Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Background

Alternative and complementary applications of newly synthesized chemicals have enhanced the prospect of finding curative treatments for hepatocarcinogenesis and pancreatic cancer.

Methods

The current study investigated the curative effect of the newly synthesized drug 4-methyl--((4-(trifluoromethoxy) phenyl) carbamoyl) benzenesulfonamide () against diethyl nitrosamine (DEN) (50 mg/kg) and carbon tetrachloride (CCl) (2 mg/kg)-induced hepatocellular carcinoma (HCC) and pancreatic cancer in male rats using doxorubicin as a reference drug.

Results

The findings demonstrated that the DEN/CCl treatment produced oxidative stress, as evidenced by an increase in MDA and a reduction in GSH levels. A temporary decline in antioxidant and total antioxidant capacity (TAC) was detected. An increase in the levels of TNF-α and other inflammatory markers, interleukin-6 (IL-6) and B-cell lymphoma 2 (Bcl-2), was found. Our findings showed that the liver and pancreas had significantly higher levels of hepatocellular carcinoma biomarkers, namely α-fetoprotein and α-L-Fucosidase (α-FU). Changes in the biomarkers of hepatic function were also seen, with elevated levels of γ-glutamyltransferase (GGT), alkaline phosphatase (ALP), and transaminases (AST, ALT). Our findings were supported by immuno-histochemical and pathological examinations, which revealed considerable improvement in liver and pancreatic tissues after treatment with medication when compared to normal healthy rats.

Conclusion

The new synthetic medication could be an effective chemotherapeutic method for treating DEN and CCl-induced HCC and pancreatic cancer.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064308484240820080153
2024-09-04
2025-10-24
Loading full text...

Full text loading...

References

  1. PinheiroL.C.S. de LourdesG. FerreiraM. SilveiraF.F. FeitosaL.M. BoechatN. Synthetic compounds with sulfonamide moiety against Leishmaniasis: an overview.Med. Chem. Res.201928111807181710.1007/s00044‑019‑02432‑3
    [Google Scholar]
  2. PatilM. Noonikara-PoyilA. JoshiS.D. PatilS.A. PatilS.A. BugarinA. New urea derivatives as potential antimicrobial agents: synthesis, biological evaluation, and molecular docking studies.Antibiotics (Basel)20198417810.3390/antibiotics8040178 31600950
    [Google Scholar]
  3. SroorF.M. OthmanA.M. AboeleninM.M. MahrousK.F. Anticancer and antimicrobial activities of new thiazolyl-urea derivatives: gene expression, DNA damage, DNA fragmentation and SAR studies.Med. Chem. Res.202231340041510.1007/s00044‑022‑02849‑3
    [Google Scholar]
  4. SroorF.M. AbdelmoniemA.M. AbdelhamidI.A. Facile synthesis, structural activity relationship, molecular modeling and in vitro biological evaluation of new urea derivatives with incorporated isoxazole and thiazole moieties as anticancer agents.ChemistrySelect2019434101131012110.1002/slct.201901415
    [Google Scholar]
  5. ChibaleK. HauptH. KendrickH. YardleyV. SaravanamuthuA. FairlambA.H. CroftS.L. Antiprotozoal and cytotoxicity evaluation of sulfonamide and urea analogues of quinacrine.Bioorg. Med. Chem. Lett.200111192655265710.1016/S0960‑894X(01)00528‑5 11551771
    [Google Scholar]
  6. EzabadiI.R. CamoutsisC. ZoumpoulakisP. GeronikakiA. SokovićM. GlamočilijaJ. ĆirićA. Sulfonamide-1,2,4-triazole derivatives as antifungal and antibacterial agents: Synthesis, biological evaluation, lipophilicity, and conformational studies.Bioorg. Med. Chem.20081631150116110.1016/j.bmc.2007.10.082 18053730
