Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Although platinum and ruthenium complexes have been clinically recognized to be the most efficient metal-based anticancer candidates, applied in a wide range of cancer cell lines, their serious toxic effects and drug resistance require the necessity for new metal antitumor complexes. There is excessive interest in the design of new Pt-group metal complexes, including osmium and rhodium, which have revealed great chemotherapeutic potential. They have demonstrated modes of action that differ from those of the most broadly-used in clinical practice platinum- and ruthenium-based compounds. Os and Rh complexes are equipotent to their platinum and ruthenium analogues. Many Os- and Rh-based complexes with strong antitumor activity and low toxic effects have been developed and recognized for their antineoplastic activity in the last few years. Some of them have exposed different action profiles from the conventional anticancer metal complexes. That is why they might serve as a possible alternative that deserves more investigation, though limited studies on their biological effects have been reported, which is in contrast with the classical isoelectronic Pt and Ru complex compounds. Studies of Os and Rh complexes are currently attracting scientific attention. Recent developments of this interesting class of novel chemotherapeutic agents have been reviewed.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064327558240826050650
2024-08-29
2025-10-27
Loading full text...

Full text loading...

References

  1. ZhangP. SadlerP.J. Advances in the design of organometallic anticancer complexes.J. Organomet. Chem.201783951410.1016/j.jorganchem.2017.03.038
    [Google Scholar]
  2. KostovaI. Biological and Medical Significance of Chemical Elements.Bentham Science Publishers202310.2174/97898151790021230101
    [Google Scholar]
  3. KostovaI. The role of complexes of biogenic metals in living organisms.Inorganics (Basel)20231125610.3390/inorganics11020056
    [Google Scholar]
  4. TodorovL. KostovaI. Recent trends in the development of novel metal-based antineoplastic drugs.Molecules2023284195910.3390/molecules28041959 36838947
    [Google Scholar]
  5. PaprockaR. Wiese-SzadkowskaM. JanciauskieneS. KosmalskiT. KulikM. Helmin-BasaA. Latest developments in metal complexes as anticancer agents.Coord. Chem. Rev.202245221430710.1016/j.ccr.2021.214307
    [Google Scholar]
  6. GoswamiA.K. KostovaI. Medicinal and Biological Inorganic Chemistry.Berlin, GermanyWalter de Gruyter GmbH and Co KG202210.1515/9781501516115
    [Google Scholar]
  7. KostovaI. Platinum complexes as anticancer agents. Recent Pat. Rev. Anti –Canc.Drug Disc200611122
    [Google Scholar]
  8. KostovaI. Ruthenium complexes as anticancer agents.Curr. Med. Chem.20061391085110710.2174/092986706776360941 16611086
    [Google Scholar]
  9. ShahlaeiM. AslS.M. DerakhshaniA. KurekL. KargesJ. MacgregorR. KostovaI. SabouryA.A. Platinum-based drugs in cancer treatment: expanding horizons and overcoming resistance.J. Mol. Struct.202319137366
    [Google Scholar]
  10. KilariD. GuancialE. KimE.S. Role of copper transporters in platinum resistance.World J. Clin. Oncol.20167110611310.5306/wjco.v7.i1.106 26862494
    [Google Scholar]
  11. KalaydaG.V. WagnerC.H. BußI. ReedijkJ. JaehdeU. Altered localisation of the copper efflux transporters ATP7A and ATP7B associated with cisplatin resistance in human ovarian carcinoma cells.BMC Cancer20088117510.1186/1471‑2407‑8‑175 18565219
    [Google Scholar]
  12. RodrigoM.A.M. MichalkovaH. StrmiskaV. CasarB. CrespoP. de los RiosV. Ignacio CasalJ. HaddadY. GuranR. EckschlagerT. PokornaP. HegerZ. AdamV. Metallothionein-3 promotes cisplatin chemoresistance remodelling in neuroblastoma.Sci. Rep.2021111549610.1038/s41598‑021‑84185‑x 33750814
    [Google Scholar]
  13. FazalZ. SinghR. FangF. BikorimanaE. BaldwinH. CorbetA. TomlinM. YerbyC. AdraN. AlbanyC. LeeS. FreemantleS.J. NephewK.P. ChristensenB.C. SpinellaM.J. Hypermethylation and global remodelling of DNA methylation is associated with acquired cisplatin resistance in testicular germ cell tumours.Epigenetics202116101071108410.1080/15592294.2020.1834926 33126827
    [Google Scholar]
  14. AliR. AouidaM. Alhaj SulaimanA. MadhusudanS. RamotarD. Can Cisplatin therapy be improved? Pathways that can be targeted.Int. J. Mol. Sci.20222313724110.3390/ijms23137241 35806243
    [Google Scholar]
  15. OunR. MoussaY.E. WheateN.J. The side effects of platinum-based chemotherapy drugs: a review for chemists.Dalton Trans.201847196645665310.1039/C8DT00838H 29632935
    [Google Scholar]
  16. KonkankitC.C. MarkerS.C. KnopfK.M. WilsonJ.J. Anticancer activity of complexes of the third row transition metals, rhenium, osmium, and iridium.Dalton Trans.201847309934997410.1039/C8DT01858H 29904760
    [Google Scholar]
  17. RiccardiC. MusumeciD. TrifuoggiM. IraceC. PaduanoL. MontesarchioD. Anticancer ruthenium(III) complexes and Ru(III)-containing nanoformulations: an update on the mechanism of action and biological activity.Pharmaceuticals (Basel)201912414610.3390/ph12040146 31561546
    [Google Scholar]
  18. KacsirI. SiposA. KissT. MajorE. BajuszN. TóthE. BuglyóP. SomsákL. KardosG. BaiP. BokorÉ. Half sandwich-type osmium, ruthenium, iridium and rhodium complexes with bidentate glycosyl heterocyclic ligands induce cytostasis in platinum-resistant ovarian cancer cells and bacteriostasis in Gram-positive multiresistant bacteria.Front Chem.202311108626710.3389/fchem.2023.1086267 36793764
