Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Invasive fungal infections (IFIs) pose a significant global health threat, particularly among immunocompromised individuals. These infections can lead to severe illness and death, placing a significant financial burden on healthcare systems. Fungi were not previously considered a substantial risk to human health, but this perception changed with the rise of the HIV epidemic. The emergence of drug-resistant fungal strains further complicates the management of these infections, highlighting the urgent need for effective antifungal therapies. Innovative approaches in antifungal drug delivery formulations. This article explores the role of effective antifungal drug delivery formulations in combating the rise of IFIs. These formulations, ranging from lipid-based systems like liposomes and lipid emulsions to polymeric nanoparticles and microparticles, offer several advantages over conventional drug delivery methods. Optimizing these formulations may improve drug efficacy, reduce the risk of drug resistance, and enhance patient outcomes. Furthermore, advancements in nanotechnology and targeted drug delivery systems hold promise in overcoming existing limitations and expanding the scope of antifungal therapies.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265317733241021190116
2024-12-20
2025-11-01
Loading full text...

Full text loading...

References

  1. FeiX. WangJ. HamedK. Safety and efficacy of isavuconazole in patients aged 65 years or older with invasive fungal disease: A post-hoc analysis from the vital and secure studies.Blood2021138Suppl. 11219910.1182/blood‑2021‑150373
    [Google Scholar]
  2. BongominF. EkengB.E. KiboneW. Invasive fungal diseases in Africa: A critical literature review.J. Fungi (Basel)2022812123610.3390/jof8121236 36547569
    [Google Scholar]
  3. KaurH. KrishnamoorthiS. DhaliwalN. Antifungal prescription practices and consumption in a tertiary care hospital of a developing country.Mycoses2022651093594510.1111/myc.13514 35934811
    [Google Scholar]
  4. DangarembiziR. WassermanS. HovingJ.C. Emerging and re‐emerging fungal threats in Africa.Parasite Immunol.2023452e1295310.1111/pim.12953 36175380
    [Google Scholar]
  5. OsaigbovoI.I. BongominF. Point of care tests for invasive fungal infections: A blueprint for increasing availability in Africa.Ther. Adv. Infect. Dis.2021810.1177/20499361211034266 34422265
    [Google Scholar]
  6. OliveiraM. OliveiraD. LisboaC. BoechatJ. DelgadoL. Clinical manifestations of human exposure to fungi.J. Fungi (Basel)20239338110.3390/jof9030381 36983549
    [Google Scholar]
  7. TalapkoJ. JuzbašićM. MatijevićT. Candida albicans—The virulence factors and clinical manifestations of infection.J. Fungi (Basel)2021727910.3390/jof7020079 33499276
    [Google Scholar]
  8. OkamuraK. NoroR. FujitaK. Acute respiratory failure due to Aspergillus niger infection with acute fibrinous and organazing pneumonia: A case report.Respir. Med. Case Rep.20223710164110.1016/j.rmcr.2022.101641 35368801
    [Google Scholar]
  9. AldahashB.A. AlnemerM.A. AlsaadK.O. AlsohaibaniF.I. Mucormycosis and cryptococcosis with gastrointestinal involvement in a patient with poorly managed diabetes.Saudi J. Med. Med. Sci.2023111899210.4103/sjmms.sjmms_201_22 36908999
    [Google Scholar]
  10. OttoW.R. GreenA.M. Fungal infections in children with haematologic malignancies and stem cell transplant recipients.Br. J. Haematol.2020189460762410.1111/bjh.16452 32159231