    [Google Scholar]
  7. SroorF.M. El-SayedA.F. AbdelraofM. Design, synthesis, structure elucidation, antimicrobial, molecular docking, and SAR studies of novel urea derivatives bearing tricyclic aromatic hydrocarbon rings.Arch. Pharm. (Weinheim)20243576230073810.1002/ardp.202300738 38466125
    [Google Scholar]
  8. ElsayedM.A. ElsayedA.M. SroorF.M. Novel biologically active pyridine derivatives: Synthesis, structure characterization, in vitro antimicrobial evaluation and structure-activity relationship.Med. Chem. Res.202433347649110.1007/s00044‑024‑03188‑1
    [Google Scholar]
  9. ScottK.A. NjardarsonJ.T. Analysis of us fda-approved drugs containing sulfur atoms.Top. Curr. Chem. (Cham)20183761510.1007/s41061‑018‑0184‑5 29356979
    [Google Scholar]
  10. NairA.S. SinghA.K. KumarA. KumarS. SukumaranS. KoyiparambathV.P. PappachenL.K. RangarajanT.M. KimH. MathewB. FDA-approved trifluoromethyl group-containing drugs: a review of 20 years.Processes (Basel)20221010205410.3390/pr10102054
    [Google Scholar]
  11. LiuZ. GouA. WuX. Liver metastasis of pancreatic cancer: the new choice at the crossroads.Hepatobiliary Surg. Nutr.2023121889110.21037/hbsn‑22‑489 36860262
    [Google Scholar]
  12. YangJ. LinP. YangM. LiuW. FuX. LiuD. TaoL. HuoY. ZhangJ. HuaR. ZhangZ. LiY. WangL. XueJ. LiH. SunY. Integrated genomic and transcriptomic analysis reveals unique characteristics of hepatic metastases and pro-metastatic role of complement C1q in pancreatic ductal adenocarcinoma.Genome Biol.2021221410.1186/s13059‑020‑02222‑w 33397441
    [Google Scholar]
  13. HougD.S. BijlsmaM.F. The hepatic pre-metastatic niche in pancreatic ductal adenocarcinoma.Mol. Cancer20181719510.1186/s12943‑018‑0842‑9 29903049
    [Google Scholar]
  14. GumbergerP. BjornssonB. SandströmP. BojmarL. ZambirinisC.P. The liver pre-metastatic niche in pancreatic cancer: a potential opportunity for intervention.Cancers (Basel)20221412302810.3390/cancers14123028 35740692
    [Google Scholar]
  15. MengW. BaiB. BaiZ. LiY. YueP. LiX. QiaoL. The immunosuppression role of alpha-fetoprotein in human hepatocellular carcinoma.Discov. Med.201621118489494 27448785
    [Google Scholar]
  16. SroorF.M. OthmanA.M. TantawyM.A. MahrousK.F. El-NaggarM.E. Synthesis, antimicrobial, anti-cancer and in silico studies of new urea derivatives.Bioorg. Chem.202111210495310.1016/j.bioorg.2021.104953 33964581
    [Google Scholar]
  17. RapisardaV. LoretoC. MalaguarneraM. ArdiriA. ProitiM. RiganoG. FrazzettoE. RuggeriM.I. MalaguarneraG. BertinoN. MalaguarneraM. CataniaV.E. Di CarloI. ToroA. BertinoE. ManganoD. BertinoG. Hepatocellular carcinoma and the risk of occupational exposure.World J. Hepatol.201681357359010.4254/wjh.v8.i13.573 27168870
    [Google Scholar]
  18. SroorF.M. BasyouniW.M. AlyH.F. AliS.A. ArafaA.F. Design, synthesis and SAR of novel sulfonylurea derivatives for the treatment of Diabetes mellitus in rats.Med. Chem. Res.2021311
    [Google Scholar]
  19. SroorF.M. AbbasS.Y. BasyouniW.M. El-BayoukiK.A.M. El-MansyM.F. AlyH.F. AliS.A. ArafaA.F. HarounA.A. Synthesis, structural characterization and in vivo anti-diabetic evaluation of some new sulfonylurea derivatives in normal and silicate coated nanoparticle forms as anti-hyperglycemic agents.Bioorg. Chem.20199210329010.1016/j.bioorg.2019.103290 31561109
    [Google Scholar]
