Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Background

Oxadiazole derivatives have shown significant potential as anti-cancer agents with low μM potencies. Some examples of drugs in this class include Raltegravir, Zibotentan, Setileuton (MK-0633), Nesapidil, Furamizole, and Tidazosin. The presence of the oxadiazole nucleus in Raltegravir exemplifies its importance in drug development, showcasing how specific structural motifs like oxadiazole can be strategically incorporated into molecules to achieve desired therapeutic effects. A large number of researchers across the globe have already developed and reported many oxadiazoles as potential anti-cancer medicines.

Objective

Therefore, we tried to discuss the anti-cancer potentials of oxadiazole derivatives reported between 2019 and 2023. The design strategies, structure-activity relationship (SAR), and protein-inhibitor interactions of potential compounds on different targets have to be identified to help the medicinal chemists design new drug-likeness oxadiazole molecules for anti-cancer therapy. Similarly, the ADMET profiles of potential oxadiazoles using the SwissADME tool have to be studied.

Results

We have highlighted the recently reported most potent oxadiazole derivatives as well as their hybrid compounds. The SAR study revealed that oxadiazole-linked pyridine, indazole, thiadiazine, quinoxaline, thiazolidine, indeno-pyrazole, thiophene, piperidine, benzimidazole, triazole, and sulphonamide showcased promising anti-cancer action. The chemico-biological interactions of potential oxadiazole compounds suggest good interactions with different amino acid residues that make them possible candidates for developing novel and effective anti-cancer therapies. Similarly, the ADMET report suggested favourable physicochemical, pharmacokinetic, and drug-likeness properties of potential oxadiazole compounds.

Conclusion

Overall, these results will prove to be a helpful and vital tool for medicinal chemists investigating and working with oxadiazoles for anti-cancer action.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064329573240823113924
2024-08-29
2025-09-03
Loading full text...

Full text loading...

References

  1. GourV.K. YahyaS. Shahar YarM. Unveiling the chemistry of 1,3,4‐oxadiazoles and thiadiazols: A comprehensive review.Arch. Pharm. (Weinheim)20243571230032810.1002/ardp.202300328 37840397
    [Google Scholar]
  2. DesaiN. MonaparaJ. JethawaA. KhedkarV. ShingateB. Oxadiazole: A highly versatile scaffold in drug discovery.Arch. Pharm. (Weinheim)20223559220012310.1002/ardp.202200123 35575467
    [Google Scholar]
  3. DeviK. RaoA.S. PrasadR. RajuK. MounikaD.G. Synthesis, anticancer and antiviral activity studies of 1,3,4-oxadiazoles: A review.Asian J. Chem.202234347348610.14233/ajchem.2022.23490
    [Google Scholar]
  4. AhsanM.J. 1,3,4-oxadiazole containing compounds as therapeutic targets for cancer therapy.Mini Rev. Med. Chem.202222116419710.2174/1389557521666210226145837 33634756
    [Google Scholar]
  5. KumarG. KumarR. MazumderA. 1,3,4-oxadiazoles as anticancer agents: A review.Rec. Patents Anticanc. Drug Discov.202319325726710.2174/1574892818666230727102928 37497702
    [Google Scholar]