    [Google Scholar]
  19. HuX. GuoL. LiuM. ZhangQ. GongY. SunM. FengS. XuY. LiuY. LiuZ. Increasing anticancer activity with phosphine ligation in zwitterionic half-sandwich iridium (III), rhodium (III), and ruthenium (II) complexes.Inorg. Chem.20226149200082002510.1021/acs.inorgchem.2c03279 36426422
    [Google Scholar]
  20. JohnstoneT.C. SuntharalingamK. LippardS.J. Third row transition metals for the treatment of cancer.Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci.201537320372014018510.1098/rsta.2014.0185 25666060
    [Google Scholar]
  21. Suárez-MorenoG.V. Hernández-RomeroD. García-BarradasÓ. Vázquez-VeraÓ. Rosete-LunaS. Cruz-CruzC.A. López-MonteonA. Carrillo-AhumadaJ. Morales-MoralesD. Colorado-PeraltaR. Second and third-row transition metal compounds containing benzimidazole ligands: An overview of their anticancer and antitumour activity.Coord. Chem. Rev.202247221479010.1016/j.ccr.2022.214790
    [Google Scholar]
  22. KennyR.G. MarmionC.J. Toward multi-targeted platinum and ruthenium drugs—a new paradigm in cancer drug treatment regimens?Chem. Rev.201911921058113710.1021/acs.chemrev.8b00271 30640441
    [Google Scholar]
  23. CoverdaleJ.P.C. Laroiya-McCarronT. Romero-CanelónI. Designing ruthenium anticancer drugs: What have we learnt from the key drug candidates?Inorganics (Basel)2019733110.3390/inorganics7030031
    [Google Scholar]
  24. MilutinovicM.M. RilakA. BratsosI. KlisuricO. VranešM. GligorijevicN. RadulovicS. BugarcicZ.D. New 40-(4-chlorophenyl)-2,2′:60,200-terpyridine ruthenium(II) complexes: Synthesis, characterization, interaction with DNA/BSA and cytotoxicity studies.J. Inorg. Biochem.201716911210.1016/j.jinorgbio.2016.10.001 28088012
    [Google Scholar]
  25. ČanovićP. SimovićA.R. RadisavljevićS. BratsosI. DemitriN. MitrovićM. ZelenI. BugarčićŽ.D. Impact of aromaticity on anticancer activity of polypyridyl ruthenium(II) complexes: synthesis, structure, DNA/protein binding, lipophilicity and anticancer activity.J. Biol. Inorg. Chem.20172271007102810.1007/s00775‑017‑1479‑7 28695374
    [Google Scholar]
  26. JahromiE.Z. DivsalarA. SabouryA.A. KhaleghizadehS. Mansouri-TorshiziH. KostovaI. Palladium complexes: new candidates for anti-cancer drugs.J. Indian Chem. Soc.201613596798910.1007/s13738‑015‑0804‑8
    [Google Scholar]
  27. PelclovaD. Handbook on the Toxicology of Metals.Academic Press2022
    [Google Scholar]
  28. FriedovaN. PelclovaD. ObertovaN. LachK. KesslerovaK. KohoutP. Osmium absorption after osmium tetroxide skin and eye exposure.Basic Clin. Pharmacol. Toxicol.2020127542943310.1111/bcpt.13450 32524772
    [Google Scholar]
  29. GoldsteinS. CzapskiG. HellerA. Osmium tetroxide, used in the treatment of arthritic joints, is a fast mimic of superoxide dismutase.Free Radic. Biol. Med.200538783984510.1016/j.freeradbiomed.2004.10.027 15749379
    [Google Scholar]
  30. HanifM. BabakM.V. HartingerC.G. Development of anticancer agents: wizardry with osmium.Drug Discov. Today201419101640164810.1016/j.drudis.2014.06.016 24955838
    [Google Scholar]
  31. QuinsonJ. Osmium and OsOx nanoparticles: an overview of syntheses and applications.Open Research. Europe.202223910.12688/openreseurope.14595.2 37645302
    [Google Scholar]
  32. LuN. DengZ. GaoJ. LiangC. XiaH. ZhangP. An osmium-peroxo complex for photoactive therapy of hypoxic tumors.Nat. Commun.2022131224510.1038/s41467‑022‑29969‑z 35473926
    [Google Scholar]
  33. OrtegaE. YellolJ.G. RothemundM. BallesterF.J. RodríguezV. YellolG. JaniakC. SchobertR. RuizJ. A new C,N-cyclometalated osmium(II) arene anticancer scaffold with a handle for functionalization and antioxidative properties.Chem. Commun. (Camb.)20185479111201112310.1039/C8CC06427J 30204166
    [Google Scholar]
  34. van RijtS.H. PeacockA.F.A. SadlerP.J. Osmium Arenes: A New Class of Potential Anticancer Agents.In: Platinum and Other Heavy Metal Compounds in Cancer Chemotherapy Molecular Mechanisms and Clinical Applications. BonettiA. LeoneR. MuggiaF.M. HowellS.B. TotowaHumana2009737910.1007/978‑1‑60327‑459‑3_10
    [Google Scholar]
  35. CoverdaleJ.P.C. BridgewaterH.E. SongJ.I. SmithN.A. BarryN.P.E. BagleyI. SadlerP.J. Romero-CanelónI. In vivo selectivity and localization of reactive oxygen species (ROS) induction by osmium anticancer complexes that circumvent platinum resistance.J. Med. Chem.201861209246925510.1021/acs.jmedchem.8b00958 30230827
    [Google Scholar]
  36. LiconaC. DelhormeJ.B. RiegelG. VidimarV. Cerón-CamachoR. BoffB. VenkatasamyA. TomasettoC. da Silva Figueiredo Celestino GomesP. RognanD. FreundJ-N. Le LagadecR. PfefferM. GrossI. MellitzerG. GaiddonC. Anticancer activity of ruthenium and osmium cyclometalated compounds: identification of ABCB1 and EGFR as resistance mechanisms.Inorg. Chem. Front.20207367868810.1039/C9QI01148J
    [Google Scholar]
  37. PeacockA.F.A. HabtemariamA. FernándezR. WallandV. FabbianiF.P.A. ParsonsS. AirdR.E. JodrellD.I. SadlerP.J. Tuning the reactivity of osmium(II) and ruthenium(II) arene complexes under physiological conditions.J. Am. Chem. Soc.200612851739174810.1021/ja055886r 16448150
    [Google Scholar]
  38. PeacockA.F.A. HabtemariamA. MoggachS.A. PrescimoneA. ParsonsS. SadlerP.J. Chloro half-sandwich osmium(II) complexes: influence of chelated N,N-ligands on hydrolysis, guanine binding, and cytotoxicity.Inorg. Chem.200746104049405910.1021/ic062350d 17441712