  20. SroorF. M. BasyouniW. M. AlyH. F. YounisE. A. MahrousK. F. HarounA. A. Biochemical and histopathological studies of sulfonylurea derivative as a new chemotherapeutic agent against liver cancer in free- and nano-coated forms.Appl. Bio. Chem.2022651
    [Google Scholar]
  21. Zayed MohamedN. AlyH.F. moneim El-Mezayen, H.A.; El-Salamony, H.E. Effect of co-administration of Bee honey and some chemotherapeutic drugs on dissemination of hepatocellular carcinoma in rats.Toxicol. Rep.2019687588810.1016/j.toxrep.2019.08.007 31516840
    [Google Scholar]
  22. HendersonJ.M. ZhangH.E. PolakN. GorrellM.D. Hepatocellular carcinoma: Mouse models and the potential roles of proteases.Cancer Lett.201738710611310.1016/j.canlet.2016.03.047 27045475
    [Google Scholar]
  23. HeindryckxF. ColleI. Van VlierbergheH. Experimental mouse models for hepatocellular carcinoma research.Int. J. Exp. Pathol.200990436738610.1111/j.1365‑2613.2009.00656.x 19659896
    [Google Scholar]
  24. FloreaA.M. BüsselbergD. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects.Cancers (Basel)2011311351137110.3390/cancers3011351 24212665
    [Google Scholar]
  25. Abu El MakaremM. An overview of biomarkers for the diagnosis of hepatocellular carcinoma.Hepattitis Monthly201212e612210.5812/hepatmon.6122
    [Google Scholar]
  26. KimN.H. HeoJ.D. KimT.B. RhoJ.R. YangM.H. JeongE.J. Protective effects of ethyl acetate soluble fraction of limonium tetragonum on diethylnitrosamine-induced liver fibrosis in rats.Biol. Pharm. Bull.20163961022102810.1248/bpb.b15‑01047 27251505
    [Google Scholar]
  27. Fawzy MontaserM. Amin SakrM. Omar KhalifaM. Alpha-l-fucosidase as a tumour marker of hepatocellular carcinoma.Arab J. Gastroenterol.201213191310.1016/j.ajg.2012.03.006 22560818
    [Google Scholar]
  28. PillaiA.A. FimmelC.J. Emerging serum biomarkers of HCC.Primary Liver Cancer201224726210.1007/978‑1‑61779‑863‑4_13
    [Google Scholar]
  29. ZhaoZ. HeX. SunY. Hypoglycemic agents and incidence of pancreatic cancer in diabetic patients: a meta-analysis.Front. Pharmacol.202314119361010.3389/fphar.2023.1193610 37497113
    [Google Scholar]
  30. SalehN. AllamT. KoranyR.M.S. AbdelfattahA.M. OmranA.M. Abd EldaimM.A. HassanA.M. El-BoraiN.B. Protective and therapeutic efficacy of hesperidin versus cisplatin against ehrlich ascites carcinoma-induced renal damage in mice.Pharmaceuticals (Basel)202215329410.3390/ph15030294 35337092
    [Google Scholar]
  31. SroorF.M. TohamyW.M. ZoheirK.M.A. AbdelazeemN.M. MahrousK.F. IbrahimN.S. Design, synthesis, in vitro anticancer, molecular docking and SAR studies of new series of pyrrolo[2,3-d]pyrimidine derivatives.BMC Chem.202317110610.1186/s13065‑023‑01014‑0 37641068
    [Google Scholar]
  32. SroorF.M. OthmanA.M. MahmoudK. MahrousK.F. New 2,4-diaryl-3-azabicyclo[3.3.1]nonan-9-one derivatives as antimicrobial and anti-cancer agents: Synthesis, in-vitro and SAR studies.J. Mol. Struct.2023129413651610.1016/j.molstruc.2023.136516
    [Google Scholar]
  33. KamelM.G. HassaneenH.M. SroorF.M. AbdallahT.A. TelebM.A.M. SalehF.M. Novel bipyrazole and pyrazolopyridazinone derivatives via regioselective cycloaddition reaction of nitrilimines to enaminone: Synthesis and structural elucidation.J. Mol. Struct.2023128713572210.1016/j.molstruc.2023.135722
    [Google Scholar]
  34. IbrahimN.S. SroorF.M. MahrousK.F. Abd ElaleemJ.A. AbdelhamidI.A. Cytotoxic effect of new (E)‐2‐Cyano‐ N ‐(tetrahydrobenzo b thiophen‐2‐yl)acrylamide Derivatives: down‐regulation of rbl2 and stat2 and triggering of DNA damage in breast carcinoma.ChemistrySelect202383320230175410.1002/slct.202301754
