Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

As of early October 2020, the COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, resulted in approximately 35 million cases and one million fatalities worldwide. Systemic lupus erythematosus (SLE) is an autoimmune disease marked by the generation of pathogenic autoantibodies and a lack of tolerance to nuclear self-antigens. Hypocomplementemia, or an abnormal blood complement deficit, is a reliable predictor of infection in SLE patients. Moreover, it has been found that immunoglobulin (Ig), particularly IgG and IgM, is lowered in SLE patients, which may be a factor in their heightened susceptibility to infection. Bloodstream autoantibodies, lymphopenia, aberrant T-cells, proinflammatory cytokines, and impaired regulatory systems all lead to an immune response that is aberrant in lupus patients. SLE patients exhibit impaired CD8 T-cell responses, including abnormal phagocytosis and chemotaxis. Recent study has shown that COVID-19 infections significantly boost type I interferon responses. Patients with SLE and Covid-19 infection typically get immune-suppressing drugs corticosteroids, Janus kinase inhibitors (JAK), and tocilizumab, which improve their immune systems and diminution susceptible to COVID-19 infections.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265326851241115072224
2024-12-20
2025-11-07
Loading full text...

Full text loading...

References

  1. AndersenK.G. RambautA. LipkinW.I. HolmesE.C. GarryR.F. The proximal origin of SARS-CoV-2.Nat. Med.202026445045210.1038/s41591‑020‑0820‑9 32284615
    [Google Scholar]
  2. ZhuN. ZhangD. WangW. A novel coronavirus from patients with pneumonia in China, 2019.N. Engl. J. Med.2020382872773310.1056/NEJMoa2001017 31978945
    [Google Scholar]
  3. GuanW. NiZ. HuY. Clinical characteristics of coronavirus disease 2019 in China.N. Engl. J. Med.2020382181708172010.1056/NEJMoa2002032 32109013
    [Google Scholar]
  4. COVID-19 epidemiological update 2023. Available fromhttps://www.who.int/citations/m/item/covid-19-epidemiological-update
  5. HuJ. WangY. The clinical characteristics and risk factors of severe COVID-19.Gerontology202167325526610.1159/000513400 33406518
    [Google Scholar]
  6. SpihlmanA.P. GadiN. WuS.C. MoultonV.R. COVID-19 and systemic lupus erythematosus: Focus on immune response and therapeutics.Front. Immunol.20201158947410.3389/fimmu.2020.589474 33193418
    [Google Scholar]
  7. GarcíaL.F. Immune response, inflammation, and the clinical spectrum of COVID-19.Front. Immunol.202011144110.3389/fimmu.2020.01441 32612615
    [Google Scholar]
  8. FengX. LiS. SunQ. Immune-inflammatory parameters in COVID-19 cases: A systematic review and meta-analysis.Front. Med. (Lausanne)2020730110.3389/fmed.2020.00301 32582743
    [Google Scholar]
  9. TayM.Z. PohC.M. RéniaL. MacAryP.A. NgL.F.P. The trinity of COVID-19: Immunity, inflammation and intervention.Nat. Rev. Immunol.202020636337410.1038/s41577‑020‑0311‑8 32346093
    [Google Scholar]
  10. CatanzaroM. FagianiF. RacchiM. CorsiniE. GovoniS. LanniC. Immune response in COVID-19: Addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2.Signal Transduct. Target. Ther.2020518410.1038/s41392‑020‑0191‑1 32467561
    [Google Scholar]
  11. LongQ.X. TangX.J. ShiQ.L. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections.Nat. Med.20202681200120410.1038/s41591‑020‑0965‑6 32555424
    [Google Scholar]
  12. ZamaniB. ShayestehpourM. EsfahanianF. AkbariH. The study of factors associated with pregnancy outcomes in patients with systemic lupus erythematosus.BMC Res. Notes202013118510.1186/s13104‑020‑05039‑9 32228711
    [Google Scholar]