  6. SharmaJ. 1, 3, 4-oxadiazole: A versatile therapeutic heterocycle.Advances Biomed. Pharm.20141111010.19046/abp.v01i01.01
    [Google Scholar]
  7. PatelK.D. PrajapatiS.M. PanchalS.N. PatelH.D. Review of synthesis of 1,3,4-oxadiazole derivatives.Synth. Commun.201444131859187510.1080/00397911.2013.879901
    [Google Scholar]
  8. BoströmJ. HognerA. LlinàsA. WellnerE. PlowrightA.T. Oxadiazoles in medicinal chemistry.J. Med. Chem.20125551817183010.1021/jm2013248 22185670
    [Google Scholar]
  9. BalaS. KambojS. KajalA. SainiV. PrasadD.N. 1,3,4-oxadiazole derivatives: Synthesis, characterization, antimicrobial potential, and computational studies.BioMed Res. Int.2014201411810.1155/2014/172791 25147788
    [Google Scholar]
  10. ZhangM. ChenG. ChenY. SuiY. ZhangY. YangW. YuX. Synthesis, biological activities and mechanism studies of 1,3,4-oxadiazole analogues of petiolide A as anticancer agents.Mol. Divers.202420241077310.1007/s11030‑023‑10773‑w 38300352
    [Google Scholar]
  11. VermaG. ChashooG. AliA. KhanM.F. AkhtarW. AliI. AkhtarM. AlamM.M. ShaquiquzzamanM. Synthesis of pyrazole acrylic acid based oxadiazole and amide derivatives as antimalarial and anticancer agents.Bioorg. Chem.20187710612410.1016/j.bioorg.2018.01.007 29353728
    [Google Scholar]
  12. AhsanM.J. SamyJ.G. KhalilullahH. NomaniM.S. SaraswatP. GaurR. SinghA. Molecular properties prediction and synthesis of novel 1,3,4-oxadiazole analogues as potent antimicrobial and antitubercular agents.Bioorg. Med. Chem. Lett.201121247246725010.1016/j.bmcl.2011.10.057 22071303
    [Google Scholar]
  13. GlombT. SzymankiewiczK. ŚwiątekP. Anti-cancer activity of derivatives of 1,3,4-oxadiazole.Molecules20182312336110.3390/molecules23123361 30567416
    [Google Scholar]
  14. KhalilullahH. 1,3,4-Oxadiazole: A biologically active scaffold.Mini Rev. Med. Chem.2012121280126480010.2174/138955712801264800 22512560
    [Google Scholar]
  15. SalahuddinM.A. MazumderA. YarM.S. MazumderR. ChakraborthyG.S. AhsanM.J. RahmanM.U. Updates on synthesis and biological activities of 1,3,4-oxadiazole: A review.Synth. Commun.201747201805184710.1080/00397911.2017.1360911
    [Google Scholar]
  16. MajiA. HimajaA. NikhithaS. RanaS. PaulA. SamantaA. SheeU. MukhopadhyayC. GhoshB. MaityT.K. Synthesis and antiproliferative potency of 1,3,4-thiadiazole and 1,3- thiazolidine-4-one based new binary heterocyclic molecules: In vitro cell-based anticancer studies.RSC Med. Chem.20242024D4MD00279B10.1039/D4MD00279B
    [Google Scholar]
  17. HicksC. GulickR.M. Raltegravir: The first HIV type 1 integrase inhibitor.Clin. Infect. Dis.200948793193910.1086/597290 19231980
    [Google Scholar]
  18. MurtyM.S.R. PenthalaR. NathL. AntoR. Synthesis of salicylic acid-based 1,3,4-oxadiazole derivatives coupled with chiral oxazolidinones: Novel hybrid heterocycles as antitumor agents.Lett. Drug Des. Discov.201411101133114210.2174/1570180811666140627004607
    [Google Scholar]
  19. EsveltM.A. FreemanZ.T. PearsonA.T. HarkemaJ.R. ClinesG.T. ClinesK.L. DysonM.C. HoenerhoffM.J. The endothelin-a receptor antagonist zibotentan induces damage to the nasal olfactory epithelium possibly mediated in part through type 2 innate lymphoid cells.Toxicol. Pathol.201947215016410.1177/0192623318816295 30595110
