Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Aim

Due to interdisciplinary research, many innovative concepts have been merged that seemed to be impractical. Recently, medicinal organometallic chemistry has made remarkable progress, but the latency of these compounds has not been fully exploited. This systematic review has examined the published literature on anticancer organometallic chemistry across countries, science fields, and organizations involved in organometallics research for cancer.

Methods

The study data related to anticancer organometallics were searched from Scopus between 1985 and 2022. Biblioshiny and VOS Viewers were used to analyze and visualize patterns in scientific literature derived from Scopus.

Results

Publications on organometallic compounds have been found to contribute to, on average, 1.02% per year, accounting for 94.3% of the total scholarly work published in the last two decades since 2003. However, research productivity has been found to be steadily improved, with 81.5% of all publications produced between 2011 and 2022. The countries possessing the highest published work have been found to be China, the UK, and Germany. The leading institutions, the University of Warwick, United Kingdom, and the University of Auckland, New Zealand, have topped the list of organizations with the most publications. Although the use of medicinal organometallics for cancer has become widespread over the last two decennaries, there has been a notable influx of groundbreaking scientific publications in recent years.

Conclusion

The findings of this study may enable researchers to envision potential future scenarios for scientific collaborations involving the utilization of organometallics in the treatment of cancer. This study may provide aspiring and current researchers with the necessary tools and knowledge to effectively pursue their research endeavors for scientific collaborations investigating the use of anticancer organometallics in the medicinal field. The areas, such as ruthenium with reactive oxygen species and angiogenesis, represent opportunities for future investigation and innovation.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064317811240815184525
2024-08-29
2025-10-25
Loading full text...

Full text loading...

References

  1. GasserG. OttI. Metzler-NolteN. Organometallic anticancer compounds.J. Med. Chem.201154132510.1021/jm100020w 21077686
    [Google Scholar]
  2. BruijnincxP.C.A. SadlerP.J. Controlling platinum, ruthenium, and osmium reactivity for anticancer drug design.Adv. Inorg. Chem.20096116210.1016/S0898‑8838(09)00201‑3 21258628
    [Google Scholar]
  3. AbidM. ShamsiF. AzamA. Ruthenium complexes: An emerging ground to the development of metallopharmaceuticals for cancer therapy.Mini Rev. Med. Chem.2016161077278610.2174/1389557515666151001142012 26423699
    [Google Scholar]
  4. WangH. LiD. HongM. DouJ. Syntheses, structural characterization and in vitro cytotoxic activity of triorganotin(IV) complexes based on 1,7-dihydroxycarbonyl-1,7-dicarba-closo-dodecaborane ligand.J. Organomet. Chem.20137401910.1016/j.jorganchem.2013.04.039
    [Google Scholar]
  5. MartinsP. Organometallic compounds in cancer therapy: Past lessons and future directions.Anticancer. Agents Med. Chem.2014149119921210.2174/1871520614666140829124925
    [Google Scholar]
  6. LeeL.C.C. LeungK.K. LoK.K.W. Recent development of luminescent rhenium(I) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents.Dalton Trans.20174647163571638010.1039/C7DT03465B 29110007
    [Google Scholar]
  7. FrickerS.P. Metal compounds in cancer therapy.NetherlandsSpringer Science & Business Media2012
    [Google Scholar]
  8. AngW.H. CasiniA. SavaG. DysonP.J. Organometallic ruthenium-based antitumor compounds with novel modes of action.J. Organomet. Chem.2011696598999810.1016/j.jorganchem.2010.11.009