    [Google Scholar]
  39. PeacockA.F.A. ParsonsS. SadlerP.J. Tuning the hydrolytic aqueous chemistry of osmium arene complexes with N,O-chelating ligands to achieve cancer cell cytotoxicity.J. Am. Chem. Soc.2007129113348335710.1021/ja068335p 17319668
    [Google Scholar]
  40. PeacockA.F.A. MelchartM. DeethR.J. HabtemariamA. ParsonsS. SadlerP.J. Osmium(II) and ruthenium(II) arene maltolato complexes: rapid hydrolysis and nucleobase binding.Chemistry20071392601261310.1002/chem.200601152 17200926
    [Google Scholar]
  41. KostrhunovaH. FlorianJ. NovakovaO. PeacockA.F.A. SadlerP.J. BrabecV. DNA interactions of monofunctional organometallic osmium(II) antitumor complexes in cell-free media.J. Med. Chem.200851123635364310.1021/jm701538w 18494458
    [Google Scholar]
  42. van RijtS.H. PeacockA.F.A. JohnstoneR.D.L. ParsonsS. SadlerP.J. Organometallic osmium(II) arene anticancer complexes containing picolinate derivatives.Inorg. Chem.20094841753176210.1021/ic8020222 19146436
    [Google Scholar]
  43. SchmidW.F. JohnR.O. ArionV.B. JakupecM.A. KepplerB.K. Highly antiproliferative ruthenium(II) and osmium(II) arene complexes with paullone-derived ligands.Organometallics200726266643665210.1021/om700813c
    [Google Scholar]
  44. DorcierA. DysonP.J. GossensC. RothlisbergerU. ScopellitiR. TavernelliI. Binding of organometallic ruthenium(II) and osmium(II) complexes to an oligonucleotide: a combined mass spectrometric and theoretical study.Organometallics20052492114212310.1021/om049022a
    [Google Scholar]
  45. ChanK.H. LeongW.K. JaouenG. LeclerqL. TopS. VessièresA. Organometallic cluster analogues of tamoxifen: Synthesis and biochemical assay.J. Organomet. Chem.20066911-291910.1016/j.jorganchem.2005.08.041
    [Google Scholar]
  46. FuY. HabtemariamA. PizarroA.M. van RijtS.H. HealeyD.J. CooperP.A. ShnyderS.D. ClarksonG.J. SadlerP.J. Organometallic osmium arene complexes with potent cancer cell cytotoxicity.J. Med. Chem.201053228192819610.1021/jm100560f 20977192
    [Google Scholar]
  47. HearnJ.M. Romero-CanelónI. MunroA.F. FuY. PizarroA.M. GarnettM.J. McDermottU. CarragherN.O. SadlerP.J. Potent organo-osmium compound shifts metabolism in epithelial ovarian cancer cells.Proc. Natl. Acad. Sci. USA201511229E3800E380510.1073/pnas.1500925112 26162681
    [Google Scholar]
  48. Sanchez-CanoC. Romero-CanelónI. YangY. Hands-PortmanI.J. BohicS. CloetensP. SadlerP.J. Synchrotron X‐ray fluorescence nanoprobe reveals target sites for organo‐osmium complex in human ovarian cancer cells.Chemistry201723112512251610.1002/chem.201605911 28012260
    [Google Scholar]
  49. NeedhamR.J. Sanchez-CanoC. ZhangX. Romero-CanelónI. HabtemariamA. CooperM.S. MeszarosL. ClarksonG.J. BlowerP.J. SadlerP.J. In‐cell activation of organo‐osmium(II) anticancer complexes.Angew. Chem. Int. Ed.20175641017102010.1002/anie.201610290 28000997
    [Google Scholar]
  50. FuY. RomeroM.J. SalassaL. ChengX. HabtemariamA. ClarksonG.J. ProkesI. RodgerA. CostantiniG. SadlerP.J. Os 2 –Os 4 switch controls DNA knotting and anticancer activity.Angew. Chem. Int. Ed.201655318909891210.1002/anie.201602995 27240103
    [Google Scholar]
  51. BüchelG.E. GavrilutaA. NovakM. MeierS.M. JakupecM.A. CuzanO. TurtaC. TommasinoJ.B. JeanneauE. NovitchiG. LuneauD. ArionV.B. Striking difference in antiproliferative activity of ruthenium- and osmium-nitrosyl complexes with azole heterocycles.Inorg. Chem.201352116273628510.1021/ic400555k 23659478
    [Google Scholar]
  52. Cebrián-LosantosB. KrokhinA.A. StepanenkoI.N. EichingerR. JakupecM.A. ArionV.B. KepplerB.K. Osmium NAMI-A analogues: synthesis, structural and spectroscopic characterization, and antiproliferative properties.Inorg. Chem.200746125023503310.1021/ic700405y 17497853
    [Google Scholar]
  53. BüchelG.E. StepanenkoI.N. HejlM. JakupecM.A. KepplerB.K. ArionV.B. En route to osmium analogues of KP1019: synthesis, structure, spectroscopic properties and antiproliferative activity of trans-[Os(IV)Cl4(Hazole)2.Inorg. Chem.201150167690769710.1021/ic200728b 21739939
    [Google Scholar]
  54. KuhnP.S. BüchelG.E. JovanovićK.K. FilipovićL. RadulovićS. RaptaP. ArionV.B. Osmium(III) analogues of KP1019: electrochemical and chemical synthesis, spectroscopic characterization, X-ray crystallography, hydrolytic stability, and antiproliferative activity.Inorg. Chem.20145320111301113910.1021/ic501710k 25290960
    [Google Scholar]
  55. GinzingerW. MühlgassnerG. ArionV.B. JakupecM.A. RollerA. GalanskiM.S. ReithoferM. BergerW. KepplerB.K. A SAR study of novel antiproliferative ruthenium and osmium complexes with quinoxalinone ligands in human cancer cell lines.J. Med. Chem.20125573398341310.1021/jm3000906 22417128
    [Google Scholar]
  56. StepanenkoI.N. NovakM.S. MühlgassnerG. RollerA. HejlM. ArionV.B. JakupecM.A. KepplerB.K. Organometallic 3-(1H-benzimidazol-2-yl)-1H-pyrazolo[3,4-b]pyridines as potential anticancer agents.Inorg. Chem.20115022117151172810.1021/ic201704u 22032295
    [Google Scholar]
  57. SuntharalingamK. JohnstoneT.C. BrunoP.M. LinW. HemannM.T. LippardS.J. Bidentate ligands on osmium(VI) nitrido complexes control intracellular targeting and cell death pathways.J. Am. Chem. Soc.201313538140601406310.1021/ja4075375 24041161
    [Google Scholar]