    [Google Scholar]
  20. BushbyK. FinkelR. WongB. BarohnR. CampbellC. ComiG.P. ConnollyA.M. DayJ.W. FlaniganK.M. GoemansN. JonesK.J. MercuriE. QuinlivanR. RenfroeJ.B. RussmanB. RyanM.M. TuliniusM. VoitT. MooreS.A. Lee SweeneyH. AbreschR.T. ColemanK.L. EagleM. FlorenceJ. GappmaierE. GlanzmanA.M. HenricsonE. BarthJ. ElfringG.L. RehaA. SpiegelR.J. O’donnellM.W. PeltzS.W. McdonaldC.M. Ataluren treatment of patients with nonsense mutation dystrophinopathy.Muscle Nerve201450447748710.1002/mus.24332 25042182
    [Google Scholar]
  21. ChiangJ. HermodssonG. ØieS. The effect of α 1-acid glycoprotein on the pharmacological activity of α 1-adrenergic antagonists in rabbit aortic strips.J. Pharm. Pharmacol.201143854054710.1111/j.2042‑7158.1991.tb03533.x 1681068
    [Google Scholar]
  22. VaidyaA. JainS. JainP. JainP. TiwariN. JainR. JainR. JainA.K. AgrawalR.K. Synthesis and biological activities of oxadiazole derivatives: A review.Mini Rev. Med. Chem.2016161082584510.2174/1389557516666160211120835 26864552
    [Google Scholar]
  23. AtmaramU.A. RoopanS.M. Biological activity of oxadiazole and thiadiazole derivatives.Appl. Microbiol. Biotechnol.20221069-103489350510.1007/s00253‑022‑11969‑0 35562490
    [Google Scholar]
  24. VermaS.K. VermaR. VermaS. VaishnavY. TiwariS.P. RakeshK.P. Anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives: A key review.Eur. J. Med. Chem.202120911288610.1016/j.ejmech.2020.112886 33032083
    [Google Scholar]
  25. TrumpD.L. PayneH. MillerK. De BonoJ.S. StephensonJ. BurrisH.A.III NathanF.E. TaboadaM. MorrisT. HübnerA. Phase I study of the specific endothelin A receptor antagonist zibotentan (ZD4054) combined with docetaxel in patients with metastatic castration-resistant prostate cancer: Assessment of efficacy, pain, and safety.J. Clin. Oncol.20102815_suppl466410.1200/jco.2010.28.15_suppl.4664
    [Google Scholar]
  26. TomkinsonH. KempJ. OliverS. SwaislandH. TaboadaM. MorrisT. Pharmacokinetics and tolerability of zibotentan (ZD4054) in subjects with hepatic or renal impairment: Two open-label comparative studies.BMC Clin. Pharmacol.2011111310.1186/1472‑6904‑11‑3 21414193
    [Google Scholar]
  27. HaqueS. DashwoodM.R. HeetunM. ShiwenX. FarooquiN. RameshB. WelchH. SavageF.J. OgunbiyiO. AbrahamD.J. LoizidouM. Efficacy of the specific endothelin a receptor antagonist zibotentan (ZD4054) in colorectal cancer: A preclinical study.Mol. Cancer Ther.20131281556156710.1158/1535‑7163.MCT‑12‑0975 23723122
    [Google Scholar]
  28. VeenitV. HeerspinkH.J.L. AhlströmC. GreasleyP.J. SkriticS. van ZuydamN. KohanD.E. HansenP.B.L. MenziesR.I. The sodium glucose co-transporter 2 inhibitor dapagliflozin ameliorates the fluid-retaining effect of the endothelin A receptor antagonist zibotentan.Nephrol. Dial. Transplant.202338102289229710.1093/ndt/gfad078 37102226
    [Google Scholar]
  29. MillerK. MoulJ.W. GleaveM. FizaziK. NelsonJ.B. MorrisT. NathanF.E. McIntoshS. PembertonK. HiganoC.S. Phase III, randomized, placebo-controlled study of once-daily oral zibotentan (ZD4054) in patients with non-metastatic castration-resistant prostate cancer.Prostate Cancer Prostatic Dis.201316218719210.1038/pcan.2013.2 23381694