    [Google Scholar]
  11. ChallaS. SistlaR. Histopathology diagnosis of filamentous fungi.Curr. Fungal Infect. Rep.2022161173210.1007/s12281‑021‑00428‑4
    [Google Scholar]
  12. K Hussain K, Malavia D, M Johnson E, et al. Biosensors and diagnostics for fungal detection.J. Fungi (Basel)20206434910.3390/jof6040349 33302535
    [Google Scholar]
  13. ForsterJ. HoeniglM. SuerbaumS. WagenerJ. DichtlK. Serologic biomarkers in Candida and Aspergillus infections of the central nervous system: A comparison of galactomannan, mannan and β‐1, 3‐D‐gucan testing from serum and cerebrospinal fluid.Mycoses202265770971410.1111/myc.13451 35506957
    [Google Scholar]
  14. MagillS.S. ChillerT.M. WarnockD.W. Evolving strategies in the management of aspergillosis.Expert Opin. Pharmacother.20089219320910.1517/14656566.9.2.193 18201144
    [Google Scholar]
  15. SahuR.K. Salem-BekhitM.M. BhattacharjeeB. Mucormycosis in Indian COVID-19 patients: Insight into its patho-genesis, clinical manifestation, and management strategies.Antibiotics (Basel)2021109107910.3390/antibiotics10091079 34572661
    [Google Scholar]
  16. Geddes-McAlisterJ. ShapiroR.S. New pathogens, new tricks: Emerging, drug‐resistant fungal pathogens and future prospects for antifungal therapeutics.Ann. N. Y. Acad. Sci.201914351577810.1111/nyas.13739 29762860
    [Google Scholar]
  17. PicotS. BeugnetF. LeboucherG. BienvenuA.L. Drug resistant parasites and fungi from a one-health perspective: A global concern that needs transdisciplinary stewardship programs.One Health20221410036810.1016/j.onehlt.2021.100368 34957316
    [Google Scholar]
  18. ArastehfarA. Lass-FlörlC. Garcia-RubioR. The quiet and underappreciated rise of drug-resistant invasive fungal pathogens.J. Fungi (Basel)20206313810.3390/jof6030138 32824785
    [Google Scholar]
  19. VitielloA. FerraraF. BoccellinoM. Antifungal drug resistance: An emergent health threat.Biomedicines2023114106310.3390/biomedicines11041063 37189681
    [Google Scholar]
  20. ArastehfarA. GabaldónT. Garcia-RubioR. Drug-resistant fungi: An emerging challenge threatening our limited antifungal armamentarium.Antibiotics (Basel)202091287710.3390/antibiotics9120877 33302565
    [Google Scholar]
  21. IslamM.S. RahmanM.T. A comprehensive review on bacterial vaccines combating antimicrobial resistance in poultry.Vaccines (Basel)202311361610.3390/vaccines11030616 36992200
    [Google Scholar]
  22. FriedmanD.Z.P. SchwartzI.S. Emerging fungal infections: New patients, new patterns, and new pathogens.J. Fungi (Basel)2019536710.3390/jof5030067 31330862
    [Google Scholar]
  23. KraševecN. The multifaceted role of mating type of the fungus and sex of the host in studies of fungal infections in humans.J. Fungi (Basel)20228546110.3390/jof8050461 35628717
    [Google Scholar]
  24. BakerR.E. MahmudA.S. MillerI.F. Infectious disease in an era of global change.Nat. Rev. Microbiol.202120419320510.1038/s41579‑021‑00639‑z
    [Google Scholar]
  25. RoeK. How major fungal infections can initiate severe autoimmune diseases. Microb Pathog2021161Pt A10520010.1016/j.micpath.2021.10520034537272
    [Google Scholar]
  26. WHO fungal priority pathogens list to guide research, development and public health action 2022. Available from:https://www.who.int/publications/i/item/9789240060241
