Skip to content
2000
Volume 2, Issue 3
  • ISSN: 1874-4648
  • E-ISSN: 1874-4656

Abstract

Proteinous bioplastics have received renewed interest over the last decade due to an awareness of the environmental impact of conventional plastics. In the second half of the previous century, further development of proteinous bioplastics was overshadowed by the fast growth in synthetic polymer technology. Today, proteins are considered a sustainable source for producing biodegradable alternatives to conventional plastics. Proteins are complex hetero-polymers, offering a number of different functional side groups capable of forming strong intermolecular bonds. Denaturing, cross-linking and plasticization are the most important aspects of protein processing. Typically, proteins and plasticizers are blended prior to thermo-processing, during which a highly viscous melt should be formed. The softening temperature of proteins is often above their decomposition temperatures, thereby making processability dependant on the type and amount of plasticizer. Generally, increasing the amount of plasticizer will lower the softening temperature and viscosity of the blend. Extrusion is particularly suitable for processing proteins, but excessive aggregation should be avoided by judicial use of chemicals, such as denaturants, plasticizers and reducing agents. Current technology described in recent patents mostly involves chemical modification of protein structures, incorporation of novel plasticizers and developing new process and specialized equipment. These are discussed further in the text.

Loading

Article metrics loading...

/content/journals/mats/10.2174/1874464810902030171
2009-11-01
2025-10-03
Loading full text...

Full text loading...

/content/journals/mats/10.2174/1874464810902030171
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test