  58. SuntharalingamK. LinW. JohnstoneT.C. BrunoP.M. ZhengY.R. HemannM.T. LippardS.J. A breast cancer stem cell-selective, mammospheres-potent osmium(VI) nitrido complex.J. Am. Chem. Soc.201413641144131441610.1021/ja508808v 25247635
    [Google Scholar]
  59. NovohradskyV. MarkovaL. KostrhunovaH. TrávníčekZ. BrabecV. KasparkovaJ. An anticancer Os(II) bathophenanthroline complex as a human breast cancer stem cell-selective, mammosphere potent agent that kills cells by necroptosis.Sci. Rep.2019911332710.1038/s41598‑019‑49774‑x 31527683
    [Google Scholar]
  60. ZhangP. WangY. QiuK. ZhaoZ. HuR. HeC. ZhangQ. ChaoH. A NIR phosphorescent osmium(II) complex as a lysosome tracking reagent and photodynamic therapeutic agent.Chem. Commun. (Camb.)20175391123411234410.1039/C7CC07776A 29098209
    [Google Scholar]
  61. BoffB. GaiddonC. PfefferM. Cancer cell cytotoxicity of cyclometalated compounds obtained with osmium(II) complexes.Inorg. Chem.20135252705271510.1021/ic302779q 23427955
    [Google Scholar]
  62. RoqueJ.A.III BarrettP.C. ColeH.D. LifshitsL.M. BradnerE. ShiG. von DohlenD. KimS. RussoN. DeepG. CameronC.G. AlbertoM.E. McFarlandS.A. Os(II) oligothienyl complexes as a hypoxia-active photosensitizer class for photodynamic therapy.Inorg. Chem.20205922163411636010.1021/acs.inorgchem.0c02137 33126792
    [Google Scholar]
  63. RoqueJ.A.III BarrettP.C. ColeH.D. LifshitsL.M. ShiG. MonroS. von DohlenD. KimS. RussoN. DeepG. CameronC.G. AlbertoM.E. McFarlandS.A. Breaking the barrier: an osmium photosensitizer with unprecedented hypoxic phototoxicity for real world photodynamic therapy.Chem. Sci. (Camb.)202011369784980610.1039/D0SC03008B 33738085
    [Google Scholar]
  64. HuangL.I. ZhaoS. WuJ. YuL.E. SinghN. YangK.E. LanM. WangP. KimJ.S. Photodynamic therapy for hypoxic tumors: Advances and perspectives.Coord. Chem. Rev.2021438213888
    [Google Scholar]
  65. GeC. ZhuJ. OuyangA. LuN. WangY. ZhangQ. ZhangP. Near-infrared phosphorescent terpyridine osmium(II) photosensitizer complexes for photodynamic and photooxidation therapy.Inorg. Chem. Front.20207204020402710.1039/D0QI00846J
    [Google Scholar]
  66. WangY. MesdomP. PurkaitK. SaubaméaB. BurckelP. ArnouxP. FrochotC. CariouK. RosselT. GasserG. Ru(II)/Os(II)-based carbonic anhydrase inhibitors as photodynamic therapy photosensitizers for the treatment of hypoxic tumours.Chem. Sci. (Camb.)20231442117491176010.1039/D3SC03932C 37920359
    [Google Scholar]
  67. KasplerP. MandelA. Dumoulin-WhiteR. RoufaielM. Anticancer photodynamic therapy using ruthenium (II) and Os (II)-based complexes as photosensitizers.In: Tumor Progression and Metastasis.Rijeka, CroatiaIntechOpen202010.5772/intechopen.88519
    [Google Scholar]
  68. ManiA. FengT. GandiosoA. VinckR. NotaroA. GourdonL. BurckelP. SaubaméaB. BlacqueO. CariouK. BelgaiedJ.E. ChaoH. GasserG. Structurally simple osmium (II) polypyridyl complexes as photosensitizers for photodynamic therapy in the near infrared.Angew. Chem. Int. Ed.20236220e20221834710.1002/anie.202218347 36917074
    [Google Scholar]
  69. WangY.P. DuanX.H. HuangY.H. HouY.J. WuK. ZhangF. PanM. ShenJ. SuC.Y. Radio- and Photosensitizing Os(II)-Based Nanocage for Combined Radio-/Chemo-/X-ray-Induced Photodynamic Therapies, NIR Imaging, and Drug Delivery.ACS Appl. Mater. Interfaces20231537434794349110.1021/acsami.3c08503 37694454
    [Google Scholar]
  70. ArmstrongD.W. YuJ. ColeH.D. McFarlandS.A. NafieJ. Chiral resolution and absolute configuration determination of new metal-based photodynamic therapy antitumor agents.J. Pharm. Biomed. Anal.202120411423310.1016/j.jpba.2021.114233 34252819
    [Google Scholar]
  71. SmithC.B. DaysL.C. AlajroushD.R. FayeK. KhodourY. BeebeS.J. HolderA.A. Photodynamic therapy of inorganic complexes for the treatment of cancer.Photochem. Photobiol.2022981174110.1111/php.13467 34121188
    [Google Scholar]
  72. FelderP.S. KellerS. GasserG. Polymetallic complexes for applications as photosensitisers in anticancer photodynamic therapy.Adv. Ther. (Weinh.)202031190013910.1002/adtp.201900139
    [Google Scholar]
  73. SohrabiM. SaeediM. LarijaniB. MahdaviM. Recent advances in biological activities of rhodium complexes: Their applications in drug discovery research.Eur. J. Med. Chem.202121611330810.1016/j.ejmech.2021.113308 33713976
    [Google Scholar]
  74. MálikováK. MasarykL. ŠtarhaP. Anticancer half-sandwich rhodium (III) complexes.Inorganics (Basel)2021942610.3390/inorganics9040026
    [Google Scholar]
  75. PrathimaT.S. ChoudhuryB. AhmadM.G. ChandaK. BalamuraliM.M. Recent developments on other platinum metal complexes as target-specific anticancer therapeutics.Coord. Chem. Rev.202349021523110.1016/j.ccr.2023.215231
    [Google Scholar]
  76. GeldmacherY. OleszakM. SheldrickW.S. Rhodium(III) and iridium(III) complexes as anticancer agents.Inorg. Chim. Acta20123938410210.1016/j.ica.2012.06.046
    [Google Scholar]
  77. OhataJ. BallZ.T. Rhodium at the chemistry–biology interface.Dalton Trans.20184742148551486010.1039/C8DT03032D 30234200
    [Google Scholar]
  78. LoretoD. MerlinoA. The interaction of rhodium compounds with proteins: A structural overview.Coord. Chem. Rev.202144221399910.1016/j.ccr.2021.213999
    [Google Scholar]
  79. KacsirI. SiposA. BényeiA. JankaE. BuglyóP. SomsákL. BaiP. BokorÉ. Reactive oxygen species production is responsible for antineoplastic activity of osmium, ruthenium, iridium and rhodium half-sandwich type complexes with bidentate glycosyl heterocyclic ligands in various cancer cell models.Int. J. Mol. Sci.202223281310.3390/ijms23020813 35054999