  27. GnatS. ŁagowskiD. NowakiewiczA. DylągM. A global view on fungal infections in humans and animals: Opportunistic infections and microsporidioses.J. Appl. Microbiol.202113152095211310.1111/jam.15032 33556223
    [Google Scholar]
  28. MajiH.S. ChatterjeeR. DasD. MajiS. Fungal infection: An unrecognized threat.In: viral, parasit bact fungal infect. Elsevier20236254410.1016/B978‑0‑323‑85730‑7.00059‑X
    [Google Scholar]
  29. CavassinF.B. Baú-CarneiroJ.L. Vilas-BoasR.R. Queiroz-TellesF. Sixty years of amphotericin B: An overview of the main antifungal agent used to treat invasive fungal infections.Infect. Dis. Ther.202110111514710.1007/s40121‑020‑00382‑7 33523419
    [Google Scholar]
  30. GowN.A.R. JohnsonC. BermanJ. The importance of antimicrobial resistance in medical mycology.Nat. Commun.2022131535210.1038/s41467‑022‑32249‑5 36097014
    [Google Scholar]
  31. KumarS JainT BanerjeeD Fungal diseases and their treatment: A holistic approach201910.1007/978‑981‑32‑9449‑3_6
    [Google Scholar]
  32. Gómez-LópezA. Antifungal therapeutic drug monitoring: Focus on drugs without a clear recommendation.Clin. Microbiol. Infect.202026111481148710.1016/j.cmi.2020.05.037 32535150
    [Google Scholar]
  33. Aspergillosis, centers dis. Control prev. 2022. Available from: https://www.cdc.gov/fungal/diseases/aspergillosis/index.html
  34. Blastomycosis, centers dis. Control prev. 2022. Available from: https://www.cdc.gov/fungal/diseases/blastomycosis/index.html
  35. Candida auris, centers dis. Control prev. 2022. Available from:https://www.cdc.gov/fungal/candida-auris/index.html
  36. Candidiasis, Centers Dis. Control Prev. 2022. Available from:https://www.cdc.gov/fungal/diseases/candidiasis/index.html
  37. C. gattii infections, centers dis. Control prev. 2020. Available from:https://www.cdc.gov/fungal/diseases/cryptococcosis-gattii/index.html
  38. C. neoformans infection, centers dis. Control prev. 2020. Available from: https://www.cdc.gov/fungal/diseases/cryptococcosis-neoformans/index.html
  39. Fungal eye infections, centers dis. Control prev. 2020. Available from: https://www.cdc.gov/fungal/diseases/fungal-eye-infections/index.html
  40. Fungal nail infections, centers dis. Control prev. 2022. Available from: https://www.cdc.gov/fungal/nail-infections.html
  41. Histoplasmosis, centers dis. Control prev. 2020. Available from:https://www.cdc.gov/fungal/diseases/histoplasmosis/index.html
  42. Mucormycosis, centers dis. Control prev. 2021. Available from:https://www.cdc.gov/fungal/diseases/mucormycosis/index.html
  43. Mycetoma, centers dis. Control prev. 2020. Available from:https://www.cdc.gov/fungal/diseases/mycetoma/index.html
  44. Paracoccidioidomycosis, centers dis. Control prev. 2021. Available from: https://www.cdc.gov/fungal/diseases/other/paracoccidioidomycosis.html
  45. Pneumocystis pneumonia, centers dis. Control prev. 2021. Available from: https://www.cdc.gov/fungal/diseases/pneumocystis-pneumonia/index.html
  46. Ringworm, centers dis. Control prev. 2020. Available from:https://www.cdc.gov/fungal/diseases/ringworm/index.html
  47. Sporotrichosis, centers dis. Control prev. 2022. Available from:https://www.cdc.gov/fungal/diseases/sporotrichosis/index.html
  48. Talaromycosis (formerly Penicilliosis), centers dis. Control prev. 2021. Available from: https://www.cdc.gov/fungal/diseases/other/talaromycosis.html
  49. ValleyFever (Coccidioidomycosis), centers dis. Control prev.2020Available from: https://www.cdc.gov/fungal/diseases/coccidioidomycosis/index.html
