiT.V.T. HuynhL.K. HoangT.K.D. Metal complexes of benzimidazole-derived as potential anti-cancer agents: Synthesis, characterization, combined experimental and computational studies.R. Soc. Open Sci.20229922065910.1098/rsos.22065936147940
    [Google Scholar]
  55. JawadS.H. Al-AdileeK.J. Synthesis and characterization of a new 1-methyl imidazole derived ligand with its ionic complexes Pd(II) and Pt(IV) and study of biological activity as anticancer and antioxidant.Results Chem.2022410057310.1016/j.rechem.2022.100573
    [Google Scholar]
  56. GomleksizM. AlkanC. ErdemB. Synthesis, characterization and antibacterial activity of imidazole derivatives of 1,10-phenanthroline and their Cu(II), Co(II) and Ni(II) complexes.S. Afr. J. Chem.201366107
    [Google Scholar]
  57. MohammedF. Synthesis and biological activity of some complexes of (2-phenyl-4-arylidine imidazole- 5-one) with some transition metal ions.Int. J. Adv. Res. (Indore)20142399
    [Google Scholar]
  58. YahyaW.I. MgheedT.H. KadhiumA.J. Preparation, characterization of some metal complexes of new mixed ligands derived from 5-methyl imidazole and study the biological activity of Palladium (II) complex as Anticance.Neuroquantology2022201718310.14704/nq.2022.20.1.NQ22010
    [Google Scholar]
  59. ReshmaR. Selwin JoseyphusR. ArishD. ReshmiR.J. JohnsonJ. Tridentate imidazole-based Schiff base metal complexes: Molecular docking, structural and biological studies.J. Biomol. Struct. Dyn.202240188602861410.1080/07391102.2021.191417133896364
    [Google Scholar]
  60. KadhiumD.A.J. AbdulrasoolR.N. synthesis and characterization some transition metal complexes of new ligand Chalcone-Azo derivatives from P-methoxy-4, 5-diphenyl Imidazole and study biological effect of Pd(II) complex.Neuroquantology202220317318110.14704/nq.2022.20.3.NQ22057
    [Google Scholar]
  61. GomleksizM. AlkanC. ErdemB. Synthesis, characterization and antibacterial activity of 2-p-tolyl-1H-imidazo [4, 5-f][1, 10] phenanthroline and its Co (II), Ni (II) and Cu (II) complexes.Bull. Chem. Soc. Ethiop.2013272213220
    [Google Scholar]
  62. SelwinR. ShijuC. JosephJ. JustinC. ArishD. Synthesis and characterization of metal complexes of Schiff base ligand derived from imidazole-2-carboxaldehyde and 4-aminoantipyrine.Spectrochim. Acta A Mol. Biomol. Spectrosc.201413314915510.1016/j.saa.2014.05.05024934973
    [Google Scholar]
  63. MolS. JustinC. JosephJ. SelwinR. Synthesis, spectral characterization and anticancer studies of some metal(II) complexes derived from Imidazole-2-carboxaldehyde with 2-Amino-3-carboxyethyl-4,5-dimethylthiophene.Orient. J. Chem.20173331477148210.13005/ojc/330351
    [Google Scholar]
  64. EslamiM. DivsalarA. AbolhosseiniA. SabouryA.A. Synthesis, cytotoxicity assessment, and interaction and docking of novel palladium(II) complexes of imidazole derivatives with human serum albumin.J. Biomol. Struct. Dyn.20163481751176210.1080/07391102.2015.109034526338667
    [Google Scholar]
  65. SelwinR. SivasankaranM. Synthesis, characterization and antimicrobial activity of transition metal complexes with the Schiff base derived from imidazole-2-carboxaldehyde and glycylglycine.J. Coord. Chem.200962231932710.1080/00958970802236048
    [Google Scholar]
  66. YadavP. SharmaS. KumariS. RankaM. Mixed ligand complex of monovalent copper with Benzimidazole derivatives and Alanine: Synthesis, characterization and antimicrobial studies.Indian J. Chem. Sect. A2021601539
    [Google Scholar]
  67. RashedN.M. AbdullahaS.A. Synthesis, characterization and biological activity of mixed ligand complexes of some metal ions containing new 2- thioxoimidazolidine-4- one derivative and amino acid.Nat. Volatiles Essent. Oils J.2021859004
    [Google Scholar]
  68. HusseinM.B. MohammedM.M. SulfabY. Synthesis, characterization and antimicrobial study of Pd(II) and Pt(II) complexes of 4-methyl-5-Imidazolecarboxaldehyde Thiosemicarbazone.Scholars Int. J. Chem. Mater. Sci.20236111710.36348/sijcms.2023.v06i01.001
    [Google Scholar]
  69. MoghadamM.E. DivsalarA. ZareM.S. GholizadehR. MahallehD. SaghatforoshL. SanatiS. Anticancer, antibacterial and antifungal activity of new ni (ii) and cu (ii) complexes of imidazole-phenanthroline derivatives.Nucleosides Nucleotides Nucleic Acids2017361166767510.1080/15257770.2017.138839329185856
    [Google Scholar]