    [Google Scholar]
  35. HelmyM.T. SroorF.M. HassaneenH.M. Mohamed TelebM.A. SalehF.M. Synthesis of novel pyrazolyl and isoxazolyl 3-(furan-2-yl)-5-methyl-1-(4-nitrophenyl)-1h-pyrazol-4-yl derivatives via regioselectivity of the 1,3-dipolar cycloaddition.Polycycl. Aromat. Compd.2023444114
    [Google Scholar]
  36. SroorF.M. MohamedM.F. AbdullahG.K. MahrousK.F. ZoheirK.M.A. IbrahimS.A. ElwahyA.H.M. AbdelhamidI.A. Anticancer activity of new bis-(3-(thiophen-2-yl)-1h-pyrazol-4-yl)chalcones: synthesis, in-silico, and in-vitro studies.Polycycl. Aromat. Compd.202243325062523
    [Google Scholar]
  37. HelmyM.T. SroorF.M. OthmanA.M. HassaneenH.M. SalehF.M. TelebM.A.M. Design, synthesis and in‐vitro evaluation of new furan‐substituted thiadiazolyl hydrazone derivatives as promising antimicrobial agents.J Heterocyclic Chem2022
    [Google Scholar]
  38. MohamedM.F. SroorF.M. ElsayedS.E. MahrousK.F. MageedL. HanafyM.K. IbrahimS.A. ElwahyA.H.M. AbdelhamidI.A. Synthesis and anticancer activities of novel bis-chalcones incorporating the 1,3-diphenyl-1h-pyrazole moiety: in silico and in vitro studies.Lett. Drug Des. Discov.202219111007102110.2174/1570180819666220301151631
    [Google Scholar]
  39. SroorF.M. MahrousK.F. ShafeyH.I. EidN.R. AbdelhamidI.A. IbrahimN.S. In silico and in vitro studies of novel cyanoacrylamides incorporating pyrazole moiety against breast and prostate carcinomas.Med. Chem. Res.20233261190120310.1007/s00044‑023‑03069‑z
    [Google Scholar]
  40. KamelM.G. SroorF.M. OthmanA.M. HassaneenH.M. AbdallahT.A. SalehF.M. TelebM.A.M. Synthesis and biological evaluation of new 1,3,4-thiadiazole derivatives as potent antimicrobial agents. Chemi.Monthly202215310929937
    [Google Scholar]
  41. KamelM.G. SroorF.M. OthmanA.M. MahrousK.F. SalehF.M. HassaneenH.M. AbdallahT.A. AbdelhamidI.A. TelebM.A.M. Structure-based design of novel pyrazolyl–chalcones as anti-cancer and antimicrobial agents: synthesis and in vitro studies. Chemi.Monthly20221532211221
    [Google Scholar]
  42. SroorF.M. MukhtarS.S. HafezT.S. TohamyW.M. HassaneenH.M. SalehF.M. A facile and robust approach for synthesis and structural characterization of an unprecedented ring system of 4H-pyrazolo[3,4-f]indolizine-4,9(2H)-dione derivatives.Tetrahedron202313413330310.1016/j.tet.2023.133303
    [Google Scholar]
  43. TelebM. SroorF. HassaneenH. SalehF. Synthesis of novel hydrazonoyl chlorides as useful precursor in synthesis of new thiadiazoles, selenadiazoles and triazolotriazines.Egypt. J. Chem.2022
    [Google Scholar]
  44. MohamedM.F. SroorF.M. IbrahimN.S. SalemG.S. El-SayedH.H. MahmoudM.M. WagdyM.A.M. AhmedA.M. MahmoudA.A.T. IbrahimS.S. IsmailM.M. EldinS.M. SalehF.M. HassaneenH.M. AbdelhamidI.A. Novel [l,2,4]triazolo [3,4-a]isoquinoline chalcones as new chemotherapeutic agents: Block IAP tyrosine kinase domain and induce both intrinsic and extrinsic pathways of apoptosis.Invest. New Drugs20213919811010.1007/s10637‑020‑00987‑2 32856275
    [Google Scholar]
  45. AbdelazeemN.M. SroorF.M. BasyouniW.M. AdelI. TantawyM.A. Synthesis and evaluation of new 3,4-dihydropyrimidin-2-(1 h)-ones and -thiones as anti-cancer agents: in vitro, molecular docking and sar studies.Polycycl. Aromat. Compd.20234375840585910.1080/10406638.2022.2108076
    [Google Scholar]
  46. SroorF.M. MahrousK.F. El-KaderH.A.M.A. OthmanA.M. IbrahimN.S. Impact of trifluoromethyl and sulfonyl groups on the biological activity of novel aryl-urea derivatives: synthesis, in-vitro, in-silico and SAR studies.Sci. Rep.20231311756010.1038/s41598‑023‑44753‑9 37845243