    [Google Scholar]
  50. GarciaÍ.R. de Oliveira GarciaF.A. PereiraP.S. Microbial resistance: The role of efflux pump superfamilies and their respective substrates.Life Sci.202229512039110.1016/j.lfs.2022.120391 35149116
    [Google Scholar]
  51. ButtsA. ReitlerP. NishimotoA.T. A systematic screen reveals a diverse collection of medications that induce antifungal resistance in candida species.Antimicrob. Agents Chemother.2019635e00054e1910.1128/AAC.00054‑19 30858206
    [Google Scholar]
  52. GowN.A.R. LenardonM.D. Architecture of the dynamic fungal cell wall.Nat. Rev. Microbiol.202321424825910.1038/s41579‑022‑00796‑9 36266346
    [Google Scholar]
  53. WartuJ.R. ButtA.Q. SuleimanU. Multidrug resistance by microorganisms: A review.ScientificWorldJournal2019144956
    [Google Scholar]
  54. PeramanR. SureS.K. DusthackeerV.N.A. Insights on recent approaches in drug discovery strategies and untapped drug targets against drug resistance.Future J. Pharm. Sci.2021715610.1186/s43094‑021‑00196‑5 33686369
    [Google Scholar]
  55. EbilomaG.U. BalogunE.O. Cueto-DíazE.J. de KoningH.P. DardonvilleC. Alternative oxidase inhibitors: Mitochondrion‐targeting as a strategy for new drugs against pathogenic parasites and fungi.Med. Res. Rev.20193951553160210.1002/med.21560 30693533
    [Google Scholar]
  56. BermanJ. KrysanD.J. Drug resistance and tolerance in fungi.Nat. Rev. Microbiol.202018631933110.1038/s41579‑019‑0322‑2 32047294
    [Google Scholar]
  57. WangX. ZhangH. ChenX. Drug resistance and combating drug resistance in cancer.Cancer Drug Resist.20192214116010.20517/cdr.2019.10 34322663
    [Google Scholar]
  58. BarnabasV. KashyapA. RajaR. The extent of antimicrobial resistance due to efflux pump regulation.ACS Infect. Dis.20228112374238810.1021/acsinfecdis.2c00460 36264222
    [Google Scholar]
  59. UribeM.L. MarroccoI. YardenY. EGFR in cancer: Signaling mechanisms, drugs, and acquired resistance.Cancers (Basel)20211311274810.3390/cancers13112748 34206026
    [Google Scholar]
  60. VillasmilM.L. BarbosaA.D. CunninghamJ.L. SiniossoglouS. NickelsJ.T.Jr An Erg11 lanosterol 14-α-demethylase-Arv1 complex is required for Candida albicans virulence.PLoS One2020157e023574610.1371/journal.pone.0235746 32678853
    [Google Scholar]
  61. LestradeP.P.A. MeisJ.F. MelchersW.J.G. VerweijP.E. Triazole resistance in Aspergillus fumigatus: Recent insights and challenges for patient management.Clin. Microbiol. Infect.201925779980610.1016/j.cmi.2018.11.027 30580035
    [Google Scholar]
  62. Antimicrobial-resistant fungi | fungal diseases, centers dis. Control prev. 2023. Available from: https://www.cdc.gov/fungal/antifungal-resistance.html
  63. van PrehnJ. ReigadasE. VogelzangE.H. European society of clinical microbiology and infectious diseases: 2021 update on the treatment guidance document for clostridioides difficile infection in adults.Clin. Microbiol. Infect.202127Suppl. 2S1S2110.1016/j.cmi.2021.09.038 34678515
    [Google Scholar]
  64. PattersonT.F. ThompsonG.R.III DenningD.W. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the infectious diseases society of America.Clin. Infect. Dis.2016634e1e6010.1093/cid/ciw326 27365388
    [Google Scholar]
  65. CecchiniM. LangerJ. SlawomirskiL. Antimicrobial resistance in G7 countries and beyond: Economic issues.Policies and Options for Action2015
    [Google Scholar]
