Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2666-2906
  • E-ISSN: 2666-2914

Abstract

The discovery of the motilin receptor and advances in techniques warrant a reevaluation of motilin's digestive role. Despite similarities with ghrelin in genomic structure and gastrointestinal effects, motilin and ghrelin receptors are specific and do not cross-react. In rodents, motilin's function is limited due to receptor pseudogenes. While motilin stimulates enteric cholinergic activity rather than directly contracting muscle, its effects differ from the more prolonged impact of agonists like erythromycin and GSK962040. Furthermore, while motilin’s receptor is highly expressed in muscle tissue, motilin primarily acts by promoting enteric cholinergic activity rather than directly inducing muscle contraction. The use of erythromycin, an antibiotic, as a motilin receptor agonist to accelerate gastric emptying in patients has raised safety concerns, particularly regarding the potential for increased antibiotic resistance. Motilide substitutes have not been successful, but new non-motilide small-molecule agonists are in trials for conditions like diabetic gastroparesis. This underscores the importance of balancing artificial models, structural data, and animal studies in pharmacology. In conclusion, the study of motilin and its receptor provides an important example for translational pharmacologists, emphasizing the need to avoid overreliance on artificial systems, structural data, and animal models when developing new therapeutic approaches. The complexities of motilin's actions and the challenges associated with receptor agonism highlight the importance of continued research and innovation in the field of gastrointestinal pharmacology.

Loading

Article metrics loading...

/content/journals/ijghd/10.2174/0126662906363416250307045429
2025-01-01
2025-09-05
Loading full text...

Full text loading...