    [Google Scholar]
  30. MorrisC.D. RoseA. CurwenJ. HughesA.M. WilsonD.J. WebbD.J. Specific inhibition of the endothelin A receptor with ZD4054: Clinical and pre-clinical evidence.Br. J. Cancer200592122148215210.1038/sj.bjc.6602676 15956965
    [Google Scholar]
  31. PlummerM. de MartelC. VignatJ. FerlayJ. BrayF. FranceschiS. Global burden of cancers attributable to infections in 2012: A synthetic analysis.Lancet Glob. Health201649e609e61610.1016/S2214‑109X(16)30143‑7 27470177
    [Google Scholar]
  32. MillerK.D. SiegelR.L. LinC.C. MariottoA.B. KramerJ.L. RowlandJ.H. SteinK.D. AlteriR. JemalA. Cancer treatment and survivorship statistics, 2016.CA Cancer J. Clin.201666427128910.3322/caac.21349 27253694
    [Google Scholar]
  33. HousmanG. BylerS. HeerbothS. LapinskaK. LongacreM. SnyderN. SarkarS. Drug resistance in cancer: An overview.Cancers (Basel)2014631769179210.3390/cancers6031769 25198391
    [Google Scholar]
  34. SarkarA. PaulA. BanerjeeT. MajiA. SahaS. BishayeeA. MaityT.K. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer.Eur. J. Pharmacol.202394417558810.1016/j.ejphar.2023.175588 36791843
    [Google Scholar]
  35. MajiA. PaulA. SarkarA. NaharS. BhowmikR. SamantaA. NahataP. GhoshB. KarmakarS. Kumar MaityT. Significance of TRAIL/Apo-2 ligand and its death receptors in apoptosis and necroptosis signalling: Implications for cancer-targeted therapeutics.Biochem. Pharmacol.202422111604110.1016/j.bcp.2024.116041 38316367
    [Google Scholar]
  36. WoodsD. TurchiJ.J. Chemotherapy induced DNA damage response.Cancer Biol. Ther.201314537938910.4161/cbt.23761 23380594
    [Google Scholar]
  37. AliA. BauserM. BertrandS. BlackabyW. BossC. BossartM. HallA. BinchH. CzechtizkyW. GijsenH. HaningH. HartungI.V. KilburnP. LassalleG. LückingU. MackJ. MissbachM. OtsomaaL. TorrensA. WagnerM. WalterM. WeinstablH. van HijfteL. von NussbaumF. European Medicinal Chemistry Leaders in Industry (EMCL) - On the Status and Future of Medicinal Chemistry Research in Europe**.ChemMedChem20231813e20230012710.1002/cmdc.202300127 37276375
    [Google Scholar]
  38. PatrickGL An Introduction to Medicinal Chemistry.Oxford, EnglandOxford University Press202310.1093/hesc/9780198866664.001.0001
    [Google Scholar]
  39. VealeC.G.L. Into the fray! A beginner’s guide to medicinal chemistry.ChemMedChem20211681199122510.1002/cmdc.202000929 33591595
    [Google Scholar]
  40. SchirrmacherV. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review).Int. J. Oncol.201854240741910.3892/ijo.2018.4661 30570109
    [Google Scholar]
  41. SanthanalakshmiK. MargandanK. ManivannanP. JacqulineR.P. Pharmacological significance of Oxadiazole scaffold.Res. J. Chem. Environ.202225817718810.25303/258rjce177188
    [Google Scholar]
  42. NayakS. GaonkarS.L. MusadE.A. DawsarA.M.A.L. 1,3,4-Oxadiazole-containing hybrids as potential anticancer agents: Recent developments, mechanism of action and structure-activity relationships.J. Saudi Chem. Soc.202125810128410.1016/j.jscs.2021.101284
    [Google Scholar]
  43. ChaudharyT. UpadhyayP.K. Recent advancement in synthesis and bioactivities of 1,3,4-oxadiazole.Curr. Org. Synth.202320666367710.2174/1570179420666221129153933 36453511
    [Google Scholar]