  66. ChangC.C. BlythC.C. ChenS.C.A. Introduction to the updated Australasian consensus guidelines for the management of invasive fungal disease and use of antifungal agents in the haematology/oncology setting, 2021.Intern. Med. J.202151S7Suppl. 731710.1111/imj.15585 34937135
    [Google Scholar]
  67. Recommendations | Chlormethine gel for treating mycosis fungoides- type cutaneous T-cell lymphoma | Guidance 2023. Available from:https://www.nice.org.uk/guidance/TA720/chapter/1-recommendations
  68. UllmannA.J. AguadoJ.M. Arikan-AkdagliS. Diagnosis and management of aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline.Clin. Microbiol. Infect.201824Suppl. 1e1e3810.1016/j.cmi.2018.01.002 29544767
    [Google Scholar]
  69. ChakrabartiA. MeisJ.F. CornelyO.A. International society for human and animal mycology (ISHAM)—new initiatives.J. Fungi (Basel)2020639710.3390/jof6030097 32630110
    [Google Scholar]
  70. JohnsonM.D. LewisR.E. Dodds AshleyE.S. Core recommendations for antifungal stewardship: A statement of the mycoses study group education and research consortium.J. Infect. Dis.2020222Suppl. 3S175S19810.1093/infdis/jiaa394 32756879
    [Google Scholar]
  71. AhmadA. AhsanH. Lipid-based formulations in cosmeceuticals and biopharmaceuticals.Biomed. Dermatol.2020411210.1186/s41702‑020‑00062‑9
    [Google Scholar]
  72. HolmR. Bridging the gaps between academic research and industrial product developments of lipid-based formulations.Adv. Drug Deliv. Rev.201914211812710.1016/j.addr.2019.01.009 30682399
    [Google Scholar]
  73. Adler-MooreJ.P. ProffittR.T. Amphotericin B lipid preparations: What are the differences?Clin. Microbiol. Infect.200814Suppl. 4253610.1111/j.1469‑0691.2008.01979.x 18430127
    [Google Scholar]
  74. MaertensJ. PaganoL. AzoulayE. WarrisA. Liposomal amphotericin B—the present.J. Antimicrob. Chemother.202277Suppl. 2ii11ii2010.1093/jac/dkac352 36426672
    [Google Scholar]
  75. Abd-ElsalamW.H. NagyY.I. AbouelattaS.M. Tailoring thixotropic mixed-lipid nanoconstructs of voriconazole for the management of Vulvovaginal candidiasis: Formulation, statistical optimization, in vitro characterization and in vivo assessment.Drug Deliv.20212811877188910.1080/10717544.2021.1974608 34519230
    [Google Scholar]
  76. WuS. GuoW. LiB. Progress of polymer-based strategies in fungal disease management: Designed for different roles.Front. Cell. Infect. Microbiol.202313114202910.3389/fcimb.2023.1142029 37033476
    [Google Scholar]
  77. Fernandes CostaA. Evangelista AraujoD. Santos CabralM. Development, characterization, and in vitro–in vivo evaluation of polymeric nanoparticles containing miconazole and farnesol for treatment of Vulvovaginal candidiasis.Med. Mycol.2019571526210.1093/mmy/myx155 29361177
    [Google Scholar]
  78. MesallatiH. UmerskaA. PaluchK.J. TajberL. Amorphous polymeric drug salts as ionic solid dispersion forms of ciprofloxacin.Mol. Pharm.20171472209222310.1021/acs.molpharmaceut.7b00039 28570079
    [Google Scholar]
  79. AlbayatyY.N. ThomasN. Ramírez-GarcíaP.D. Polymeric micelles with anti-virulence activity against Candida albicans in a single- and dual-species biofilm.Drug Deliv. Transl. Res.20211141586159710.1007/s13346‑021‑00943‑4 33713317
    [Google Scholar]
  80. OkonogiS. PhumatP. KhongkhunthianS. SuttiatK. ChaijareenontP. Denture-soaking solution containing piper betle extract-loaded polymeric micelles; inhibition of candida albicans, clinical study, and effects on denture base resin.Antibiotics (Basel)202110444010.3390/antibiotics10040440 33920823