    [Google Scholar]
  80. López-HernándezJ.E. ContelM. Promising heterometallic compounds as anticancer agents: Recent studies in vivo.Curr. Opin. Chem. Biol.20237210225010.1016/j.cbpa.2022.102250 36566618
    [Google Scholar]
  81. SchmidlehnerM. FlockeL.S. RollerA. HejlM. JakupecM.A. KandiollerW. KepplerB.K. Cytotoxicity and preliminary mode of action studies of novel 2-aryl-4-thiopyrone-based organometallics.Dalton Trans.201645272473310.1039/C5DT02722E 26630201
    [Google Scholar]
  82. ŠtarhaP. DvořákZ. TrávníčekZ. Half-sandwich Ir(III) and Rh(III) 2,2′-dipyridylamine complexes: Synthesis, characterization and in vitro cytotoxicity against the ovarian carcinoma cells.J. Organomet. Chem.201887211412210.1016/j.jorganchem.2018.07.035
    [Google Scholar]
  83. HussainA. AlajmiM.F. LoneM.A. WaniW.A. Therapeutic Rhodium Complexes.Springer202310.1007/978‑3‑031‑35631‑5
    [Google Scholar]
  84. KowalskaJ. BiaduńE. KińskaK. GniadekM. Krasnodębska-OstręgaB. Tracking changes in rhodium nanoparticles in the environment, including their mobility and bioavailability in soil.Sci. Total Environ.2022806Pt 315127210.1016/j.scitotenv.2021.151272 34717987
    [Google Scholar]
  85. PengY.B. TaoC. TanC.P. ZhaoP. Mitochondrial targeted rhodium(III) complexes: Synthesis, characterized and antitumor mechanism investigation.J. Inorg. Biochem.202121811140010.1016/j.jinorgbio.2021.111400 33684684
    [Google Scholar]
  86. MitrovićM. DjukićM.B. VukićM. NikolićI. RadovanovićM.D. LukovićJ. FilipovićI.P. MatićS. MarkovićT. KlisurićO.R. PopovićS. MatovićZ.D. RistićM.S. Search for new biologically active compounds: in vitro studies of antitumor and antimicrobial activity of dirhodium(II, II) paddlewheel complexes.Dalton Trans.202453229330934910.1039/D4DT01082E 38747564
    [Google Scholar]
  87. AmorelloD. OrecchioS. BarrecaS. OrecchioS. Voltammetry for monitoring platinum, palladium and rhodium in environmental and food matrices.ChemistrySelect2023818e20230020010.1002/slct.202300200
    [Google Scholar]
  88. IavicoliI. LesoV. Rhodium.In: Handbook on the Toxicology of Metals.Academic Press202269172810.1016/B978‑0‑12‑822946‑0.00025‑8
    [Google Scholar]
  89. BatleyG.E. CampbellP.G.C. Metal contaminants of emerging concern in aquatic systems.Environ. Chem.2022191234010.1071/EN22030
    [Google Scholar]
  90. SchmidM. ZimmermannS. KrugH.F. SuresB. Influence of platinum, palladium and rhodium as compared with cadmium, nickel and chromium on cell viability and oxidative stress in human bronchial epithelial cells.Environ. Int.200733338539010.1016/j.envint.2006.12.003 17250893
    [Google Scholar]
  91. PengY.B. HeW. NiuQ. TaoC. ZhongX.L. TanC.P. ZhaoP. Mitochondria-targeted cyclometalated rhodium(III) complexes: synthesis, characterization and anticancer research.Dalton Trans.202150269068907510.1039/D1DT01053K 34113944
    [Google Scholar]
  92. DesoizeB. Metals and metal compounds in cancer treatment.Anticancer Res.2004243a15291544 15274320
    [Google Scholar]
  93. WeberB. SerafinA. MichieJ. Van RensburgC. SwartsJ.C. BohmL. Cytotoxicity and cell death pathways invoked by two new rhodium-ferrocene complexes in benign and malignant prostatic cell lines.Anticancer Res.2004242B763770 15161024
    [Google Scholar]
  94. FalzoneN. BöhmL. SwartsJ.C. Van RensburgC.E.J. Radiosensitization of CHO cells by two novel rhodium complexes under oxic and hypoxic conditions.Anticancer Res.2006261A147152 16475691
    [Google Scholar]
  95. SavaG. GiraldiT. MestroniG. ZassinovichG. Antitumor effects of rhodium(I), iridium(I) and ruthenium(II) complexes in comparison with cis-dichlorodiammino platinum(II) in mice bearing Lewis lung carcinoma.Chem. Biol. Interact.19834511610.1016/0009‑2797(83)90037‑6 6683595
    [Google Scholar]
  96. SavaG. ZorzetS. PacorS. MestroniG. ZassinovichG. Effects of two pyridinalalkyliminerhodium(I) complexes in mice bearing MCa mammary carcinoma.Cancer Chemother. Pharmacol.198924530230610.1007/BF00304762 2758559
    [Google Scholar]
  97. CraciunescuG. ScarciaV. FurlaniA. IglesiasE.P. GhirvuC. PapaioannouA. Synthesis and biological evaluation of new Rh (I) complexes with sulfonamide derivatives.Anticancer Res.198993781785 2764523
    [Google Scholar]
  98. CraciunescuD.G. ScarciaV. FurlaniA. PapaioannouA. Parrondo IglesiasE. AlonsoM.P. Pharmacological and toxicological studies on new Rh(I) organometallic complexes.In Vivo199154329332 1810417
    [Google Scholar]
  99. OehningerL. KüsterL.N. SchmidtC. Muñoz-CastroA. ProkopA. OttI. A chemical-biological evaluation of rhodium(I) N-heterocyclic carbene complexes as prospective anticancer drugs.Chemistry20131952178711788010.1002/chem.201302819 24243420
    [Google Scholar]
  100. TruongD. SullivanM.P. TongK.K.H. SteelT.R. PrauseA. LovettJ.H. AndersenJ.W. JamiesonS.M.F. HarrisH.H. OttI. WeekleyC.M. HummitzschK. SöhnelT. HanifM. Metzler-NolteN. GoldstoneD.C. HartingerC.G. Potent inhibition of thioredoxin reductase by the Rh derivatives of anticancer M (arene/Cp*)(NHC)Cl2 complexes.Inorg. Chem.20205953281328910.1021/acs.inorgchem.9b03640 32073260
    [Google Scholar]
  101. FanR. BianM. HuL. LiuW. A new rhodium(I) NHC complex inhibits TrxR: In vitro cytotoxicity and in vivo hepatocellular carcinoma suppression.Eur. J. Med. Chem.201918311172110.1016/j.ejmech.2019.111721 31577978
    [Google Scholar]