References

  1. MiedzybrodzkaE.L. ForemanR.E. LuV.B. GeorgeA.L. SmithC.A. LarraufieP. KayR.G. GoldspinkD.A. ReimannF. GribbleF.M. Stimulation of motilin secretion by bile, free fatty acids, and acidification in human duodenal organoids.Mol. Metab.20215410135610.1016/j.molmet.2021.10135634662713
    [Google Scholar]
  2. DelooseE. VerbeureW. DepoortereI. TackJ. Motilin: From gastric motility stimulation to hunger signalling.Nat. Rev. Endocrinol.201915423825010.1038/s41574‑019‑0155‑030675023
    [Google Scholar]
  3. SangerG.J. WangY. HobsonA. BroadJ. Motilin: Towards a new understanding of the gastrointestinal neuropharmacology and therapeutic use of motilin receptor agonists.Br. J. Pharmacol.201317071323133210.1111/bph.1207523189978
    [Google Scholar]
  4. ZhaoD. Meyer-GerspachA.C. DelooseE. IvenJ. WeltensN. DepoortereI. O’dalyO. TackJ. Van OudenhoveL. The motilin agonist erythromycin increases hunger by modulating homeostatic and hedonic brain circuits in healthy women: A randomized, placebo-controlled study.Sci. Rep.201881181910.1038/s41598‑018‑19444‑529379095
    [Google Scholar]
  5. MeissnerA.J. BowesK.L. ZwickR. DanielE.E. Effect of motilin on the lower oesophageal sphincter.Gut1976171292593210.1136/gut.17.12.9251017712
    [Google Scholar]
  6. CoulieB. TackJ. PeetersT. JanssensJ. Involvement of two different pathways in the motor effects of erythromycin on the gastric antrum in humans.Gut199843339540010.1136/gut.43.3.3959863486
    [Google Scholar]
  7. BroadJ. SangerG.J. The antibiotic azithromycin is a motilin receptor agonist in human stomach: Comparison with erythromycin.Br. J. Pharmacol.201316881859186710.1111/bph.1207723190027
    [Google Scholar]
  8. DassN.B. HillJ. MuirA. TestaT. WiseA. SangerG.J. The rabbit motilin receptor: Molecular characterisation and pharmacology.Br. J. Pharmacol.2003140594895410.1038/sj.bjp.070550514504130
    [Google Scholar]
  9. BoivinM.A. CareyM.C. LevyH. Erythromycin accelerates gastric emptying in a dose-response manner in healthy subjects.Pharmacotherapy20032315810.1592/phco.23.1.5.3191912523456
    [Google Scholar]
  10. CuomoR. VandaeleP. CoulieB. PeetersT. DepoortereI. JanssensJ. TackJ. Influence of motilin on gastric fundus tone and on meal-induced satiety in man: Role of cholinergic pathways.Am. J. Gastroenterol.2006101480481110.1111/j.1572‑0241.2005.00339.x16635226
    [Google Scholar]
  11. BroadJ. MukherjeeS. SamadiM. MartinJ.E. DukesG.E. SangerG.J. Regional‐ and agonist‐dependent facilitation of human neurogastrointestinal functions by motilin receptor agonists.Br. J. Pharmacol.2012167476377410.1111/j.1476‑5381.2012.02009.x22537158
    [Google Scholar]
  12. TakeshitaE. MatsuuraB. DongM. MillerL.J. MatsuiH. OnjiM. Molecular characterization and distribution of motilin family receptors in the human gastrointestinal tract.J. Gastroenterol.200641322323010.1007/s00535‑005‑1739‑016699856
    [Google Scholar]
  13. MochikiE. InuiA. SatohM. MizumotoA. ItohZ. Motilin is a biosignal controlling cyclic release of pancreatic polypeptide via the vagus in fasted dogs.Am. J. Physiol.19972722 Pt 1G224G2329124345
    [Google Scholar]
  14. KitazawaT. ShimazakiM. KikutaA. YaosakaN. TeraokaH. KaiyaH. Effects of ghrelin and motilin on smooth muscle contractility of the isolated gastrointestinal tract from the bullfrog and Japanese fire belly newt.Gen. Comp. Endocrinol.2016232515910.1016/j.ygcen.2015.12.01326704852
    [Google Scholar]
  15. TackJ. PeetersT. What comes after macrolides and other motilin stimulants?Gut200149331731811511547
    [Google Scholar]
  16. LiJ.J. ChaoH.G. WangH. TinoJ.A. LawrenceR.M. EwingW.R. MaZ. YanM. SlusarchykD. SeethalaR. SunH. LiD. BurfordN.T. StoffelR.H. SalyanM.E. LiC.Y. WitkusM. ZhaoN. RichA. GordonD.A. Discovery of a potent and novel motilin agonist.J. Med. Chem.20044771704170810.1021/jm030486515027861
    [Google Scholar]
  17. ThielemansL. DepoortereI. PerretJ. RobberechtP. LiuY. ThijsT. CarrerasC. BurgeonE. PeetersT.L. Desensitization of the human motilin receptor by motilides.J. Pharmacol. Exp. Ther.200531331397140510.1124/jpet.104.08149715764739
    [Google Scholar]
  18. MitselosA. BergheP.V. PeetersT.L. DepoortereI. Differences in motilin receptor desensitization after stimulation with motilin or motilides are due to alternative receptor trafficking.Biochem. Pharmacol.20087551115112810.1016/j.bcp.2007.11.00418096134
    [Google Scholar]
  19. BaileyC.P. SmithF.L. KellyE. DeweyW.L. HendersonG. How important is protein kinase C in μ-opioid receptor desensitization and morphine tolerance?Trends Pharmacol. Sci.2006271155856510.1016/j.tips.2006.09.00617000011
    [Google Scholar]
  20. TakanashiH. CynshiO. Motilides: A long and winding road.Regul. Pept.20091551-3182310.1016/j.regpep.2009.03.01119345243
    [Google Scholar]
  21. SangerG.J. Motilin, ghrelin and related neuropeptides as targets for the treatment of GI diseases.Drug Discov. Today2008135-623423910.1016/j.drudis.2007.10.02418342799
    [Google Scholar]
  22. KamerlingI.M.C. Van HaarstA.D. BurggraafJ. SchoemakerR.C. De KamM.L. HeinzerlingH. CohenA.F. MascleeA.A.M. Effects of a nonpeptide motilin receptor antagonist on proximal gastric motor function.Br. J. Clin. Pharmacol.200457439340110.1046/j.1365‑2125.2003.02034.x15025736
    [Google Scholar]