    [Google Scholar]
  81. SadozaiS.K. KhanS.A. BaseerA. UllahR. ZebA. SchneiderM. In vitro, ex vivo, and in vivo evaluation of nanoparticle-based topical formulation against candida albicans infection.Front. Pharmacol.20221390985110.3389/fphar.2022.909851 35873577
    [Google Scholar]
  82. WaghuleT. SankarS. RapalliV.K. Emerging role of nanocarriers based topical delivery of anti‐fungal agents in combating growing fungal infections.Dermatol. Ther.2020336e1390510.1111/dth.13905 32588940
    [Google Scholar]
  83. KoraAJ Applications of biogenic silver nanocrystals or nanoparticles as bactericide and fungicide202210.1016/B978‑0‑12‑824024‑3.00007‑5
    [Google Scholar]
  84. Ahmadpour KermaniS. SalariS. Ghasemi Nejad AlmaniP. Comparison of antifungal and cytotoxicity activities of titanium dioxide and zinc oxide nanoparticles with amphotericin B against different Candida species: In vitro evaluation.J. Clin. Lab. Anal.2021351e2357710.1002/jcla.23577 32920952
    [Google Scholar]
  85. KamliM.R. AlzahraniE.A. AlbukhariS.M. AhmadA. SabirJ.S.M. MalikM.A. Combination effect of novel bimetallic Ag-Ni nanoparticles with fluconazole against Candida albicans.J. Fungi (Basel)20228773310.3390/jof8070733 35887488
    [Google Scholar]
  86. OdysseosG. MayrU. BozsakiG. Isavuconazole and liposomal amphotericin B as successful combination therapy of refractory invasive candidiasis in a liver transplant recipient: A case report and literature review.Mycopathologia2022187111312010.1007/s11046‑021‑00599‑1 34718931
    [Google Scholar]
  87. GebremariamT. GuY. AlkhazrajiS. YoussefE. ShawK.J. IbrahimA.S. The combination treatment of fosmanogepix and liposomal amphotericin B is superior to monotherapy in treating experimental invasive mold infections.Antimicrob. Agents Chemother.2022667e00380e2210.1128/aac.00380‑22 35670592
    [Google Scholar]
  88. CaballeroU. ErasoE. QuindósG. JauregizarN. In vitro interaction and killing-kinetics of amphotericin b combined with anidulafungin or caspofungin against candida auris.Pharmaceutics2021139133310.3390/pharmaceutics13091333 34575409
    [Google Scholar]
  89. SaidM.M. WatsonC. GrandoD. Garlic alters the expression of putative virulence factor genes SIR2 and ECE1 in vulvovaginal C. albicans isolates.Sci. Rep.2020101361510.1038/s41598‑020‑60178‑0 32107396
    [Google Scholar]
  90. MurugeshJ. AnnigeriR. MangalaG.K. MythilyP.H. ChandrakalaJ. Evaluation of the antifungal efficacy of different concentrations of Curcuma longa on Candida albicans: An in vitro study.J. Oral Maxillofac. Pathol.201923230510.4103/jomfp.JOMFP_200_18 31516248
    [Google Scholar]
  91. JafriH. AhmadI. Thymus vulgaris essential oil and thymol inhibit biofilms and interact synergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida tropicalis.J. Mycol. Med.202030110091110.1016/j.mycmed.2019.100911 32008964
    [Google Scholar]
  92. MohideenM. Zainal AbidinN.S.I. Hazmie IdrisM.I. KamaruzamanN.A. An overview of antibacterial and antifungal effects of Azadirachta indica crude extract: A narrative review.Biomed. Pharmacol. J.202215150551410.13005/bpj/2391
    [Google Scholar]
  93. GuptaM. BansalV. BhaduriT. Assessment of antimicrobial effectiveness of neem and clove extract against streptococcus mutans and Candida albicans: An In vitro Study.Niger. Med. J.201960628528910.4103/nmj.NMJ_20_19 32180657
    [Google Scholar]