  44. KumarS. WadhwaP. Synthesis, molecular docking and biological evaluation of 1,2,4-oxadiazole based novel non-steroidal derivatives against prostate cancer.Bioorg. Chem.202414310702910.1016/j.bioorg.2023.107029 38091717
    [Google Scholar]
  45. CastanetA.S. NafieM.S. SaidS.A. ArafaR.K. Discovery of PIM-1 kinase inhibitors based on the 2,5-disubstituted 1,3,4-oxadiazole scaffold against prostate cancer: Design, synthesis, in vitro and in vivo cytotoxicity investigation.Eur. J. Med. Chem.202325011522010.1016/j.ejmech.2023.115220 36848846
    [Google Scholar]
  46. FawzyS.M. LokshaY.M. El-SadekM. IbrahimS.M. BeshayB.Y. ShamaaM.M. KothayerH. Synthesis of 1,2,4‐triazole and 1,3,4‐oxadiazole derivatives as inhibitors for STAT3 enzymes of breast cancer.Arch. Pharm. (Weinheim)202335611230034510.1002/ardp.202300345 37661355
    [Google Scholar]
  47. ParameshwaraiahS. XiZ. RavishA. MohanA. ShankarnaikV. DukanyaD. BasappaS. PreethamH. PeriyasamyG. GaonkarS. LobieP. PandeyV. BasappaB. Development of an environment-friendly and electrochemical method for the synthesis of an oxadiazole drug-scaffold that targets poly(adp-ribose) polymerase in human breast cancer cells.Catalysts2023138118510.3390/catal13081185
    [Google Scholar]
  48. SucuB.O. KoçE.B. Synthesis of novel oxadiazole derivatives and their cytotoxic activity against various cancer cell lines.Turk. J. Chem.20224641089109610.55730/1300‑0527.3417 37538768
    [Google Scholar]
  49. Abdelsalam OufA.M. Abdelrasheed AllamH. KamelM. RagabF.A. Abdel-AzizS.A. Design, synthesis, cytotoxic and enzyme inhibitory activities of 1,3,4-oxadiazole and 1,3,4-thiadiazine hybrids against non-small cell lung cancer.Results Chem.2022410037310.1016/j.rechem.2022.100373
    [Google Scholar]
  50. KandukuriP. DasariG. NukalaS.K. BandariS. JuluruB. Design and synthesis of some new quinoxaline containing 1,3,4-oxadiazole hybrids and evaluation of their anti-cancer activity.Russ. J. Bioorganic Chem.202349113914610.1134/S1068162023010132
    [Google Scholar]
  51. MajedA.A. AbidD.S. Synthesis of some new thiazolidine and 1,3,4-oxadiazole derived from l-cysteine and study of their biological activity as antioxidant and breast cancer. Lett. Appl.NanoBioSci.20221238210.33263/LIANBS123.082
    [Google Scholar]
  52. AydınE. ŞentürkA.M. KüçükH.B. GüzelM. Cytotoxic activity and docking studies of 2-arenoxybenzaldehyde n-acyl hydrazone and 1,3,4-oxadiazole derivatives against various cancer cell lines.Molecules20222721730910.3390/molecules27217309 36364134
    [Google Scholar]
  53. SofiS. MehrajU. QayoomH. AishaS. AlmilaibaryA. AlkhananiM. MirM.A. Targeting cyclin-dependent kinase 1 (CDK1) in cancer: Molecular docking and dynamic simulations of potential CDK1 inhibitors.Med. Oncol.202239913310.1007/s12032‑022‑01748‑2 35723742
    [Google Scholar]
  54. TongY. SunM. ChenL. WangY. LiY. LiL. ZhangX. CaiY. QieJ. PangY. XuZ. ZhaoJ. ZhangX. LiuY. TianS. QinZ. FengJ. ZhangF. ZhuJ. XuY. LouW. JiY. ZhaoJ. HeF. HouY. DingC. Proteogenomic insights into the biology and treatment of pancreatic ductal adenocarcinoma.J. Hematol. Oncol.202215116810.1186/s13045‑022‑01384‑3 36434634
    [Google Scholar]
