Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Introduction

infection is highly prevalent among patients with different autoimmune diseases, including psoriasis patients. Pyrimethamine is an antiparasitic medication that has a variable treatment response in -infected patients. This study investigates the demographic, biochemical, and genetic factors influencing the response to pyrimethamine treatment in -infected psoriasis patients.

Methods

We conducted a comprehensive analysis of 73 patients diagnosed with toxoplasmosis. Demographic characteristics, biochemical lab results, and the serum levels of TNF-α detected by ELISA, and MicroRNA-155 expression were analyzed using real-time PCR with the 2ΔΔCtmethod.

Results and Discussion

Total cholesterol and bilirubin levels were higher in patients with good responses compared to those in the poor response group, while other biochemical parameters did not exhibit any statistically significant differences. Neither MicroRNA-155 expression nor serum TNF-α levels were found to be significantly associated with treatment response. Univariate and multivariate logistic regression analyses were conducted to assess predictors of treatment response to pyrimethamine.

Conclusion

Biochemical markers play a role in determining the response to pyrimethamine treatment; however, other factors may also contribute. Future research should focus on larger longitudinal studies to validate these findings and explore additional biomarkers.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265369365250715020937
2025-08-01
2026-01-05
Loading full text...

Full text loading...

References

  1. PotestioL. TommasinoN. LaulettaG. Risk factors for psoriasis flares: A narrative review.Psoriasis (Auckl.)202414395010.2147/PTT.S323281
    [Google Scholar]
  2. GriffithsC.E.M. BarkerJ.N.W.N. Pathogenesis and clinical features of psoriasis.Lancet2007370958326327110.1016/S0140‑6736(07)61128‑3 17658397
    [Google Scholar]
  3. ZhouS. YaoZ. Roles of infection in psoriasis.Int. J. Mol. Sci.20222313695510.3390/ijms23136955 35805960
    [Google Scholar]
  4. ShapiraY. Agmon-LevinN. SelmiC. Prevalence of anti-Toxoplasma antibodies in patients with autoimmune diseases.J. Autoimmun.2012391-211211610.1016/j.jaut.2012.01.001 22297145
    [Google Scholar]
  5. TengY. XieW. TaoX. Infection provoked psoriasis: Induced or aggravated (Review).Exp. Ther. Med.202121656710.3892/etm.2021.9999 33850539
    [Google Scholar]
  6. MontoyaJ.G. LiesenfeldO. Toxoplasmosis.Lancet200436394251965197610.1016/S0140‑6736(04)16412‑X 15194258
    [Google Scholar]
  7. Pinto-FerreiraF. CaldartE.T. PasqualiA.K.S. Mitsuka-BreganóR. FreireR.L. NavarroI.T. Patterns of transmission and sources of infection in outbreaks of human toxoplasmosis.Emerg. Infect. Dis.201925122177218210.3201/eid2512.181565 31742524
    [Google Scholar]
  8. PetrikovaJ BarzilaiO Agmon-LevinN. Prevalence of Toxoplasma antibodies among patients with various autoimmune diseases.Annal Rhematoid Dis201069210.1136/ard.2010.129577t
    [Google Scholar]
  9. DurieuxM.F. LopezJ.G. BanjariM. Toxoplasmosis in patients with an autoimmune disease and immunosuppressive agents: A multicenter study and literature review.PLoS Negl. Trop. Dis.2022168e001069110.1371/journal.pntd.0010691 35939518
    [Google Scholar]
  10. SahebEJ Al-IssaYAH MussaIS ZghairKH Incidence of toxoplasmosis in psoriasis patients and possible correlation with tumor necrosis factor-α.Baghdad Sci J2020171021410.21123/bsj.2020.17.1(Suppl.).0214
    [Google Scholar]
  11. LewisJ.M. CliffordS. NsutebuE. Toxoplasmosis in immunosuppressed patients.Rheumatology (Oxford)201554111939194010.1093/rheumatology/kev115 25969518
    [Google Scholar]
  12. KonstantinovicN. GueganH. StäjnerT. BelazS. Robert-GangneuxF. Treatment of toxoplasmosis: Current options and future perspectives.Food Waterborne Parasitol.201915e0003610.1016/j.fawpar.2019.e00036 32095610
