Skip to content
2000
Volume 7, Issue 2
  • ISSN: 1874-4648
  • E-ISSN: 1874-4656

Abstract

The state-of-the-art Nafion® membrane suffers from several shortcomings such as high cost, water dependent conductivity and loss of efficiency at elevated temperature. In contrast particulate filled Nafion® and other nanocomposite polymer electrolyte membranes (PEMs) offer combination of several attractive properties such as high water retention capacity, dimensional, thermal and mechanical stability, excellent conductivity, durability and resistance to fuel cross-over. In this study several research papers and patents related to chemical modification of fillers, different fabrication methods and functional properties of several particulate filled nanocomposite membranes are discussed concisely. The mechanism and role of different particulate fillers in achieving the superior performance of membrane have been demonstrated scientifically. Solution casting, sol-gel, in situ impregnation and self-assembly are common approaches employed for synthesis of nanocomposite PEMs. The functional properties of silica, titania, zirconia, clay, and zeolite hygroscopic fillers filled PEMs in particular are reviewed in details with respect to fuel cell membrane applications.

Loading

Article metrics loading...

/content/journals/mats/10.2174/1874464807666140528003109
2014-05-01
2025-10-03
Loading full text...

Full text loading...

/content/journals/mats/10.2174/1874464807666140528003109
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test