    [Google Scholar]
  47. KilkennyC. BrowneW. CuthillI.C. EmersonM. AltmanD.G. Animal research: Reporting in vivo experiments: The ARRIVE guidelines.Br. J. Pharmacol.201016071577157910.1111/j.1476‑5381.2010.00872.x 20649561
    [Google Scholar]
  48. Al-RejaieS.S. AleisaA.M. Al-YahyaA.A. BakheetS.A. AlsheikhA. FataniA.G. Al-ShabanahO.A. Sayed-AhmedM.M. Progression of diethylnitrosamine-induced hepatic carcinogenesis in carnitine-depleted rats.World J. Gastroenterol.200915111373138010.3748/wjg.15.1373 19294768
    [Google Scholar]
  49. KullenbergF. PetersK. Luna-MarcoC. SalomonssonA. KopsidaM. DegerstedtO. SjöblomM. HellströmP.M. HeindryckxF. DahlgrenD. LennernäsH. The progression of doxorubicin-induced intestinal mucositis in rats.Naunyn Schmiedebergs Arch. Pharmacol.2023396224726010.1007/s00210‑022‑02311‑6 36271936
    [Google Scholar]
  50. ReitmanS. FrankelS. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases.Am. J. Clin. Pathol.1957281566310.1093/ajcp/28.1.56 13458125
    [Google Scholar]
  51. BelfieldA. GoldbergD.M. Revised assay for serum phenyl phosphatase activity using 4-amino-antipyrine.Enzyme197112556157310.1159/000459586 5169852
    [Google Scholar]
  52. ThomasC. ThomasL. Biochemical markers and hematologic indices in the diagnosis of functional iron deficiency.Clin. Chem.20024871066107610.1093/clinchem/48.7.1066 12089176
    [Google Scholar]
  53. MoronM. DepierreJ. MannervikB. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver.Biochim. Biophys. Acta, Gen. Subj.19795821677810.1016/0304‑4165(79)90289‑7 760819
    [Google Scholar]
  54. BuegeJ.A. AustS.D. Microsomal lipid peroxidation.Methods Enzymol.19785230210
    [Google Scholar]
  55. KoracevicD. KoracevicG. DjordjevicV. AndrejevicS. CosicV. Method for the measurement of antioxidant activity in human fluids.J. Clin. Pathol.200154535636110.1136/jcp.54.5.356 11328833
    [Google Scholar]
  56. HiranoT. Interleukin 6 in autoimmune and inflammatory diseases: a personal memoir.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.201086771773010.2183/pjab.86.717 20689230
    [Google Scholar]
  57. ZielkeK. OkadaS. O’BrienJ.S. Fucosidosis: diagnosis by serum assay of alpha-L-fucosidase.J. Lab. Clin. Med.1972791164169 5007561
    [Google Scholar]
  58. AbelevG.I. α-fetoprotein as a marker of embryo-specific differentiations in normal and tumor tissues.Immunol. Rev.197420133710.1111/j.1600‑065X.1974.tb00139.x 4135841
    [Google Scholar]
  59. JensenK. Theory and practice of histological techniques J.Neuropath. Experi. Neuro.2008676633
    [Google Scholar]
  60. El-MaksoudA.A.A. KoranyR.M.S. El-GhanyI.H.A. El-BeltagiH.S. Ambrósio F de GouveiaG.M. de GouveiaG.M. Dietary solutions to dyslipidemia: Milk protein-polysaccharide conjugates as liver biochemical enhancers.J. Food Biochem.20204431314210.1111/jfbc.13142 31905423
    [Google Scholar]
  61. HowbertJ.J. GrossmanC.S. CrowellT.A. RiederB.J. HarperR.W. KramerK.E. TaoE.V. AikinsJ. PooreG.A. RinzelS.M. Novel agents effective against solid tumors: the diarylsulfonylureas. Synthesis, activities, and analysis of quantitative structure-activity relationships.J. Med. Chem.19903392393240710.1021/jm00171a013 2391684
    [Google Scholar]
  62. ChangW. HeW. LiP.P. SongS.S. YuanP.F. LuJ.T. WeiW. Protective effects of Celastrol on diethylnitrosamine-induced hepatocellular carcinoma in rats and its mechanisms.Eur. J. Pharmacol.201678417318010.1016/j.ejphar.2016.04.045 27181068