  102. KatsarosN. AnagnostopoulouA. Rhodium and its compounds as potential agents in cancer treatment.Crit. Rev. Oncol. Hematol.200242329730810.1016/S1040‑8428(01)00222‑0 12050021
    [Google Scholar]
  103. HowardR.A. KimballA.P. BearJ.L. Mechanism of action of tetra-mu-carboxylatodirhodium(II) in L1210 tumor suspension culture.Cancer Res.1979397 Pt 125682573 445459
    [Google Scholar]
  104. RubinJ.R. HaromyT.P. SundaralingamM. Structure of the anti-cancer drug complex tetrakis(μ-acetato)-bis(1-methyl-adenosine)dirhodium(II) monohydrate.Acta Crystallogr. C19914781712171410.1107/S010827019100032X 1781962
    [Google Scholar]
  105. DunbarK.R. MatonicJ.H. SaharanV.P. CrawfordC.A. ChristouG. Structural evidence for a new metal-binding mode for guanine bases: implications for the binding of dinuclear antitumor agents to DNA.J. Am. Chem. Soc.199411652201220210.1021/ja00084a093
    [Google Scholar]
  106. PruchnikF. DuśD. Properties of rhodium (II) complexes having cytostatic activity.J. Inorg. Biochem.1996611556110.1016/0162‑0134(95)00033‑X
    [Google Scholar]
  107. PruchnikF.P. KluczewskaG. WilczokA. MazurekU. WilczokT. Rhodium(II) complexes with phenanthrolines and their metabolic action on synchronized cell culture.J. Inorg. Biochem.1997651253410.1016/S0162‑0134(96)00065‑7
    [Google Scholar]
  108. GilE.S. GonçalvesM.I.A. FerreiraE.I. ZyngierS.B. NajjarR. Water soluble cyclophosphamide adducts of rhodium(II) keto-gluconate and glucuronate. Synthesis, characterization and in vitro cytostatic assays.Met. Based Drugs199961192410.1155/MBD.1999.19 18475876
    [Google Scholar]
  109. ChibberR. StratfordI.J. O’NeillP. SheldonP.W. AhmedI. LeeB. The interaction between radiation and complexes of cis-Pt(II) and Rh(II): studies at the molecular and cellular level.Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med.198548451352410.1080/09553008514551581 3876304
    [Google Scholar]
  110. MestroniG. AlessioE. Sessanta o Santi, A.; Geremia, S.; Bergamo, A.; Sava, G.; Boccarelli, A.; Schettino, A.; Coluccia, M. Rhodium(III) analogues of antitumour-active ruthenium(III) compounds: The crystal structure of [ImH][trans-RhCl4(Im)2] (Im=imidazole).Inorg. Chim. Acta19982731-2627110.1016/S0020‑1693(97)05915‑X
    [Google Scholar]
  111. LiangJ. LevinaA. JiaJ. KappenP. GloverC. JohannessenB. LayP.A. Reactivity and transformation of antimetastatic and cytotoxic rhodium(III)–dimethyl sulfoxide complexes in biological fluids: an XAS speciation study.Inorg. Chem.20195884880489310.1021/acs.inorgchem.8b03477 30932487
    [Google Scholar]
  112. LuX. WuY.M. YangJ.M. MaF.E. LiL.P. ChenS. ZhangY. NiQ.L. PanY.M. HongX. PengY. Preparation of Rhodium(III) complexes with 2(1H)-quinolinone derivatives and evaluation of their in vitro and in vivo antitumor activity.Eur. J. Med. Chem.201815122623610.1016/j.ejmech.2018.03.074 29614419
    [Google Scholar]
  113. GulN.S. KhanT.M. LiuY.C. ChoudharyM.I. ChenZ.F. LiangH. Pd(II) and Rh(III) complexes with isoquinoline derivatives induced mitochondria-mediated apoptotic and autophagic cell death in HepG2 cells.CCS Chemistry2021361626164110.31635/ccschem.020.202000363
    [Google Scholar]
  114. MenonE.L. PereraR. NavarroM. KuhnR.J. MorrisonH. Phototoxicity against tumor cells and Sindbis virus by an octahedral rhodium bisbipyridyl complex and evidence for the genome as a target in viral photoinactivation.Inorg. Chem.200443175373538110.1021/ic0498586 15310216
    [Google Scholar]
  115. KimM.R. MorrisonH. MohammedS.I. Effect of a photoactivated rhodium complex in melanoma.Anticancer Drugs201122989690410.1097/CAD.0b013e32834850a5 21642837
    [Google Scholar]
  116. AlmodaresZ. LucasS.J. CrossleyB.D. BasriA.M. PaskC.M. HebdenA.J. PhillipsR.M. McGowanP.C. Rhodium, iridium, and ruthenium half-sandwich picolinamide complexes as anticancer agents.Inorg. Chem.201453272773610.1021/ic401529u 24397747
    [Google Scholar]
  117. McCullyK.S. VezeridisM.P. Antineoplastic activity of a rhodium trichloride complex of oxalyl homocysteine thiolactone.Cancer Invest.198751253010.3109/07357908709020303 3580945
    [Google Scholar]
  118. JacksonB.A. AlekseyevV.Y. BartonJ.K. A versatile mismatch recognition agent: specific cleavage of a plasmid DNA at a single base mispair.Biochemistry199938154655466210.1021/bi990255t 10200152
    [Google Scholar]
  119. SchäferS. SheldrickW.S. Coligand tuning of the DNA binding properties of half-sandwich organometallic intercalators: Influence of polypyridyl (pp) and monodentate ligands (L=Cl, (NH2)2CS, (NMe2)2CS) on the intercalation of (η5-pentamethylcyclopentadienyl)-iridium(III)- dipyridoquinoxaline and -dipyridophenazine complexes.J. Organomet. Chem.200769261300130910.1016/j.jorganchem.2006.10.033
    [Google Scholar]
  120. ScharwitzM.A. OttI. GeldmacherY. GustR. SheldrickW.S. Cytotoxic half-sandwich rhodium(III) complexes: Polypyridyl ligand influence on their DNA binding properties and cellular uptake.J. Organomet. Chem.2008693132299230910.1016/j.jorganchem.2008.04.002
    [Google Scholar]
  121. ZhangW.Y. BridgewaterH.E. BanerjeeS. Soldevila-BarredaJ.J. ClarksonG.J. ShiH. ImbertiC. SadlerP.J. Ligand‐controlled reactivity and cytotoxicity of cyclometalated rhodium(III) complexes.Eur. J. Inorg. Chem.2020202011-121052106010.1002/ejic.201901055 33776557
    [Google Scholar]