    [Google Scholar]
  9. MuchaA. KafarskiP. BerlickiŁ. Remarkable potential of the α-aminophosphonate/phosphinate structural motif in medicinal chemistry.J. Med. Chem.201154175955598010.1021/jm200587f 21780776
    [Google Scholar]
  10. PatraM. GasserG. Metzler-NolteN. Small organometallic compounds as antibacterial agents.Dalton Trans.201241216350635810.1039/c2dt12460b 22411216
    [Google Scholar]
  11. HartingerC.G. DysonP.J. Bioorganometallic chemistry—from teaching paradigms to medicinal applications.Chem. Soc. Rev.200938239140110.1039/B707077M 19169456
    [Google Scholar]
  12. PöthigA. CasiniA. Recent developments of supramolecular metal-based structures for applications in cancer therapy and imaging.Theranostics20199113150316910.7150/thno.31828 31244947
    [Google Scholar]
  13. HartingerC.G. Metzler-NolteN. DysonP.J. Challenges and opportunities in the development of organometallic anticancer drugs.Organometallics201231165677568510.1021/om300373t
    [Google Scholar]
  14. FarwaU. SinghN. LeeJ. Self-assembly of supramolecules containing half-sandwich iridium units.Coord. Chem. Rev.202144521390910.1016/j.ccr.2021.213909
    [Google Scholar]
  15. StromnovaT.A. Dinuclear and polynuclear palladium carboxylate complexes containing a Pd(μ-OCOR)2Pd group as a building block.Russ. J. Inorg. Chem.200853132019204710.1134/S0036023608130032
    [Google Scholar]
  16. SuliczA.N. Synthesis and Characterization of Luminescent Gold (III) Complexes., Case Western Reserve University, Computer Engineering and Science 10900 Euclid Avenue Cleveland, OH United States2017
    [Google Scholar]
  17. PatraM. GasserG. The medicinal chemistry of ferrocene and its derivatives.Nat. Rev. Chem.201719006610.1038/s41570‑017‑0066
    [Google Scholar]
  18. GasserG. Metzler-NolteN. The potential of organometallic complexes in medicinal chemistry.Curr. Opin. Chem. Biol.2012161-2849110.1016/j.cbpa.2012.01.013 22366385
    [Google Scholar]
  19. JayasingheM.K. New approaches in extracellular vesicle engineering for improving the efficacy of anti-cancer therapies. Seminars in Cancer Biology.AmsterdamElsevier202110.1016/j.semcancer.2021.02.010
    [Google Scholar]
  20. YousufI. BashirM. ArjmandF. TabassumS. Advancement of metal compounds as therapeutic and diagnostic metallodrugs: Current frontiers and future perspectives.Coord. Chem. Rev.202144521410410.1016/j.ccr.2021.214104
    [Google Scholar]
  21. SahuT. RatreY.K. ChauhanS. BhaskarL.V.K.S. NairM.P. VermaH.K. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science.J. Drug Deliv. Sci. Technol.20216310248710.1016/j.jddst.2021.102487
    [Google Scholar]
  22. ChaturvediV.K. SinghA. SinghV.K. SinghM.P. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy.Curr. Drug Metab.201920641642910.2174/1389200219666180918111528 30227814
    [Google Scholar]
  23. EmejeM.O. Nanotechnology in drug delivery. In: Recent Advances in Novel Drug Carrier Systems; InTechOpen: London2012
    [Google Scholar]
  24. SrivastavaR. Theoretical Insight into the Medicinal World of Organometallics: Macro versus Nano. Recent Progress in Organometallic Chemistry; InTechOpen: London2017
    [Google Scholar]
  25. GharpureS. AnkamwarB. Use of nanotechnology in combating coronavirus.BioTech202111358
    [Google Scholar]
  26. BruijnincxP.C.A. SadlerP.J. New trends for metal complexes with anticancer activity.Curr. Opin. Chem. Biol.200812219720610.1016/j.cbpa.2007.11.013 18155674
    [Google Scholar]
  27. LockeG.M. BernhardS.S.R. SengeM.O. Nonconjugated hydrocarbons as rigid‐linear motifs: Isosteres for material sciences and bioorganic and medicinal chemistry.Chemistry201925184590464710.1002/chem.201804225 30387906
    [Google Scholar]
  28. ParveenS. ArjmandF. TabassumS. Development and future prospects of selective organometallic compounds as anticancer drug candidates exhibiting novel modes of action.Eur. J. Med. Chem.201917526928610.1016/j.ejmech.2019.04.062 31096151
