Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Introduction

(Ashwagandha) is a traditional herb that is currently commercially available for treating a variety of illnesses. By evaluating and verifying docking affinity scores, it is possible to explore the potential of the plant for treating leprosy and lepra-reaction as off-label use.

Methods

The sitoindosides were used as ligands along with thalidomide in docking against targets, such as , TNF-Alpha, and Interleukin-6 in order to determine the potential for inhibitory concentration and docking affinity.

Results

According to the study, good binding energy values varied from -7 to -11 Kcal/mol. Sitoindoside IX had the highest binding affinity and important binding interactions, such as hydrogen bonding, when compared to Thalidomide and Sitoindoside X against all three receptors.

Conclusion

The present study confirmed that the Sitoindoside IX and X are a better fit for treating patients with leprosy. These findings are highly intriguing and suggest that this herb should be investigated further to validate these findings in leprosy.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265296476241018050329
2024-12-30
2025-11-04
Loading full text...

Full text loading...

References

  1. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/157340911795677602 21534921
    [Google Scholar]
  2. ThangarajuP. VelmuruganH. YellaS.S.T. VenkatesanS. Vigilance needed in treating leprosy patients in accordance with WHO’s AWaRe.Recent Adv Anti-Infect Drug Disc20221729510210.2174/2772434417666220720111849 35864797
    [Google Scholar]
  3. MaheswariP. HarishS. NavaneethanM. MuthamizhchelvanC. PonnusamyS. HayakawaY. Bio-modified TiO2 nanoparticles with Withania somnifera, Eclipta prostrata and Glycyrrhiza glabra for anticancer and antibacterial applications.Mater. Sci. Eng. C202010811045710.1016/j.msec.2019.110457 31924033
    [Google Scholar]
  4. SarnoE.N. DuppreN.C. SalesA.M. HackerM.A. NeryJ.A. de MatosH.J. Leprosy exposure, infection and disease: A 25-year surveillance study of leprosy patient contacts.Mem. Inst. Oswaldo Cruz2012107810541059
    [Google Scholar]
  5. GamaR.S. GomidesT.A.R. GamaC.F.M. MoreiraS.J.M. de Neves MantaF.S. de OliveiraL.B.P. High frequency of M. leprae DNA detection in asymptomatic household contacts.BMC Infect. Dis.201818115310.1186/s12879‑018‑3056‑2
    [Google Scholar]
  6. AraujoS. FreitasL.O. GoulartL.R. GoulartI.M.B. Molecular evidence for the aerial route of infection of mycobacterium leprae and the role of asymptomatic carriers in the persistence of leprosy.Clin. Infect. Dis.201663111412142010.1093/cid/ciw570
    [Google Scholar]
  7. PloemacherT. FaberW.R. MenkeH. RuttenV. PietersT. Reservoirs and transmission routes of leprosy; A systematic review.PLoS Negl. Trop. Dis.2020144e000827610.1371/journal.pntd.0008276
    [Google Scholar]
  8. WalkerS.L. LockwoodD.N.J. Leprosy.Clin. Dermatol.200725216517210.1016/j.clindermatol.2006.05.012 17350495
    [Google Scholar]
  9. SreenivasanP. MisraR.S. WilfredD. NathI. Lepromatous leprosy patients show T helper 1‐like cytokine profile with differential expression of interleukin‐10 during type 1 and 2 reactions.Immunology199895452953610.1046/j.1365‑2567.1998.00634.x 9893041
    [Google Scholar]
  10. World Health Organization. WHO Expert Committee on Leprosy.World Health Organ. Tech. Rep. Ser.2012968968161 22970604
    [Google Scholar]
  11. SaleemS. MuhammadG. HussainM.A. AltafM. BukhariS.N.A. Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective.Iran. J. Basic Med. Sci.202023121501152610.22038/IJBMS.2020.44254.10378 33489024