  122. Pérez-ArnaizC. AcuñaM.I. BustoN. EchevarríaI. Martínez-AlonsoM. EspinoG. GarcíaB. DomínguezF. Thiabendazole-based Rh(III) and Ir(III) biscyclometallated complexes with mitochondria-targeted anticancer activity and metal-sensitive photodynamic activity.Eur. J. Med. Chem.201815727929310.1016/j.ejmech.2018.07.065 30099251
    [Google Scholar]
  123. KumarA. KumarA. GuptaR.K. PaitandiR.P. SinghK.B. TrigunS.K. HundalM.S. PandeyD.S. Cationic Ru(II), Rh(III) and Ir(III) complexes containing cyclic -perimeter and 2-aminophenyl benzimidazole ligands: Synthesis, molecular structure, DNA and protein binding, cytotoxicity and anticancer activity.J. Organomet. Chem.2016801687910.1016/j.jorganchem.2015.10.008
    [Google Scholar]
  124. LiuJ.H. PanF.H. WangZ.F. WangR. YangL. QinQ.P. TanM.X. Synthesis, crystal structure and biological evaluation of three new Rh(III) complexes incorporating benzimidazole derivatives.Inorg. Chem. Commun.202011810801710.1016/j.inoche.2020.108017
    [Google Scholar]
  125. Soldevila-BarredaJ.J. HabtemariamA. Romero-CanelónI. SadlerP.J. Half-sandwich rhodium(III) transfer hydrogenation catalysts: Reduction of NAD+ and pyruvate, and antiproliferative activity.J. Inorg. Biochem.201515332233310.1016/j.jinorgbio.2015.10.008 26601938
    [Google Scholar]
  126. YellolG.S. DonaireA. YellolJ.G. VasylyevaV. JaniakC. RuizJ. On the antitumor properties of novel cyclometalated benzimidazole Ru(ii), Ir(iii) and Rh(iii) complexes.Chem. Commun. (Camb.)20134998115331153510.1039/c3cc46239k 24177492
    [Google Scholar]
  127. BiedaR. OttI. DobroschkeM. ProkopA. GustR. SheldrickW.S. Structure–activity relationships and DNA binding properties of apoptosis inducing cytotoxic rhodium(III) polypyridyl complexes containing the cyclic thioether [9]aneS3.J. Inorg. Biochem.2009103569870810.1016/j.jinorgbio.2009.01.008 19243835
    [Google Scholar]
  128. YangG.J. ZhongH.J. KoC.N. WongS.Y. VellaisamyK. YeM. MaD.L. LeungC.H. Identification of a rhodium(III) complex as a Wee1 inhibitor against TP53 -mutated triple-negative breast cancer cells.Chem. Commun. (Camb.)201854202463246610.1039/C7CC09384E 29367998
    [Google Scholar]
  129. HanifM. ArshadJ. AstinJ.W. RanaZ. ZafarA. MovassaghiS. LeungE. PatelK. SöhnelT. ReynissonJ. SarojiniV. RosengrenR.J. JamiesonS.M.F. HartingerC.G. A multitargeted approach: organorhodium anticancer agent based on vorinostat as a potent histone deacetylase inhibitor.Angew. Chem. Int. Ed.20205934146091461410.1002/anie.202005758 32431061
    [Google Scholar]
  130. LeungS.K. KwokK.Y. ZhangK.Y. LoK.K.W. Design of luminescent biotinylation reagents derived from cyclometalated iridium(III) and rhodium(III) bis(pyridylbenzaldehyde) complexes.Inorg. Chem.201049114984499510.1021/ic100092d 20465281
    [Google Scholar]
  131. NanoA. BailisJ.M. MarianoN.F. PhamE.D. ThreattS.D. BartonJ.K. Cell-selective cytotoxicity of a fluorescent rhodium metalloinsertor conjugate results from irreversible DNA damage at base pair mismatches.Biochemistry202059571772610.1021/acs.biochem.9b01037 31967788
    [Google Scholar]
  132. JacksonB.A. HenlingL.M. BartonJ.K. Spectral and structural characterization of 5, 6-chrysenequinone diimine complexes of rhodium (III): Evidence for a pH-dependent ligand conformational switch.Inorg. Chem.199938266218622410.1021/ic990824l 11671336
    [Google Scholar]
  133. JunickeH. HartJ.R. KiskoJ. GlebovO. KirschI.R. BartonJ.K. A rhodium(III) complex for high-affinity DNA base-pair mismatch recognition.Proc. Natl. Acad. Sci. USA200310073737374210.1073/pnas.0537194100 12610209
    [Google Scholar]
  134. JacksonB.A. BartonJ.K. Recognition of DNA base mismatches by a rhodium intercalator.J. Am. Chem. Soc.199711952129861298710.1021/ja972489a
    [Google Scholar]
  135. KomorA.C. BartonJ.K. An unusual ligand coordination gives rise to a new family of rhodium metalloinsertors with improved selectivity and potency.J. Am. Chem. Soc.201413640141601417210.1021/ja5072064 25254630
    [Google Scholar]
  136. BoyleK.M. BartonJ.K. A family of rhodium complexes with selective toxicity toward mismatch repair-deficient cancers.J. Am. Chem. Soc.2018140165612562410.1021/jacs.8b02271 29620877
    [Google Scholar]
  137. NanoA. DaiJ. BailisJ.M. BartonJ.K. Rhodium complexes targeting DNA mismatches as a basis for new therapeutics in cancers deficient in mismatch repair.Biochemistry202160262055206310.1021/acs.biochem.1c00302 34115466
    [Google Scholar]
  138. HackenbergF. OehningerL. AlborziniaH. CanS. KitanovicI. GeldmacherY. KokoschkaM. WölflS. OttI. SheldrickW.S. Highly cytotoxic substitutionally inert rhodium(III) tris(chelate) complexes: DNA binding modes and biological impact on human cancer cells.J. Inorg. Biochem.2011105799199910.1016/j.jinorgbio.2011.04.006 21569751
    [Google Scholar]
  139. PatalenszkiJ. BíróL. BényeiA.C. MuchovaT.R. KasparkovaJ. BuglyóP. Half-sandwich complexes of ruthenium, osmium, rhodium and iridium with DL -methionine or S-methyl- L -cysteine: a solid state and solution equilibrium study.RSC Advances20155118094810710.1039/C4RA15649H
    [Google Scholar]
  140. AbouraW. BatchelorL.K. GarciA. DysonP.J. TherrienB. Reactivity and biological activity of N,N,S-Schiff-base rhodium pentamethylcyclopentadienyl complexes.Inorg. Chim. Acta202050111926510.1016/j.ica.2019.119265
    [Google Scholar]
  141. RubnerG. BensdorfK. WellnerA. BergemannS. OttI. GustR. [Cyclopentadienyl]metalcarbonyl complexes of acetylsalicylic acid as neo-anticancer agents.Eur. J. Med. Chem.201045115157516310.1016/j.ejmech.2010.08.028 20828891
    [Google Scholar]