    [Google Scholar]
  29. LumC.T. WongA.S.T. LinM.C.M. CheC.M. SunR.W.Y. A gold(III) porphyrin complex as an anti-cancer candidate to inhibit growth of cancer-stem cells.Chem. Commun. (Camb.)201349394364436610.1039/C2CC37366A 23223325
    [Google Scholar]
  30. QianS. WeiZ. YangW. HuangJ. YangY. WangJ. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy.Front. Oncol.20221298536310.3389/fonc.2022.985363 36313628
    [Google Scholar]
  31. TongK.C. HuD. WanP.K. LokC.N. CheC.M. Anticancer Gold(III) compounds with porphyrin or N-heterocyclic carbene ligands.Front Chem.2020858720710.3389/fchem.2020.587207 33240849
    [Google Scholar]
  32. García-MorenoE. GascónS. Atrián-BlascoE. Rodriguez-YoldiM.J. CerradaE. LagunaM. Gold(I) complexes with alkylated PTA (1,3,5-triaza-7-phosphaadamantane) phosphanes as anticancer metallodrugs.Eur. J. Med. Chem.20147916417210.1016/j.ejmech.2014.04.001 24732792
    [Google Scholar]
  33. MármolI. QueroJ. Rodríguez-YoldiM.J. CerradaE. Gold as a possible alternative to platinum-based chemotherapy for colon cancer treatment.Cancers (Basel)201911678010.3390/cancers11060780 31195711
    [Google Scholar]
  34. Moreno-AlcántarG. PicchettiP. CasiniA. Gold complexes in anticancer therapy: from new design principles to particle‐based delivery systems.Angew. Chem. Int. Ed.20236222e20221800010.1002/anie.202218000 36847211
    [Google Scholar]
  35. García-MorenoE. TomásA. Atrián-BlascoE. GascónS. RomanosE. Rodriguez-YoldiM.J. CerradaE. LagunaM. In vitro and in vivo evaluation of organometallic gold(I) derivatives as anticancer agents.Dalton Trans.20164562462247510.1039/C5DT01802A 26469679
    [Google Scholar]
  36. AbásE. Aguirre-RamírezD. LagunaM. GrasaL. Selective anticancer and antimicrobial metallodrugs based on gold(III) dithiocarbamate complexes.Biomedicines2021912177510.3390/biomedicines9121775 34944591
    [Google Scholar]
  37. TopalăT. BodokiA. OpreanL. OpreanR. Bovine serum albumin interactions with metal complexes.Clujul Med.2014874215219 26528027
    [Google Scholar]
  38. TolbatovI. MarroneA. ColettiC. ReN. Computational studies of Au(I) and Au(III) anticancer metallodrugs: A survey.Molecules20212624760010.3390/molecules26247600 34946684
    [Google Scholar]
  39. SchmidtC. KargeB. MisgeldR. ProkopA. FrankeR. BrönstrupM. OttI. Gold(I) NHC complexes: antiproliferative activity, cellular uptake, inhibition of mammalian and bacterial thioredoxin reductases, and gram‐positive directed antibacterial effects.Chemistry20172381869188010.1002/chem.201604512 27865002
    [Google Scholar]
  40. PeterS. AderibigbeB.A. Ferrocene-based compounds with antimalaria/anticancer activity.Molecules20192419360410.3390/molecules24193604 31591298
    [Google Scholar]
  41. JawariaR. Synthesis and characterization of ferrocene-based thiosemicarbazones along with their computational studies for potential as inhibitors for SARS-CoV-2.J. Indian Chem. Soc.2022193839846
    [Google Scholar]
  42. OrnelasC. AstrucD. Ferrocene-based drugs, delivery nanomaterials and fenton mechanism: State of the art, recent developments and prospects.Pharmaceutics2023158204410.3390/pharmaceutics15082044 37631259
    [Google Scholar]
  43. ZengL. TangM. PiC. ZhengJ. GaoS. ChabanneT. ChauvinR. ChengW. LinH. XuR. CuiX. Novel ferrocene derivatives induce apoptosis through mitochondria-dependent and cell cycle arrest via PI3K/Akt/mTOR signaling pathway in T cell acute lymphoblastic leukemia.Cancers (Basel)20211318467710.3390/cancers13184677 34572904
    [Google Scholar]
  44. de OliveiraA.C. da SilvaE.G. RochaD.D. HillardE.A. PigeonP. JaouenG. RodriguesF.A.R. de AbreuF.C. da Rocha FerreiraF. GoulartM.O.F. Costa-LotufoL.V. Molecular mechanism of action of 2-ferrocenyl-1,1-diphenylbut-1-ene on HL-60 leukemia cells.ChemMedChem20149112580258610.1002/cmdc.201402219 25156124