    [Google Scholar]
  12. TeoS.K. ResztakK.E. SchefflerM.A. Thalidomide in the treatment of leprosy.Microbes Infect.20024111193120210.1016/S1286‑4579(02)01645‑3 12361920
    [Google Scholar]
  13. ChristinaA.J.M. JosephD.G. PackialakshmiM. Anticarcinogenic activity of Withania somnifera Dunal against Dalton’s ascitic lymphoma.J. Ethnopharmacol.2004932-335936110.1016/j.jep.2004.04.004 15234777
    [Google Scholar]
  14. SingariyaP.R. MouryaK.K. KumarP.A. Comparative Microcidal activity of withaniasomnifera and cenchrussetigerus against the pathogenic micro-organisms.Int. J. Pharm. Pharm. Sci.201135511555
    [Google Scholar]
  15. BhattacharyaS.K. BhattacharyaA. SairamK. GhosalS. Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: An experimental study.Phytomedicine20007646346910.1016/S0944‑7113(00)80030‑6 11194174
    [Google Scholar]
  16. KumarS. TewariA. DwivediR. The use of aphrodisiacs in medival India.Nagarjun198023170174
    [Google Scholar]
  17. PrinceP.S.M. SumanS. DevikaP.T. VaithianathanM. Cardioprotective effect of ‘Marutham’ a polyherbal formulation on isoproterenol induced myocardial infarction in Wistar rats.Fitoterapia200879643343810.1016/j.fitote.2008.01.009 18538507
    [Google Scholar]
  18. BhattacharyaA. RamanathanM. GhosalS. BhattacharyaS.K. Effect of Withania somnifera glycowithanolides on iron-induced hepatotoxicity in rats.Phytother. Res.200014756857010.1002/1099‑1573(200011)14:7<568:AID‑PTR663>3.0.CO;2‑Q 11054855
    [Google Scholar]
  19. SharmaM. KaurR. PuriS. Bio-herbicidal efficiency of Withaniasomnifera against important Himalayan weeds.Int. J. Pharm. Pharm. Sci.201793889710.22159/ijpps.2017v9i3.14740
    [Google Scholar]
  20. VisavadiyaN.P. NarasimhacharyaA.V.R.L. Hypocholesteremic and antioxidant effects of Withania somnifera (Dunal) in hypercholesteremic rats.Phytomedicine2007142-313614210.1016/j.phymed.2006.03.005 16713218
    [Google Scholar]
  21. RahmatullahM. FerdausiD. MollikA.H. JahanR. ChowdhuryM.H. HaqueW.M. A survey of medicinal plants used by Kavirajes of Chalna area, Khulna district, Bangladesh.Afr. J. Tradit. Complement. Altern. Med.200972919710.4314/ajtcam.v7i2.50859
    [Google Scholar]
  22. KuboyamaT. TohdaC. KomatsuK. Neuritic regeneration and synaptic reconstruction induced by withanolide A.Br. J. Pharmacol.2005144796197110.1038/sj.bjp.0706122 15711595
    [Google Scholar]
  23. AhmadM. SaleemS. AhmadA.S. Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats.Hum. Exp. Toxicol.200524313714710.1191/0960327105ht509oa 15901053
    [Google Scholar]
  24. PandaS. KarA. Withania somnifera and Bauhinia purpurea in the regulation of circulating thyroid hormone concentrations in female mice.J. Ethnopharmacol.199967223323910.1016/S0378‑8741(99)00018‑5 10619390
    [Google Scholar]
  25. Montes-GrajalesD. BernardesG.J.L. Olivero-VerbelJ. Urban endocrine disruptors targeting breast cancer proteins.Chem. Res. Toxicol.201629215016110.1021/acs.chemrestox.5b00342 26700111
    [Google Scholar]
  26. MorrisG.M. HueyR. LindstromW. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  27. WiwanitkitV. Analysis of Mycobacterium leprae genome: In silico searching for drug targets.Southeast Asian J. Trop. Med. Public Health20053636Suppl. 4225227 16438214
    [Google Scholar]
  28. Cabarcas-MontalvoM. Maldonado-RojasW. Montes-GrajalesD. Discovery of antiviral molecules for dengue: In silico search and biological evaluation.Eur. J. Med. Chem.2016110879710.1016/j.ejmech.2015.12.030 26807547
    [Google Scholar]
  29. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  30. DarN.J. HamidA. AhmadM. Pharmacologic overview of Withania somnifera, the Indian Ginseng.Cell. Mol. Life Sci.201572234445446010.1007/s00018‑015‑2012‑1 26306935