    [Google Scholar]
  63. WiwanitkitV. High serum alkaline phosphatase levels, a study in 181 Thai adult hospitalized patients.BMC Fam. Pract.200121210.1186/1471‑2296‑2‑2 11545676
    [Google Scholar]
  64. WangJ. LiX. PuJ. JinS. JiaL. LiX. LiuF. ShanC. YangY. Association between gamma-glutamyl transferase and coronary atherosclerotic plaque vulnerability: an optical coherence tomography study.BioMed Res. Int.2019201911110.1155/2019/9602783 30984786
    [Google Scholar]
  65. KunutsorS.K. Gamma‐glutamyltransferase—friend or foe within?Liver Int.201636121723173410.1111/liv.13221 27512925
    [Google Scholar]
  66. CortiA. FranziniM. PaolicchiA. PompellaA. Gamma-glutamyltransferase of cancer cells at the crossroads of tumor progression, drug resistance and drug targeting.Anticancer Res.201030411691181 20530424
    [Google Scholar]
  67. Del RioD. StewartA.J. PellegriniN. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress.Nutr. Metab. Cardiovasc. Dis.200515431632810.1016/j.numecd.2005.05.003 16054557
    [Google Scholar]
  68. KhanR.A. KhanM.R. SahreenS. AlkreathyH.M. Effect of Launaea procumbens extract on oxidative marker, p53, and CYP 2E1: a randomized control study.Food Nutr. Res.20166012979010.3402/fnr.v60.29790 26945232
    [Google Scholar]
  69. KadasaN.M. AbdallahH. AfifiM. GowayedS. Hepatoprotective effects of curcumin against diethyl nitrosamine induced hepatotoxicity in albino rats.Asian Pac. J. Cancer Prev.201516110310810.7314/APJCP.2015.16.1.103 25640336
    [Google Scholar]
  70. ReczekC.R. ChandelN.S. The two faces of reactive oxygen species in cancer.Annu. Rev. Cancer Biol.201711799810.1146/annurev‑cancerbio‑041916‑065808
    [Google Scholar]
  71. FuY. YangG. ZhuF. PengC. LiW. LiH. KimH-G. BodeA.M. DongZ. DongZ. Antioxidants decrease the apoptotic effect of 5-Fu in colon cancer by regulating Src-dependent caspase-7 phosphorylation.Cell Death Dis.20145198398310.1038/cddis.2013.509 24407236
    [Google Scholar]
  72. AmbadeA. SatishchandranA. GyongyosiB. LoweP. SzaboG. Adult mouse model of early hepatocellular carcinoma promoted by alcoholic liver disease.World J. Gastroenterol.201622164091410810.3748/wjg.v22.i16.4091 27122661
    [Google Scholar]
  73. HussainT. SiddiquiH.H. FareedS. VijayakumarM. RaoC.V. Evaluation of chemopreventive effect of Fumaria indica against N-nitrosodiethylamine and CCl4-induced hepatocellular carcinoma in Wistar rats.Asian Pac. J. Trop. Med.20125862362910.1016/S1995‑7645(12)60128‑X 22840450
    [Google Scholar]
  74. Abdel-HamidN.M. NazmyM.H. NazmyW.H. Vitamin C and diallyl sulfide as chemosensitizers to cisplatin in treating hepatocellular carcinoma.J. Solid Tumors2011139010.5430/jst.v1n3p90
    [Google Scholar]
  75. XingH. QiuH. DingX. HanJ. LiZ. WuH. YanC. LiH. HanR. ZhangH. LiC. WangM. WuM. ShenF. ZhengY. YangT. Clinical performance of α-L-fucosidase for early detection of hepatocellular carcinoma.Biomarkers Med.201913754555510.2217/bmm‑2018‑0414 31140827
    [Google Scholar]
  76. PunvittayagulC. ChariyakornkulA. JarukamjornK. WongpoomchaiR. Protective role of vanillic acid against diethylnitrosamine- and 1,2-dimethylhydrazine-induced hepatocarcinogenesis in rats.Molecules2021269271810.3390/molecules26092718 34063148
    [Google Scholar]
  77. AttwaM.H. El-EtrebyS.A. Guide for diagnosis and treatment of hepatocellular carcinoma.World J. Hepatol.20157121632165110.4254/wjh.v7.i12.1632 26140083
    [Google Scholar]