  55. PecoraroC. ParrinoB. CascioferroS. PuertaA. AvanA. PetersG.J. DianaP. GiovannettiE. CarboneD. A new oxadiazole-based topsentin derivative modulates cyclin-dependent kinase 1 expression and exerts cytotoxic effects on pancreatic cancer cells.Molecules20212711910.3390/molecules27010019 35011251
    [Google Scholar]
  56. KhanI. GanapathiT. RehmanM.D.M. ShareefM.A. KumarC.G. KamalA. New indenopyrazole linked oxadiazole conjugates as anti-pancreatic cancer agents: Design, synthesis, in silico studies including 3D-QSAR analysis.Bioorg. Med. Chem. Lett.20214412809410.1016/j.bmcl.2021.128094 33964437
    [Google Scholar]
  57. CarboneD. ParrinoB. CascioferroS. PecoraroC. GiovannettiE. Di SarnoV. MusellaS. AuriemmaG. CirrincioneG. DianaP. 1,2,4‐oxadiazole topsentin analogs with antiproliferative activity against pancreatic cancer cells, targeting GSK3β kinase.ChemMedChem202116353755410.1002/cmdc.202000752 33141472
    [Google Scholar]
  58. LelyukhM. PylypchukI. KalytovskaM. HarkovS. KostyshynL. DrapakI. Synthesis and anti-cancer activity evaluation of novel 1,3,4-oxadiazole substituted 5-arylidene/isatinylidene-2-iminothiazolidin-4-ones.Biointerface Res. Appl. Chem.20211211161117310.33263/BRIAC121.11611173
    [Google Scholar]
  59. XuT. TianW. ZhangQ. LiuJ. LiuZ. JinJ. GuoY. BaiL.P. Novel 1,3,4-thiadiazole/oxadiazole-linked honokiol derivatives suppress cancer via inducing PI3K/Akt/mTOR-dependent autophagy.Bioorg. Chem.202111510525710.1016/j.bioorg.2021.105257 34426156
    [Google Scholar]
  60. BhattP. SenA. JhaA. Design and ultrasound assisted synthesis of novel 1,3,4‐oxadiazole drugs for anti‐cancer activity.ChemistrySelect20205113347335410.1002/slct.201904412
    [Google Scholar]
  61. AgarwalM. SinghV. SharmaS.K. SharmaP. AnsariM.Y. JadavS.S. YasminS. SreenivasuluR. HassanM.Z. SainiV. AhsanM.J. Design and synthesis of new 2,5-disubstituted-1,3,4-oxadiazole analogues as anticancer agents.Med. Chem. Res.201625102289230310.1007/s00044‑016‑1672‑1
    [Google Scholar]
  62. YadagiriB. GurralaS. BantuR. NagarapuL. PolepalliS. SrujanaG. JainN. Synthesis and evaluation of benzosuberone embedded with 1,3,4-oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole moieties as new potential anti proliferative agents.Bioorg. Med. Chem. Lett.201525102220222410.1016/j.bmcl.2015.03.032 25827522
    [Google Scholar]
  63. ZhangX.M. QiuM. SunJ. ZhangY.B. YangY.S. WangX.L. TangJ.F. ZhuH.L. Synthesis, biological evaluation, and molecular docking studies of 1,3,4-oxadiazole derivatives possessing 1,4-benzodioxan moiety as potential anticancer agents.Bioorg. Med. Chem.201119216518652410.1016/j.bmc.2011.08.013 21962523
    [Google Scholar]
  64. SchelmanW.R. LiuG. WildingG. MorrisT. PhungD. DreicerR. A phase I study of zibotentan (ZD4054) in patients with metastatic, castrate-resistant prostate cancer.Invest. New Drugs201129111812510.1007/s10637‑009‑9318‑5 19763400
    [Google Scholar]
  65. PessoaC. FerreiraP.M.P. LotufoL.V.C. de MoraesM.O. CavalcantiS.M.T. CoêlhoL.C.D. HernandesM.Z. LeiteA.C.L. De SimoneC.A. CostaV.M.A. SouzaV.M.O. Discovery of phthalimides as immunomodulatory and antitumor drug prototypes.ChemMedChem20105452352810.1002/cmdc.200900525 20112332
    [Google Scholar]