  94. SanchisC.M. Bosch-RoigP. MolinerB.C. MillerA.Z. Antifungal properties of oregano and clove volatile essential oils tested on biodeteriorated archaeological mummified skin.J. Cult. Herit.202361404710.1016/j.culher.2023.02.006
    [Google Scholar]
  95. FisherM.C. Alastruey-IzquierdoA. BermanJ. Tackling the emerging threat of antifungal resistance to human health.Nat. Rev. Microbiol.202220955757110.1038/s41579‑022‑00720‑1 35352028
    [Google Scholar]
  96. JoséP. Alvarez-LermaF. MasedaE. Invasive fungal infection in crtically ill patients: Hurdles and next challenges.J. Chemother.2019312647310.1080/1120009X.2018.1557799 30761948
    [Google Scholar]
  97. BrownP DawsonM SimonovicM BoaxS DuferchE. Duferch, Polymyxin derivatives and their use in combination therapy together with different antibiotics 2022.Patent KR102354902B1
    [Google Scholar]
  98. ShuklaA CowlesS Vera-GonzalezN Bailey-HytholtC SilvertE Antifungal nanoparticles for targeted treatment of fungal infections.Patent US20200368160A12022
    [Google Scholar]
  99. Garneau-TsodikovaS NgoHX ShresthaSK 2020
  100. KohiyamaR TakanoT TakanoT MiyazawaK MiyazawaY Immunoassay method of mycoplasma pneumoniae and immunoassay device.Patent JP2021165705A,2021
    [Google Scholar]
  101. VeseyG. Crispr/cas-associated detection assays, methods and kits. Patent WO2023019290A1,2022
  102. du PréS. BirchM. LawD. The dynamic influence of olorofim (F901318) on the cell morphology and organization of living cells of aspergillus fumigatus.J. Fungi (Basel)2020624710.3390/jof6020047 32290206
    [Google Scholar]
  103. JallowS. GovenderN.P. Ibrexafungerp: A first-in-class oral triterpenoid glucan synthase inhibitor.J. Fungi (Basel)20217316310.3390/jof7030163 33668824
    [Google Scholar]
  104. ShawK.J. IbrahimA.S. Fosmanogepix: A review of the first-in-class broad spectrum agent for the treatment of invasive fungal infections.J. Fungi (Basel)20206423910.3390/jof6040239 33105672
    [Google Scholar]
  105. Garcia-EffronG. Rezafungin—mechanisms of action, susceptibility and resistance: Similarities and differences with the other echinocandins.J. Fungi (Basel)20206426210.3390/jof6040262 33139650
    [Google Scholar]
  106. MonkB.C. KeniyaM.V. SabherwalM. Azole resistance reduces susceptibility to the tetrazole antifungal VT-1161.Antimicrob. Agents Chemother.2019631e021141810.1128/AAC.02114‑18 30397057
    [Google Scholar]
  107. WuY. ZhangM. YangY. Structures and mechanism of chitin synthase and its inhibition by antifungal drug Nikkomycin Z.Cell Discov.20228112910.1038/s41421‑022‑00495‑y 36473834
    [Google Scholar]
  108. DongJ. LiangG. ZhengH. In vitro activity of ravuconazole against Candida auris and vaginal candida isolates.Mycoses202164665165510.1111/myc.13260 33609301
    [Google Scholar]
  109. MaioneA. La PietraA. SicilianoA. The Arylamidine T-2307 as a novel treatment for the prevention and eradication of Candida tropicalis Biofilms.Int. J. Mol. Sci.202223241604210.3390/ijms232416042 36555687
    [Google Scholar]
  110. JohnC.N. AbrantesP.M.D.S. PrustyB.K. AblashiD.V. AfricaC.W.J. K21 compound, a potent antifungal agent: Implications for the treatment of fluconazole-resistant HIV-associated Candida Species.Front. Microbiol.201910102110.3389/fmicb.2019.01021 31231313
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265317733241021190116
Loading
/content/journals/iddt/10.2174/0118715265317733241021190116
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test