  13. KaulA. GordonC. CrowM.K. Systemic lupus erythematosus.Nat. Rev. Dis. Primers2016211603910.1038/nrdp.2016.39 27306639
    [Google Scholar]
  14. FavaA. PetriM. Systemic lupus erythematosus: Diagnosis and clinical management.J. Autoimmun.20199611310.1016/j.jaut.2018.11.001 30448290
    [Google Scholar]
  15. DoriaA. IaccarinoL. GhirardelloA. Long-term prognosis and causes of death in systemic lupus erythematosus.Am. J. Med.2006119870070610.1016/j.amjmed.2005.11.034 16887417
    [Google Scholar]
  16. WoodruffM.C. RamonellR.P. NguyenD.C. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19.Nat. Immunol.202021121506151610.1038/s41590‑020‑00814‑z 33028979
    [Google Scholar]
  17. DanaoK. RokdeV. BaliN. MahajanU. The severity of COVID-19 in diabetes patients.Curr. Diabetes Rev.2023195e06102220963310.2174/1573399819666221006103113 36201275
    [Google Scholar]
  18. McNabF. Mayer-BarberK. SherA. WackA. O’GarraA. Type I interferons in infectious disease.Nat. Rev. Immunol.20151528710310.1038/nri3787 25614319
    [Google Scholar]
  19. Kopitar-JeralaN. The role of interferons in inflammation and inflammasome activation.Front. Immunol.2017887310.3389/fimmu.2017.00873 28791024
    [Google Scholar]
  20. LeeJ.S. ShinE.C. The type I interferon response in COVID-19: Implications for treatment.Nat. Rev. Immunol.2020201058558610.1038/s41577‑020‑00429‑3 32788708
    [Google Scholar]
  21. RönnblomL. The type I interferon system in the etiopathogenesis of autoimmune diseases.Ups. J. Med. Sci.2011116422723710.3109/03009734.2011.624649 22066971
    [Google Scholar]
  22. VistaE.S. WeismanM.H. IshimoriM.L. Strong viral associations with SLE among Filipinos.Lupus Sci. Med.201741e00021410.1136/lupus‑2017‑000214 29214036
    [Google Scholar]
  23. DanaoK.R. RokdeV.V. NandurkarD.M. MahajanU.N. Pyrazole scaffold: Potential PTP1B inhibitors for diabetes treatment.Curr. Diabetes Rev.202410.2174/0115733998280245240130075909 38351692
    [Google Scholar]
  24. LamersM.M. HaagmansB.L. SARS-CoV-2 pathogenesis.Nat. Rev. Microbiol.202220527028410.1038/s41579‑022‑00713‑0 35354968
    [Google Scholar]
  25. WuD. WuT. LiuQ. YangZ. The SARS-CoV-2 outbreak: What we know.Int. J. Infect. Dis.202094444810.1016/j.ijid.2020.03.004 32171952
    [Google Scholar]
  26. Rodríguez-PuertasR. ACE2 activators for the treatment of COVID 19 patients.J. Med. Virol.202092101701170210.1002/jmv.25992 32379346
    [Google Scholar]
  27. SaengsiwarittW. JittikoonJ. ChaikledkaewU. UdomsinprasertW. Genetic polymorphisms of ACE1, ACE2, and TMPRSS2 associated with COVID‐19 severity: A systematic review with meta‐analysis.Rev. Med. Virol.2022324e232310.1002/rmv.2323 34997794
    [Google Scholar]
  28. Fors NievesC.E. IzmirlyP.M. Mortality in systemic lupus erythematosus: An updated review.Curr. Rheumatol. Rep.20161842110.1007/s11926‑016‑0571‑2 26984805
    [Google Scholar]
  29. AmeerM.A. ChaudhryH. MushtaqJ. An overview of systemic lupus erythematosus (SLE) pathogenesis, classification, and management.Cureus20221410e3033010.7759/cureus.30330 36407159
    [Google Scholar]
  30. Calvo-AlvarezE. D’AlessandroS. ZanottaN. Multiplex array analysis of circulating cytokines and chemokines in COVID-19 patients during the first wave of the SARS-CoV-2 pandemic in Milan, Italy.BMC Immunol.20242514910.1186/s12865‑024‑00641‑z 39061002
    [Google Scholar]
  31. MehtaP. AggarwalA. RajasekharL. Gastrointestinal manifestations in systemic lupus erythematosus: Data from an Indian multi-institutional inception (INSPIRE) cohort.Rheumatology (Oxford)2023kead65310.1093/rheumatology/kead653 38059606
    [Google Scholar]