  23. JonssonBH HellströmPM Motilin- and neuropeptide Y-like immunoreactivity in a psychophysiological stress experiment on patients with functional dyspepsia.Integr Physiol Behav Sci. 200035425610.1007/BF02688788.
    [Google Scholar]
  24. MömkeS. SickingerM. RehageJ. DollK. DistlO. Transcription factor binding site polymorphism in the motilin gene associated with left-sided displacement of the abomasum in German Holstein cattle.PLoS One201274e3556210.1371/journal.pone.003556222536407
    [Google Scholar]
  25. SjölundK. EkmanR. WierupN. Covariation of plasma ghrelin and motilin in irritable bowel syndrome.Peptides20103161109111210.1016/j.peptides.2010.03.02120338210
    [Google Scholar]
  26. WestawayS.M. SangerG.J. The identification of and rationale for drugs which act at the motilin receptor.Prog. Med. Chem.200948318010.1016/S0079‑6468(09)04802‑421544957
    [Google Scholar]
  27. KorimilliA. ParkmanH.P. Effect of atilmotin, a motilin receptor agonist, on esophageal, lower esophageal sphincter, and gastric pressures.Dig. Dis. Sci.201055230030610.1007/s10620‑009‑1056‑119997977
    [Google Scholar]
  28. MageeD.F. NaruseS. The role of motilin in periodic interdigestive pancreatic secretion in dogs.J. Physiol.1984355144144710.1113/jphysiol.1984.sp0154296491998
    [Google Scholar]
  29. MoriH. VerbeureW. TanemotoR. SosorangaE.R. Jan Tack Physiological functions and potential clinical applications of motilin.Peptides202316017090510.1016/j.peptides.2022.17090536436612
    [Google Scholar]
  30. ChristofidesN.D. BloomS.R. BestermanH.S. AdrianT.E. GhateiM.A. Release of motilin by oral and intravenous nutrients in man.Gut197920210210610.1136/gut.20.2.102428820
    [Google Scholar]
  31. ModlinI.M. MitzneggP. BloomS.R. Motilin release in the pig.Gut197819539940210.1136/gut.19.5.399658771
    [Google Scholar]
  32. ApuA.S. MondalA. KitazawaT. TakemiS. SakaiT. SakataI. Molecular cloning of motilin and mechanism of motilin-induced gastrointestinal motility in Japanese quail.Gen. Comp. Endocrinol.2016233536210.1016/j.ygcen.2016.05.01727179882
    [Google Scholar]
  33. KimJ.N. KimB.J. The mechanism of action of ghrelin and motilin in the pacemaker potentials of interstitial cells of cajal from the murine small intestine.Mol. Cells201942647047910.14348/molcells.2019.002831250620
    [Google Scholar]
  34. WeberF.H.Jr RichardsR.D. McCallumR.W. Erythromycin: A motilin agonist and gastrointestinal prokinetic agent.Am. J. Gastroenterol.19938844854908470625
    [Google Scholar]
  35. ZhangS. KaiyaH. TeraokaH. KitazawaT. Pheasant motilin, its distribution and gastrointestinal contractility-stimulating action in the pheasant.Gen. Comp. Endocrinol.202131411389710.1016/j.ygcen.2021.11389734506789
    [Google Scholar]
  36. ZhangZ.H. WuS.D. WangB. SuY. JinJ.Z. KongJ. WangH.L. Sphincter of Oddi hypomotility and its relationship with duodenal-biliary reflux, plasma motilin and serum gastrin.World J. Gastroenterol.200814254077408110.3748/wjg.14.407718609694
    [Google Scholar]
  37. ZhangS. OkuharaY. IijimaM. TakemiS. SakataI. KaiyaH. TeraokaH. KitazawaT. Identification of pheasant ghrelin and motilin and their actions on contractility of the isolated gastrointestinal tract.Gen. Comp. Endocrinol.202028511329410.1016/j.ygcen.2019.11329431585115
    [Google Scholar]
  38. HeJ. IrwinD.M. ChenR. ZhangY.P. Stepwise loss of motilin and its specific receptor genes in rodents.J. Mol. Endocrinol.2010441374410.1677/JME‑09‑009519696113
    [Google Scholar]
  39. SangerG.J. HolbrookJ.D. AndrewsP.L.R. The translational value of rodent gastrointestinal functions: A cautionary tale.Trends Pharmacol. Sci.201132740240910.1016/j.tips.2011.03.00921531468
    [Google Scholar]
  40. BroadJ. TakahashiN. TajimiM. SudoM. GóralczykA. ParampalliU. MannurK. YamamotoT. SangerG.J. RQ-00201894: A motilin receptor agonist causing long-lasting facilitation of human gastric cholinergically-mediated contractions.J. Pharmacol. Sci.20161302606510.1016/j.jphs.2015.11.00426685754
    [Google Scholar]
  41. KitazawaT. YoshidaM. TeraokaH. KaiyaH. Does motilin peptide regulate gastrointestinal motility of zebrafish? An in vitro study using isolated intestinal strips.Gen. Comp. Endocrinol.2017249152310.1016/j.ygcen.2017.02.01428242309
    [Google Scholar]
  42. SangerG.J. AlpersD.H. Development of drugs for gastrointestinal motor disorders: Translating science to clinical need.Neurogastroenterol. Motil.200820317718410.1111/j.1365‑2982.2008.01084.x18257767
    [Google Scholar]
  43. McCallumR.W. CynshiO. US INVESTIGATIVE TEAM Efficacy of mitemcinal, a motilin agonist, on gastrointestinal symptoms in patients with symptoms suggesting diabetic gastropathy: A randomized, multi‐center, placebo‐controlled trial.Aliment. Pharmacol. Ther.200726110711610.1111/j.1365‑2036.2007.03346.x17555427
    [Google Scholar]
  44. SangerGJ WestawaySM BarnesAA MacphersonDT MuirAI JarvieEM GSK962040: A small molecule, selective motilin receptor agonist, effective as a stimulant of human and rabbit gastrointestinal motility.J. Neurogastroenterol Motil 200921665766410.1111/j.1365‑2982.2009.01270.x
    [Google Scholar]
/content/journals/ijghd/10.2174/0126662906363416250307045429
Loading
/content/journals/ijghd/10.2174/0126662906363416250307045429
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test