    [Google Scholar]
  45. McGowanM.A.D. McGowanP.C. A one-step synthesis of protected functionalised titanocene dichlorides.Inorg. Chem. Commun.20003733734010.1016/S1387‑7003(00)00094‑0
    [Google Scholar]
  46. NapoliM. SaturninoC. SirignanoE. PopoloA. PintoA. LongoP. Synthesis, characterization and cytotoxicity studies of methoxy alkyl substituted metallocenes.Eur. J. Med. Chem.201146112212810.1016/j.ejmech.2010.10.021 21094563
    [Google Scholar]
  47. SasaH. KikuchiY. HisanoA. IshiiK. NagataI. KawaiT. AidaS. SugitaM. SugishitaT. TenjinY. Cytokinetic effects of cisplatin on cisplatin-resistant ovarian cancer cell lines.Hum. Cell199254384391 1304801
    [Google Scholar]
  48. AyyagariV.N. HsiehT.J. Diaz-SylvesterP.L. BrardL. Evaluation of the cytotoxicity of the Bithionol - cisplatin combination in a panel of human ovarian cancer cell lines.BMC Cancer20171714910.1186/s12885‑016‑3034‑2 28086831
    [Google Scholar]
  49. PotterG.D. BairdM.C. ColeS.P.C. A new series of titanocene dichloride derivatives bearing cyclic alkylammonium groups: Assessment of their cytotoxic properties.J. Organomet. Chem.2007692163508351810.1016/j.jorganchem.2007.04.024
    [Google Scholar]
  50. EllahiouiY. PrasharS. Gómez-RuizS. Anticancer applications and recent investigations of metallodrugs based on gallium, tin and titanium.Inorganics (Basel)201751410.3390/inorganics5010004
    [Google Scholar]
  51. ImmelT.A. GrothU. HuhnT. ÖhlschlägerP. Titanium salan complexes displays strong antitumor properties in vitro and in vivo in mice.PLoS One201163e1786910.1371/journal.pone.0017869 21445304
    [Google Scholar]
  52. BoylesJ.R. BairdM.C. CamplingB.G. JainN. Enhanced anti-cancer activities of some derivatives of titanocene dichloride.J. Inorg. Biochem.2001841-215916210.1016/S0162‑0134(00)00203‑8 11330477
    [Google Scholar]
  53. PampillónC. SweeneyN.J. StrohfeldtK. TackeM. Diheteroarylmethyl substituted titanocenes: A novel class of possible anti-cancer drugs.Inorg. Chim. Acta2006359123969397510.1016/j.ica.2006.05.021
    [Google Scholar]
  54. HoganM. ClaffeyJ. FitzpatrickE. HickeyT. PampillónC. TackeM. Synthesis and cytotoxicity studies of titanocene C analogues.Met. Based Drugs200820081710.1155/2008/754358 18274663
    [Google Scholar]
  55. ZakiM. HairatS. AazamE.S. Scope of organometallic compounds based on transition metal-arene systems as anticancer agents: Starting from the classical paradigm to targeting multiple strategies.RSC Advances2019963239327810.1039/C8RA07926A 35518979
    [Google Scholar]
  56. López-HernándezJ.E. ContelM. Promising heterometallic compounds as anticancer agents: Recent studies in vivo.Curr. Opin. Chem. Biol.20237210225010.1016/j.cbpa.2022.102250 36566618
    [Google Scholar]
  57. MaX. LuJ. YangP. HuangB. LiR. YeR. Synthesis, Characterization and antitumor mechanism investigation of heterometallic Ru(II)-Re(I) complexes.Front Chem.20221089092510.3389/fchem.2022.890925 35711955
    [Google Scholar]
  58. Fernández-GallardoJ. ElieB.T. SulzmaierF.J. SanaúM. RamosJ.W. ContelM. Organometallic titanocene–gold compounds as potential chemotherapeutics in renal cancer. Study of their protein kinase inhibitory properties.Organometallics201433226669668110.1021/om500965k 25435644
    [Google Scholar]
  59. WeaverJ. GaillardS. ToyeC. MacphersonS. NolanS.P. RichesA. Cytotoxicity of gold(I) N-heterocyclic carbene complexes assessed by using human tumor cell lines.Chemistry201117246620662410.1002/chem.201100321 21542042
    [Google Scholar]
  60. ZhangP. SadlerP.J. Advances in the design of organometallic anticancer complexes.J. Organomet. Chem.201783951410.1016/j.jorganchem.2017.03.038
    [Google Scholar]
  61. AlessioE. MessoriL. NAMI-A and KP1019/1339, two iconic ruthenium anticancer drug candidates face-to-face: a case story in medicinal inorganic chemistry.Molecules20192410199510.3390/molecules24101995 31137659