  70. Kalinowska-LisU. SzewczykE.M. ChęcińskaL. WojciechowskiJ.M. WolfW.M. OchockiJ. Synthesis, characterization, and antimicrobial activity of silver(I) and copper(II) complexes of phosphate derivatives of pyridine and benzimidazole.ChemMedChem20149116917610.1002/cmdc.20130033324218046
    [Google Scholar]
  71. KanthechaD.A. BhattB.S. PatelM.N. Synthesis, characterization and biological activities of imidazo[1,2-a]pyridine based gold(III) metal complexes.Heliyon201956e0196810.1016/j.heliyon.2019.e0196831294115
    [Google Scholar]
  72. GuoJ.L. LiuG.Y. WangR.Y. SunS.X. Synthesis and structure elucidation of two essential metal complexes: in-vitro studies of their BSA/HSA-binding properties, docking simulations, and anticancer activities.Molecules2022276188610.3390/molecules2706188635335248
    [Google Scholar]
  73. AliF.J. RadhiE.R. AliK.J. Synthesis and characterization of a new azo ligand derivative from 4,5-BIS(4-Methoxyphenyl) Imidazol and its metal complexes and biological activity study of its PD(II) complex.Pak. J. Med. Health Sci.202216743143410.53350/pjmhs22167431
    [Google Scholar]
  74. Al-HadiB.A. OthmanE.A. KaremL.K.A. Synthesis, characterization, and biological studies of new complexes derived from 2-(1H-Benzimidazol-2-Yl).Aniline. Int. J. Drug Deliv. Technol.202111937
    [Google Scholar]
  75. Al-HakimiA.N. AlminderejF. ArouaL. AlhagS.K. AlfaifiM.Y. Design, synthesis, characterization of Zirconium (IV), Cadmium (II) and Iron (III) complexes derived from Schiff Base 2-Aminomethylbenzimidazole, 2-Hydroxynaphtadehyde and evaluation of their biological activity.Arab. J. Chem.202013737810.1016/j.arabjc.2020.08.014
    [Google Scholar]
  76. SuwalskyM. CastilloI. Sánchez-EguíaB.N. GallardoM.J. DukesN. Santiago-OsorioE. AguiñigaI. Rivera-MartínezA.R. In vitro effects of benzimidazole/thioether-copper complexes with antitumor activity on human erythrocytes.J. Inorg. Biochem.2018178879310.1016/j.jinorgbio.2017.10.00929121535
    [Google Scholar]
  77. PadalkarV.S. PatilV.S. GuptaV.D. PhatangareK.R. UmapeP.G. SekarN. Synthesis, characterization, thermal properties, and antimicrobial activities of 5-(diethylamino)-2-(5-nitro-1 H -benzimidazol-2-yl)phenol and its transition metal complexes.ISRN Org. Chem.201120111710.5402/2011/73836124052831
    [Google Scholar]
  78. WitwitI.N. MotaweqZ.Y. MubarkH.M. Synthesis, characterization, and biological efficacy on new mixed ligand complexes based from Azo Dye of 8-Hydroxy quinoline as a primary ligand and imidazole as a secondary ligand with some of transition metal ions.J. Pharm. Sci. Res.2018103074
    [Google Scholar]
  79. QuyoomS. Synthesis, characterization and antimicrobial studies of some mixed ligand ternary metal complexes.Int. J. Chem. Sci.2013111448
    [Google Scholar]
  80. MaruM.S. ShahM.K. Synthesis, characterization and antimicrobial evaluation of transition metal complexes of monodentate 2-(substituted phenyl) -1H-benzo[d]imidazoles.Warasan Khana Witthayasat Maha Witthayalai Chiang Mai201542217
    [Google Scholar]
  81. TirkesoR.A. TsegaT.W. AmdemichaelG.G.T. Synthesis, characterization, and antibacterial activities of Ni (II) and Cu (II) complexes.J. Chem.201920197145857
    [Google Scholar]
  82. AbdoonS.N. Al-ObaidyS.S.M. Al-KhafajiY.F. Synthesis, spectral analysis, stability, antibacterial, and antioxidant of Fe(II) mixed ligands complex of imidazole and 1,10-phenanthroline.J. Med. Chem. Sci.202251231
    [Google Scholar]
  83. PawarS. R. SinkarS. N. MoharirS. P. UndegaonkarM. G. MirganeS. R. Green Synthesis , characterization and biological activity study of transition metal complexes of schiff base ligand(19Z) -N- (3- ((Z) - (5 , 6-Dimethyl-1H20188300
    [Google Scholar]
  84. AbdullahS.A.H. FaeqR.I. KadhemN.A. MohsenS. KadhamS.A. Egypt. J. Chem.202366129
    [Google Scholar]
  85. MallikarjunG. Synthesis, characterization, and biological activity of new 2-thioxoimidazolidine-4-one derivatives.Asian J. Res. Chem201710458710.5958/0974‑4150.2017.00098.0
    [Google Scholar]
  86. KalanithiM. RajarajanM. TharmarajP. Synthesis, spectral, and biological studies of transition metal chelates of N-[1-(3-aminopropyl)imidazole]salicylaldimine.J. Coord. Chem.201164584285010.1080/00958972.2011.557432
    [Google Scholar]
/content/journals/mc/10.2174/0115734064332208241015154509
Loading
/content/journals/mc/10.2174/0115734064332208241015154509
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): analgesic; anti-cancer; Biological activity; evaluating methods; imidazole; metal complex
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test