  78. ZahranE. RishaE. AbdelHamidF. MahgoubH.A. IbrahimT. Effects of dietary Astragalus polysaccharides (APS) on growth performance, immunological parameters, digestive enzymes, and intestinal morphology of Nile tilapia (Oreochromis niloticus).Fish Shellfish Immunol.201438114915710.1016/j.fsi.2014.03.002 24657260
    [Google Scholar]
  79. MoriwakiK. NodaK. NakagawaT. AsahiM. YoshiharaH. TaniguchiN. HayashiN. MiyoshiE. A high expression of GDP-fucose transporter in hepatocellular carcinoma is a key factor for increases in fucosylation.Glycobiology200717121311132010.1093/glycob/cwm094 17884843
    [Google Scholar]
  80. GanY. LiangQ. SongX. Diagnostic value of alpha-l-fucosidase for hepatocellular carcinoma: a meta-analysis.Tumour Biol.20143553953396010.1007/s13277‑013‑1563‑8 24395655
    [Google Scholar]
  81. DaiZ.J. WangX.J. JiZ.Z. LiuX.X. KangH.F. DiaoY. MaX.B. LiuL. RenH.T. Inhibitory effects of Scutellaria barbate extracts on diethylnitrosamine-induced hepatocarcinoma in rats.Zhong Yao Cai2009324568571 19645244
    [Google Scholar]
  82. ChenB. NingM. YangG. Effect of paeonol on antioxidant and immune regulatory activity in hepatocellular carcinoma rats.Molecules20121744672468310.3390/molecules17044672 22522397
    [Google Scholar]
  83. SunK.H. SunG.H. WuY.C. KoB.J. HsuH.T. WuS.T. TNF ‐α augments CXCR 2 and CXCR 3 to promote progression of renal cell carcinoma.J. Cell. Mol. Med.201620112020202810.1111/jcmm.12890 27297979
    [Google Scholar]
  84. SchümannJ. TiegsG. Pathophysiological mechanisms of TNF during intoxication with natural or man-made toxins.Toxicology1999138210312610.1016/S0300‑483X(99)00087‑6 10576587
    [Google Scholar]
  85. HafeziS. RahmaniM. Targeting BCL-2 in cancer: advances, challenges, and perspectives.Cancers (Basel)2021136129210.3390/cancers13061292 33799470
    [Google Scholar]
  86. KalkavanH. GreenD.R. MOMP, cell suicide as a BCL-2 family business.Cell Death Differ.2018251465510.1038/cdd.2017.179 29053143
    [Google Scholar]
  87. ZhaoY.J. JuQ. LiG.C. Tumor markers for hepatocellular carcinoma.Mol. Clin. Oncol.20131459359810.3892/mco.2013.119 24649215
    [Google Scholar]
  88. MallyaK. GautamS.K. AithalA. BatraS.K. JainM. Modeling pancreatic cancer in mice for experimental therapeutics.Biochim. Biophys. Acta Rev. Cancer20211876118855410.1016/j.bbcan.2021.188554 33945847
    [Google Scholar]
  89. SherifA.A. AbdelhalimS.Z. SalimE.I. Immunohistochemical and biochemical alterations following administration of proanthocyanidin extract in rats hepatocellular carcinoma.Biomed. Pharmacother.2017931310131910.1016/j.biopha.2017.07.039 28747012
    [Google Scholar]
  90. KarbownikM. LewinskiA. ReiterR.J. Anticarcinogenic actions of melatonin which involve antioxidative processes: comparison with other antioxidants.Int. J. Biochem. Cell Biol.200133873575310.1016/S1357‑2725(01)00059‑0 11404179
    [Google Scholar]
  91. LindsayC.R. Le MoulecS. BilliotF. LoriotY. Ngo-CamusM. VielhP. FizaziK. MassardC. FaraceF. Vimentin and Ki67 expression in circulating tumour cells derived from castrate-resistant prostate cancer.BMC Cancer201616116810.1186/s12885‑016‑2192‑6 26923772
    [Google Scholar]
  92. MenonS.S. GuruvayoorappanC. SakthivelK.M. RasmiR.R. Ki-67 protein as a tumour proliferation marker.Clin. Chim. Acta2019491394510.1016/j.cca.2019.01.011 30653951
    [Google Scholar]
/content/journals/mc/10.2174/0115734064308484240820080153
Loading
/content/journals/mc/10.2174/0115734064308484240820080153
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test