    [Google Scholar]
  62. KhouryA. SakoffJ.A. GilbertJ. KaranS. GordonC.P. Aldrich-WrightJ.R. Potent platinum(iv) prodrugs that incorporate a biotin moiety to selectively target cancer cells.Pharmaceutics20221412278010.3390/pharmaceutics14122780 36559273
    [Google Scholar]
  63. AlanJ. Methods for treating cancer using anti-PD-1 antibodies. USPatent US9084776B22015
  64. JingS. WuX. NiuD. WangJ. LeungC.H. WangW. Recent advances in organometallic NIR iridium(III) complexes for detection and therapy.Molecules202429125610.3390/molecules29010256 38202839
    [Google Scholar]
  65. SunR.W.Y. CheC.M. The anti-cancer properties of gold(III) compounds with dianionic porphyrin and tetradentate ligands.Coord. Chem. Rev.200925311-121682169110.1016/j.ccr.2009.02.017
    [Google Scholar]
  66. MeggersE. From conventional to unusual enzyme inhibitor scaffolds: The quest for target specificity.Angew. Chem. Int. Ed.201150112442244810.1002/anie.201005673 21328511
    [Google Scholar]
  67. PatraM. GasserG. PintoA. MerzK. OttI. BandowJ.E. Metzler-NolteN. Synthesis and biological evaluation of chromium bioorganometallics based on the antibiotic platensimycin lead structure.ChemMedChem20094111930193810.1002/cmdc.200900347 19784974
    [Google Scholar]
  68. RehderD. Structure and function of vanadium compounds in living organisms.Biometals19925131210.1007/BF01079691 1392470
    [Google Scholar]
  69. RoweM.D. ThammD.H. KraftS.L. BoyesS.G. Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer.Biomacromolecules200910498399310.1021/bm900043e 19290624
    [Google Scholar]
  70. GentnerT.X. MulveyR.E. Alkali‐metal mediation: diversity of applications in main‐group organometallic chemistry.Angew. Chem. Int. Ed.202160179247926210.1002/anie.202010963 33017511
    [Google Scholar]
  71. AlfahadO.A. Ur RehmanT. WoodmanA. MalaekahE.A. RasheedM. Mapping knowledge and themes trends in the cybersecurity of medical devices: a bibliometric investigation.Sci. Technol. Libr.2023202311110.1080/0194262X.2023.2274547
    [Google Scholar]
  72. AnthonyE.J. BolithoE.M. BridgewaterH.E. CarterO.W.L. DonnellyJ.M. ImbertiC. LantE.C. LermyteF. NeedhamR.J. PalauM. SadlerP.J. ShiH. WangF.X. ZhangW.Y. ZhangZ. Metallodrugs are unique: Opportunities and challenges of discovery and development.Chem. Sci. (Camb.)20201148128881291710.1039/D0SC04082G 34123239
    [Google Scholar]
  73. BonnerS.E. HesfordJ.W. Van der StedeW.A. YoungS.M. The most influential journals in academic accounting.Account. Organ. Soc.200631766368510.1016/j.aos.2005.06.003
    [Google Scholar]
  74. SadimenkoA.P. Organometallic chemistry of heterocycles: New remarkable facts. Advances in Heterocyclic Chemistry.AmsterdamElsevier2010
    [Google Scholar]
  75. FortunatoS. BergstromC.T. BörnerK. EvansJ.A. HelbingD. MilojevićS. PetersenA.M. RadicchiF. SinatraR. UzziB. VespignaniA. WaltmanL. WangD. BarabásiA.L. Science of science.Science20183596379eaao018510.1126/science.aao0185 29496846
    [Google Scholar]
  76. CarpenterC.R. ConeD.C. SarliC.C. Using publication metrics to highlight academic productivity and research impact.Acad. Emerg. Med.201421101160117210.1111/acem.12482 25308141
    [Google Scholar]
  77. RanaS. VermaS. HaqueM.M. AhmedG. Conceptualizing international positioning strategies for Indian higher education institutions.Rev. Int. Bus Strategy202232450351910.1108/RIBS‑07‑2021‑0105
    [Google Scholar]
  78. IoannidisJ.P.A. KlavansR. BoyackK.W. Multiple citation indicators and their composite across scientific disciplines.PLoS Biol.2016147e100250110.1371/journal.pbio.1002501 27367269
    [Google Scholar]
  79. PonomariovB. BoardmanC. What is co-authorship?Scientometrics201610931939196310.1007/s11192‑016‑2127‑7
    [Google Scholar]