    [Google Scholar]
  13. WeiH.X. WeiS.S. LindsayD.S. PengH.J. A systematic review and meta-analysis of the efficacy of anti-Toxoplasma gondii medicines in humans.PLoS One2015109e013820410.1371/journal.pone.0138204 26394212
    [Google Scholar]
  14. NzilaA.M. MberuE.K. SuloJ. Towards an understanding of the mechanism of pyrimethamine-sulfadoxine resistance in Lasmodium falciparum: Genotyping of dihydrofolate reductase and dihydropteroate synthase of Kenyan parasites.Antimicrob. Agents Chemother.200044499199610.1128/AAC.44.4.991‑996.2000 10722502
    [Google Scholar]
  15. About ToxoplasmosisAvailable from: https://www.cdc.gov/toxoplasmosis/about/index.html
  16. GriffithsC.E.M. ArmstrongA.W. GudjonssonJ.E. BarkerJ.N.W.N. Psoriasis.Lancet2021397102811301131510.1016/S0140‑6736(20)32549‑6 33812489
    [Google Scholar]
  17. NestleF.O. KaplanD.H. BarkerJ. Psoriasis.N. Engl. J. Med.2009361549650910.1056/NEJMra0804595 19641206
    [Google Scholar]
  18. KhanI.A. OuelletteC. ChenK. MorettoM. Toxoplasma: Immunity and pathogenesis.Curr. Clin. Microbiol. Rep.201961445010.1007/s40588‑019‑0114‑5 31179204
    [Google Scholar]
  19. YeeD. ShahK.M. ColesM.C. SharpT.V. LagosD. MicroRNA-155 induction via TNF-α and IFN-γ suppresses expression of programmed death ligand-1 (PD-L1) in human primary cells.J. Biol. Chem.201729250206832069310.1074/jbc.M117.809053 29066622
    [Google Scholar]
  20. XuY. WuJ. YuanX. LiuW. PanJ. XuB. MicroRNA-155 contributes to host immunity against Toxoplasma gondii.Parasite2021288310.1051/parasite/2021082 34907898
    [Google Scholar]
  21. YangJ. WangL. XuD. Risk assessment of etanercept in mice chronically infected with Toxoplasma gondii.Front. Microbiol.20189282210.3389/fmicb.2018.02822 30519229
    [Google Scholar]
  22. El-SayedN.M. IsmailK.A. BadawyA.F. ElhasaneinK.F. In vivo effect of anti-TNF agent (etanercept) in reactivation of latent toxoplasmosis.J. Parasit. Dis.20164041459146510.1007/s12639‑015‑0712‑y 27876967
    [Google Scholar]
  23. AndradeC.M.R. de Lima MarquesA.C. TimóteoR.P. Evaluation of specific cellular and humoral immune response to Toxoplasma gondii in patients with autoimmune rheumatic diseases immunomodulated due to the use of TNF Blockers.Biomedicines202311393010.3390/biomedicines11030930 36979909
    [Google Scholar]
  24. YangN. FarrellA. NiedelmanW. Genetic basis for phenotypic differences between different Toxoplasma gondii type I strains.BMC Genomics201314146710.1186/1471‑2164‑14‑467 23837824
    [Google Scholar]
  25. XiaoJ. Jones-BrandoL. TalbotC.C. YolkenR.H. Differential effects of three canonical Toxoplasma strains on gene expression in human neuroepithelial cells.Infect. Immun.20117931363137310.1128/IAI.00947‑10 21149591
    [Google Scholar]
  26. AzzamH.N. El-DeranyM.O. WahdanS.A. FaheimR.M. HelalG.K. El-DemerdashE. Metabolic/hypoxial axis predicts tamoxifen resistance in breast cancer.Sci. Rep.20221211611810.1038/s41598‑022‑19977‑w 36167713
    [Google Scholar]
  27. ElfertA. Abo AliL. SolimanS. IbrahimS. Abd-ElsalamS. Randomized-controlled trial of rifaximin versus norfloxacin for secondary prophylaxis of spontaneous bacterial peritonitis.Eur. J. Gastroenterol. Hepatol.201628121450145410.1097/MEG.0000000000000724 27512927
    [Google Scholar]
  28. Abd-ElsalamS. NoorR.A. BadawiR. Clinical study evaluating the efficacy of ivermectin in COVID‐19 treatment: A randomized controlled study.J. Med. Virol.202193105833583810.1002/jmv.27122 34076901
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265369365250715020937
Loading
/content/journals/iddt/10.2174/0118715265369365250715020937
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): microRNA-155; Psoriasis; pyrimethamine; TNF-α; Toxoplasma gondii; toxoplasmosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test