  142. ParveenS. HanifM. LeungE. TongK.K.H. YangA. AstinJ. De ZoysaG.H. SteelT.R. GoodmanD. MovassaghiS. SöhnelT. SarojiniV. JamiesonS.M.F. HartingerC.G. Anticancer organorhodium and -iridium complexes with low toxicity in vivo but high potency in vitro: DNA damage, reactive oxygen species formation, and haemolytic activity.Chem. Commun. (Camb.)20195580120161201910.1039/C9CC03822A 31498360
    [Google Scholar]
  143. GuptaG. KumarJ. GarciA. NageshN. TherrienB. Exploiting natural products to build metalla-assemblies: the anticancer activity of embelin-derived Rh(III) and Ir(III) metalla-rectangles.Molecules20141956031604610.3390/molecules19056031 24824137
    [Google Scholar]
  144. AguirreJ.D. Angeles-BozaA.M. ChouaiA. TurroC. PelloisJ.P. DunbarK.R. Anticancer activity of heteroleptic diimine complexes of dirhodium: A study of intercalating properties, hydrophobicity and in cellulo activity.Dalton Trans.20094848108061081210.1039/b915357h 20023910
    [Google Scholar]
  145. JoyceL.E. AguirreJ.D. Angeles-BozaA.M. ChouaiA. FuP.K.L. DunbarK.R. TurroC. Photophysical properties, DNA photocleavage, and photocytotoxicity of a series of dppn dirhodium(II,II) complexes.Inorg. Chem.201049125371537610.1021/ic100588d 20496907
    [Google Scholar]
  146. Ali NazifM. BangertJ.A. OttI. GustR. StollR. SheldrickW.S. Dinuclear organoiridium(III) mono- and bis-intercalators with rigid bridging ligands: Synthesis, cytotoxicity and DNA binding.J. Inorg. Biochem.2009103101405141410.1016/j.jinorgbio.2009.08.003 19744736
    [Google Scholar]
  147. van RijtS.H. SadlerP.J. Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs.Drug Discov. Today20091423-241089109710.1016/j.drudis.2009.09.003 19782150
    [Google Scholar]
  148. ErnstR.J. SongH. BartonJ.K. DNA mismatch binding and antiproliferative activity of rhodium metalloinsertors.J. Am. Chem. Soc.200913162359236610.1021/ja8081044 19175313
    [Google Scholar]
  149. FurrerJ. Süss-FinkG. Thiolato-bridged dinuclear arene ruthenium complexes and their potential as anticancer drugs.Coord. Chem. Rev.2016309365010.1016/j.ccr.2015.10.007
    [Google Scholar]
  150. GuptaG. GarciA. MurrayB.S. DysonP.J. FabreG. TrouillasP. GianniniF. FurrerJ. Süss-FinkG. TherrienB. Synthesis, molecular structure, computational study and in vitro anticancer activity of dinuclear thiolato-bridged pentamethylcyclopentadienyl Rh(iii) and Ir(iii) complexes.Dalton Trans.20134243154571546310.1039/c3dt51991k 24022745
    [Google Scholar]
  151. GasserG. OttI. Metzler-NolteN. Organometallic anticancer compounds.J. Med. Chem.201154132510.1021/jm100020w 21077686
    [Google Scholar]
  152. StringerT. GuzgayH. CombrinckJ.M. HopperM. HendricksD.T. SmithP.J. LandK.M. EganT.J. SmithG.S. Synthesis, characterization and pharmacological evaluation of ferrocenyl azines and their rhodium(I) complexes.J. Organomet. Chem.20157881810.1016/j.jorganchem.2015.04.009
    [Google Scholar]
  153. WenzelM. de AlmeidaA. BigaevaE. KavanaghP. PicquetM. Le GendreP. BodioE. CasiniA. New luminescent polynuclear metal complexes with anticancer properties: toward structure–activity relationships.Inorg. Chem.20165552544255710.1021/acs.inorgchem.5b02910 26867101
    [Google Scholar]
  154. SharmaS. SinghS.K. PandeyD.S. Ruthenium(II) polypyridyl complexes: potential precursors, metalloligands, and topo II inhibitors.Inorg. Chem.20084731179118910.1021/ic701518e 18171055
    [Google Scholar]
  155. AskariB. RudbariH.A. MicaleN. SchirmeisterT. MaugeriA. NavarraM. Anticancer study of heterobimetallic platinum(II)-ruthenium(II) and platinum(II)-rhodium(III) complexes with bridging dithiooxamide ligand.J. Organomet. Chem.201990012091810.1016/j.jorganchem.2019.120918
    [Google Scholar]
  156. HigginsS.L.H. BrewerK.J. Designing red-light-activated multifunctional agents for the photodynamic therapy.Angew. Chem. Int. Ed.20125146114201142210.1002/anie.201204933 23055391
    [Google Scholar]
  157. WangJ. HigginsS.L.H. WinkelB.S.J. BrewerK.J. A new Os, Rh bimetallic with O2 independent DNA cleavage and DNA photobinding with red therapeutic light excitation.Chem. Commun. (Camb.)201147359786978810.1039/c1cc11562f 21666932
    [Google Scholar]
  158. GuidoccioF. MazzarriS. DepaloT. OrsiniF. ErbaP.A. MarianiG. Novel Radiopharmaceuticals for Therapy. In: Nuclear Oncology: From Pathophysiology to Clinical Applications; Springer Intern. Publ.Cham202221724310.1007/978‑3‑031‑05494‑5_36
    [Google Scholar]
  159. BrooksR.C. CarnochanP. VollanoJ.F. PowellN.A. ZweitJ. SosabowskiJ.K. MartellucciS. DarkesM.C. FrickerS.P. MurrerB.A. Metal complexes of bleomycin: evaluation of [Rh-105]-bleomycin for use in targeted radiotherapy.Nucl. Med. Biol.199926442143010.1016/S0969‑8051(98)00109‑7 10382846
    [Google Scholar]
  160. SchmittF. AuziasM. ŠtěpničkaP. SeiY. YamaguchiK. Süss-FinkG. TherrienB. Juillerat-JeanneretL. Sawhorse-type diruthenium tetracarbonyl complexes containing porphyrin-derived ligands as highly selective photosensitizers for female reproductive cancer cells.J. Biol. Inorg. Chem.200914569370110.1007/s00775‑009‑0482‑z 19241094
    [Google Scholar]
/content/journals/mc/10.2174/0115734064327558240826050650
Loading
/content/journals/mc/10.2174/0115734064327558240826050650
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anticancer; chemotherapeutic potential; cytotoxic; Osmium; rhodium; tumor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test