  32. Bozzalla CassioneE. ZanframundoG. BigliaA. CodulloV. MontecuccoC. CavagnaL. COVID-19 infection in a northern-Italian cohort of systemic lupus erythematosus assessed by telemedicine.Ann. Rheum. Dis.202079101382138310.1136/annrheumdis‑2020‑217717 32398281
    [Google Scholar]
  33. Rodriguez-MoralesA.J. Cardona-OspinaJ.A. Gutiérrez-OcampoE. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis.Travel Med. Infect. Dis.20203410162310.1016/j.tmaid.2020.101623 32179124
    [Google Scholar]
  34. GartshteynY. AskanaseA.D. SchmidtN.M. COVID-19 and systemic lupus erythematosus: A case series.Lancet Rheumatol.202028e452e45410.1016/S2665‑9913(20)30161‑2 32835249
    [Google Scholar]
  35. GoyalM. PatilP. PathakH. Impact of COVID-19 pandemic on patients with SLE: Results of a large multicentric survey from India.Ann. Rheum. Dis.2021805e71e110.1136/annrheumdis‑2020‑218013 32669305
    [Google Scholar]
  36. MasonR.J. Pathogenesis of COVID-19 from a cell biology perspective.Eur. Respir. J.2020554200060710.1183/13993003.00607‑2020 32269085
    [Google Scholar]
  37. SukhdeoS. NegroponteE. RajasekharH. Acute respiratory distress syndrome and COVID-19 in a child with systemic lupus erythematosus.Lupus202130583683910.1177/0961203321989791 33509065
    [Google Scholar]
  38. TiendrébéogoW.J.S. KaboréF. DiendéréE.A. OuedraogoD.D. Case series of chronic inflammatory rheumatic disease patients infected by coronavirus disease 2019 (COVID-19).Case Rep. Rheumatol.202020201410.1155/2020/8860492 33224548
    [Google Scholar]
  39. BansalP. GoyalA. CusickA.I.V. Hydroxychloroquine: A comprehensive review and its controversial role in coronavirus disease 2019.Ann. Med.202153111713410.1080/07853890.2020.1839959 33095083
    [Google Scholar]
  40. GoldmanA. BomzeD. DanknerR. Cardiovascular adverse events associated with hydroxychloroquine and chloroquine: A comprehensive pharmacovigilance analysis of pre‐COVID‐19 reports.Br. J. Clin. Pharmacol.20218731432144210.1111/bcp.14546 32964535
    [Google Scholar]
  41. SinghB. RyanH. KredoT. ChaplinM. FletcherT. Chloroquine or hydroxychloroquine for prevention and treatment of COVID‐19.Cochrane Database Syst. Rev.202120212
    [Google Scholar]
  42. LeungA.K. McMillanT. HumanA. LamJ.M. Hydroxychloroquine-induced hyperpigmentation in a 14-year-old female with systemic lupus erythematosus.Drugs Context202091410.7573/dic.2020‑9‑3 32742294
    [Google Scholar]
  43. GendebienZ. von FrenckellC. RibbensC. Systematic analysis of COVID-19 infection and symptoms in a systemic lupus erythematosus population: correlation with disease characteristics, hydroxychloroquine use and immunosuppressive treatments.Ann. Rheum. Dis.2021806e9410.1136/annrheumdis‑2020‑218244 32586921
    [Google Scholar]
  44. NingR. MengS. TangF. A case of SLE with COVID-19 and multiple infections.Open Med. (Wars.)20201511054106010.1515/med‑2020‑0238 33336061
    [Google Scholar]
  45. ChenB. HasteN. BinkinN. Real world effectiveness of tixagevimab/cilgavimab (Evusheld) in the Omicron era.PLoS One2023184e027535610.1371/journal.pone.0275356 37104498
    [Google Scholar]
  46. CalabreseC. KirchnerE. Villa-ForteA. Early experience with tixagevimab/cilgavimab pre-exposure prophylaxis in patients with immune-mediated inflammatory disease undergoing B cell depleting therapy and those with inborn errors of humoral immunity.RMD Open202282e00255710.1136/rmdopen‑2022‑002557 36123015
    [Google Scholar]
  47. MurdacaG. OrsiA. SpanòF. Vaccine-preventable infections in systemic lupus erythematosus.Hum. Vaccin. Immunother.201612363264310.1080/21645515.2015.1107685 26750996
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265326851241115072224
Loading
/content/journals/iddt/10.2174/0118715265326851241115072224
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test