  66. GerovaM.S. StatevaS.R. RadonovaE.M. KalenderskaR.B. RusewR.I. NikolovaR.P. ChanevC.D. ShivachevB.L. ApostolovaM.D. PetrovO.I. Combretastatin A-4 analogues with benzoxazolone scaffold: Synthesis, structure and biological activity.Eur. J. Med. Chem.201612012113310.1016/j.ejmech.2016.05.012 27187864
    [Google Scholar]
  67. MendelD.B. LairdA.D. XinX. LouieS.G. ChristensenJ.G. LiG. SchreckR.E. AbramsT.J. NgaiT.J. LeeL.B. MurrayL.J. CarverJ. ChanE. MossK.G. HaznedarJ.O. SukbuntherngJ. BlakeR.A. SunL. TangC. MillerT. ShirazianS. McMahonG. CherringtonJ.M. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: Determination of a pharmacokinetic/pharmacodynamic relationship.Clin. Cancer Res.200391327337 12538485
    [Google Scholar]
  68. LaneM.E. YuB. RiceA. LipsonK.E. LiangC. SunL. TangC. McMahonG. PestellR.G. WadlerS. A novel cdk2-selective inhibitor, SU9516, induces apoptosis in colon carcinoma cells.Cancer Res.2001611661706177 11507069
    [Google Scholar]
  69. BeedieS.L. PeerC.J. PisleS. GardnerE.R. MahonyC. BarnettS. AmbrozakA. GütschowM. ChauC.H. VargessonN. FiggW.D. Anticancer properties of a novel class of tetrafluorinated thalidomide analogues.Mol. Cancer Ther.201514102228223710.1158/1535‑7163.MCT‑15‑0320 26269604
    [Google Scholar]
  70. AnanthA.H. ManikandanN. RajanR.K. ElancheranR. LakshmithendralK. RamanathanM. BhattacharjeeA. KabilanS. Design, synthesis, and biological evaluation of 2‐(2‐bromo‐3‐nitrophenyl)‐5‐phenyl‐1,3,4‐oxadiazole derivatives as possible anti‐breast cancer agents.Chem. Biodivers.2020172e190065910.1002/cbdv.201900659 31995280
    [Google Scholar]
  71. ShamsiF. HasanP. QueenA. HussainA. KhanP. ZeyaB. KingH.M. RanaS. GarrisonJ. AlajmiM.F. RizviM.M.A. ZahidM. Imtaiyaz HassanM. AbidM. Synthesis and SAR studies of novel 1,2,4-oxadiazole-sulfonamide based compounds as potential anticancer agents for colorectal cancer therapy.Bioorg. Chem.20209810375410.1016/j.bioorg.2020.103754 32200329
    [Google Scholar]
  72. YangZ. ShenM. TangM. ZhangW. CuiX. ZhangZ. PeiH. LiY. HuM. BaiP. ChenL. Discovery of 1,2,4-oxadiazole-Containing hydroxamic acid derivatives as histone deacetylase inhibitors potential application in cancer therapy.Eur. J. Med. Chem.201917811613010.1016/j.ejmech.2019.05.089 31177073
    [Google Scholar]
  73. Abd El-MeguidE.A. AwadH.M. AnwarM.M. Synthesis of New 1,3,4-oxadiazole-benzimidazole derivatives as potential antioxidants and breast cancer inhibitors with apoptosis inducing activity.Russ. J. Gen. Chem.201989234835610.1134/S1070363219020282
    [Google Scholar]
  74. LakshmithendralK. SaravananK. ElancheranR. ArchanaK. ManikandanN. ArjunH.A. RamanathanM. LokanathN.K. KabilanS. Design, synthesis and biological evaluation of 2-(phenoxymethyl)-5-phenyl-1,3,4-oxadiazole derivatives as anti-breast cancer agents.Eur. J. Med. Chem.201916811010.1016/j.ejmech.2019.02.033 30798049
    [Google Scholar]
  75. Mohammadi-KhanaposhtaniM. FahimiK. Karimpour-RazkenariE. SafaviM. MahdaviM. SaeediM. AkbarzadehT. Design, synthesis and cytotoxicity of novel coumarin-1,2,3-triazole-1,2,4-oxadiazole hybrids as potent anti-breast cancer agents.Lett. Drug Des. Discov.201916781882410.2174/1570180815666180627121006
    [Google Scholar]