    [Google Scholar]
  31. SukanyaD.H. LokeshaA.N. DattaG. HimabinduK. Phytochemical diversity in ashwagandha (Withania somnifera).Open Access J. J. Med. Aromat. Plants201012
    [Google Scholar]
  32. MaitiC.K. SenS. PaulA.K. AcharyaK. First report of Alternaria dianthicola Causing leaf blight on Withania somnifera from India.Plant Dis.200791446710.1094/PDIS‑91‑4‑0467B 30781215
    [Google Scholar]
  33. DoddannaS. PatelS. SundarraoM. VeerabhadrappaR. Antimicrobial activity of plant extracts on Candida albicans: An in vitro study.Indian J. Dent. Res.201324440140510.4103/0970‑9290.118358 24047829
    [Google Scholar]
  34. BirlaH. KeswaniC. RaiS.N. Neuroprotective effects of Withaniasomnifera in BPA induced-cognitive dysfunction and oxidative stress in mice.Behav. Brain Funct.2019151910.1186/s12993‑019‑0160‑4
    [Google Scholar]
  35. SchmelzeG.H. Gurib–FakimA. ArrooR.R. BoschC.H. de RuijterA. SimmondsM.S. Plant resources of tropical Africa 11 (1).2019Available From https://www.researchgate.net/profile/Randolph-Arroo/publication/317510018_Plant_Resources_of_Tropical_Africa_111_Medicinal_plants_1/links/593ff602458515a62187b871/Plant-Resources-of-Tropical-Africa-111-Medicinal-plants-1.pdf
    [Google Scholar]
  36. MofedD. AhmedW. ZekriA.R. SaidO. RahoumaM. FaraagA.H.I. The antiviral efficacy of Withania somnifera (Ashwagandha) against hepatitis C virus activity: In vitro and in silico study.Adv. Microbiol.202010946347710.4236/aim.2020.109035
    [Google Scholar]
  37. GeorgeT.K. TomyA. JishaM.S. Molecular docking study of bioactive compounds of Withania somnifera extract against topoisomerase IV type B.Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci.202090238139010.1007/s40011‑019‑01110‑z
    [Google Scholar]
  38. SudeepH.V. GouthamchandraK. ShyamprasadK. Molecular docking analysis of Withaferin A from Withania somnifera with the Glucose regulated protein 78 (GRP78) in comparison with the COVID-19 main protease.Bioinformation202016541141710.6026/97320630016411 32831523
    [Google Scholar]
  39. ShreeP. MishraP. SelvarajC. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants – Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) – a molecular docking study.J. Biomol. Struct. Dyn.202240119020310.1080/07391102.2020.1810778 32851919
    [Google Scholar]
  40. AliA. MirG.J. AyazA. In silico analysis and molecular docking studies of natural compounds of Withania somnifera against bovine NLRP9.J. Mol. Model.202329617110.1007/s00894‑023‑05570‑z 37155030
    [Google Scholar]
  41. AshrafM.U. MuhammadG. HussainM.A. BukhariS.N. Cydonia oblonga M., A Medicinal Plant Rich in Phytonutrients for Pharmaceuticals.Front. Pharmacol.2016716310.3389/fphar.2016.00163
    [Google Scholar]
  42. GuptaG.L. RanaA.C. Withania somnifera (Ashwagandha): A review.Pharmacogn. Rev.200711129136
    [Google Scholar]
  43. MahmudS. PaulG.K. AfrozeM. Efficacy of phytochemicals derived from Avicennia officinalis for the management of COVID-19: A combined in silico and biochemical study.Molecles2021268221010.3390/molecules26082210
    [Google Scholar]
  44. LipinskiC.A. Lead- and drug-like compounds: The rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.007 24981612
    [Google Scholar]
  45. GhobrialI.M. RajkumarS.V. Management of thalidomide toxicity.J. Support. Oncol.200313194205 15334875
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265296476241018050329
Loading
/content/journals/iddt/10.2174/0118715265296476241018050329
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test