  80. KumarA. Plagiarism: Injurious to the academic health of the researcher and research!J. Indian Soc. Periodontol.2021252919210.4103/jisp.jisp_22_21 33888937
    [Google Scholar]
  81. EllegaardO. WallinJ.A. The bibliometric analysis of scholarly production: How great is the impact?Scientometrics201510531809183110.1007/s11192‑015‑1645‑z 26594073
    [Google Scholar]
  82. BilgihanA. RicciP. The new era of hotel marketing: Integrating cutting-edge technologies with core marketing principles.J. Hosp. Tour. Technol.2023
    [Google Scholar]
  83. AlvermannD.E. Adolescent literacies: A handbook of practice-based research.New YorkGuilford Publications2017
    [Google Scholar]
  84. ZhaoD. StrotmannA. Evolution of research activities and intellectual influences in information science 1996–2005: Introducing author bibliographic‐coupling analysis.J. Am. Soc. Inf. Sci. Technol.200859132070208610.1002/asi.20910
    [Google Scholar]
  85. JarnevingB. Bibliographic coupling and its application to research-front and other core documents.J. Informetrics20071428730710.1016/j.joi.2007.07.004
    [Google Scholar]
  86. MaT-J. Bibliographic coupling: A main path analysis from 1963 to 2020.IR Inform. Res.202227191810.47989/irpaper918
    [Google Scholar]
  87. BiscaroC. GiupponiC. Co-authorship and bibliographic coupling network effects on citations.PLoS One201496e9950210.1371/journal.pone.0099502 24911416
    [Google Scholar]
  88. YanE. DingY. Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other.J. Am. Soc. Inf. Sci. Technol.20126371313132610.1002/asi.22680
    [Google Scholar]
  89. Van EckN.J. WaltmanL. Visualizing bibliometric networks. Measuring scholarly impact: Methods and practice.ChamSpringer201428532010.1007/978‑3‑319‑10377‑8_13
    [Google Scholar]
  90. LiH. AnH. WangY. HuangJ. GaoX. Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: Based on two-mode affiliation network.Physica A201645065766910.1016/j.physa.2016.01.017
    [Google Scholar]
  91. VeechJ.A. The pairwise approach to analysing species co‐occurrence.Hoboken, New JerseyWiley Online Library201410291035
    [Google Scholar]
  92. RadhakrishnanS. ErbisS. IsaacsJ.A. KamarthiS. Novel keyword co-occurrence network-based methods to foster systematic reviews of scientific literature.PLoS One2017123e017277810.1371/journal.pone.0172778 28328983
    [Google Scholar]
  93. Ur RehmanT. Responsiveness of the immune system to nanomedicine during coronavirus infections literature review and bibliometric analysis.Ibnosina J. Med. Biomed. Sci.20231517318010.1055/s‑0043‑1775843
    [Google Scholar]
  94. HeQ. Knowledge discovery through co-word analysis.1999Available from: https://www.ideals.illinois.edu/items/8226
    [Google Scholar]
  95. CoboM.J. López-HerreraA.G. Herrera-ViedmaE. HerreraF. Science mapping software tools: Review, analysis, and cooperative study among tools.J. Am. Soc. Inf. Sci. Technol.20116271382140210.1002/asi.21525
    [Google Scholar]
  96. NabganW. IkramM. AlhassanM. OwgiA.H.K. Van TranT. ParashuramL. NordinA.H. DjellabiR. JalilA.A. MedinaF. NordinM.L. Bibliometric analysis and an overview of the application of the non-precious materials for pyrolysis reaction of plastic waste.Arab. J. Chem.202316610471710.1016/j.arabjc.2023.104717
    [Google Scholar]
  97. NounouM.I. Breast cancer: Conventional diagnosis and treatment modalities and recent patents and technologies.Breast Cancer (Auckl.)20159Suppl. 21734
    [Google Scholar]
  98. QasimS.S.B. AliD. KhanA.S. RehmanS.U. IqbalA. BaskaradossJ.K. Evidence-based bibliometric analysis of research on silver diamine fluoride use in dentistry.BioMed Res. Int.2021202111310.1155/2021/9917408 34631889
    [Google Scholar]
/content/journals/mc/10.2174/0115734064317811240815184525
Loading
/content/journals/mc/10.2174/0115734064317811240815184525
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test