  76. KimB.H. LeeH. SongY. ParkJ.S. GadheC.G. ChoiJ. LeeC.G. PaeA.N. KimS. YeS.K. Development of oxadiazole-based ODZ10117 as a small-molecule inhibitor of STAT3 for targeted cancer therapy.J. Clin. Med.2019811184710.3390/jcm8111847 31684051
    [Google Scholar]
  77. KrasavinM. ShetnevA. SharonovaT. BaykovS. KalininS. NocentiniA. SharoykoV. PoliG. TuccinardiT. PresnukhinaS. TennikovaT.B. SupuranC.T. Continued exploration of 1,2,4-oxadiazole periphery for carbonic anhydrase-targeting primary arene sulfonamides: Discovery of subnanomolar inhibitors of membrane-bound hCA IX isoform that selectively kill cancer cells in hypoxic environment.Eur. J. Med. Chem.20191649210510.1016/j.ejmech.2018.12.049 30594030
    [Google Scholar]
  78. ChengS.S. YangG.J. WangW. LeungC.H. MaD.L. The design and development of covalent protein-protein interaction inhibitors for cancer treatment.J. Hematol. Oncol.20201312610.1186/s13045‑020‑00850‑0 32228680
    [Google Scholar]
  79. HardcastleI.R. Protein-protein interaction inhibitors in cancer.Comprehen. Med. Chem.20175-815420110.1016/B978‑0‑12‑409547‑2.12392‑3
    [Google Scholar]
  80. PaulA. SarkarA. BanerjeeT. MajiA. SarkarS. PaulS. KarmakarS. GhoshN. MaityT.K. Structural and molecular insights of protein tyrosine phosphatase 1B (PTP1B) and its inhibitors as anti-diabetic agents.J. Mol. Struct.2023129313625810.1016/j.molstruc.2023.136258
    [Google Scholar]
  81. PaulA. NaharS. NahataP. SarkarA. MajiA. SamantaA. KarmakarS. MaityT.K. Synthetic GPR40/FFAR1 agonists: An exhaustive survey on the most recent chemical classes and their structure-activity relationships.Eur. J. Med. Chem.202426411599010.1016/j.ejmech.2023.115990 38039791
    [Google Scholar]
  82. SilakariO. SinghP.K. ADMET tools: Prediction and assessment of chemical ADMET properties of NCEs. Concepts and Experimental Protocols of Modelling and Informatics in Drug Design.AmsterdamElsevier202110.1016/B978‑0‑12‑820546‑4.00014‑3
    [Google Scholar]
  83. ChandrasekaranB. AbedS.N. Al-AttraqchiO. KucheK. TekadeR.K. Computer-aided prediction of pharmacokinetic (ADMET) properties.Dosage Form Design Parameters2018273175510.1016/B978‑0‑12‑814421‑3.00021‑X
    [Google Scholar]
  84. ClarkD.E. GrootenhuisP.D.J. Progress in computational methods for the prediction of ADMET properties.Curr. Opin. Drug Discov. Devel.200253382390 12058613
    [Google Scholar]
  85. BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257W26310.1093/nar/gky318 29718510
    [Google Scholar]
  86. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  87. ŠestićT.L. AjdukovićJ.J. MarinovićM.A. PetriE.T. SavićM.P. In silico ADMET analysis of the A-, B- and D-modified androstane derivatives with potential anticancer effects.Steroids202318910914710.1016/j.steroids.2022.109147 36410412
    [Google Scholar]
  88. MazumderK. HossainM.E. AktarA. MohiuddinM. SarkarK.K. BiswasB. AzizM.A. AbidM.A. FukaseK. In silico analysis and experimental evaluation of ester prodrugs of ketoprofen for oral delivery: With a view to reduce toxicity.Processes (Basel)2021912222110.3390/pr9122221
    [Google Scholar]
/content/journals/mc/10.2174/0115734064329573240823113924
Loading
/content/journals/mc/10.2174/0115734064329573240823113924
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test