Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

Background

The understanding of the antibiotic resistance status of environmental nonO1/nonO139 (NOVC) in relation to other illnesses, which can vary in severity from mild to life-threatening, is limited. However, it is important to note that NOVC-related infections are increasing and serve as a significant illustration of emerging human diseases associated with climate change. The primary objective of the present study was to assess the rates of resistance observed in environmental NOVC isolates across various years, and regions, and their resistance rates.

Methods

We performed a systematic search of Scopus, PubMed, Web of Science, and EMBASE databases (until May 2024) following PRISMA guidelines. All statistical analyses were carried out using the statistical package R.

Results

Our analysis included a total of 34 studies. According to the meta-regression, chloramphenicol, rifampicin, ciprofloxacin, nalidixic acid, cotrimoxazole, kanamycin, trimethoprim, amoxicillin/clavulanic acid, and tetracycline resistance rate increased over time. The lowest resistance rates were observed in Austria (amoxicillin; 0.6%), the United States (kanamycin; 0.1% and tetracycline; 0.1%), Morocco (polymyxin B; 12%), and Spain (trimethoprim; 0.3%). Conversely, the highest resistance rates were found in Spain (amoxicillin; 61%), Indonesia (kanamycin and tetracycline; 94.9%), India (polymyxin B; 97.8%), and Morocco (trimethoprim; 48.9%).

Conclusion

The meta-analysis showed significant variability in antibiotic resistance patterns among environmental NOVC isolates across time and regions, emphasizing the need for targeted, time-specific, and country-specific approaches to address antibiotic resistance globally.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265294870241002091842
2024-10-22
2025-11-02
Loading full text...

Full text loading...

References

  1. BaronS. LarvorE. ChevalierS. Antimicrobial susceptibility among urban wastewater and wild shellfish isolates of non-o1/non-o139 Vibrio cholerae from la rance estuary (brittany, france).Front. Microbiol.20178163710.3389/fmicb.2017.01637 28955305
    [Google Scholar]
  2. ChatterjeeS. GhoshK. RaychoudhuriA. Incidence, virulence factors, and clonality among clinical strains of non-O1, non-O139 Vibrio cholerae isolates from hospitalized diarrheal patients in Kolkata, India.J. Clin. Microbiol.20094741087109510.1128/JCM.02026‑08 19158257
    [Google Scholar]
  3. ChakrabortyS. GargP. RamamurthyT. Comparison of antibiogram, virulence genes, ribotypes and DNA fingerprints of Vibrio cholerae of matching serogroups isolated from hospitalised diarrhoea cases and from the environment during 1997–1998 in Calcutta, India.J. Med. Microbiol.2001501087988810.1099/0022‑1317‑50‑10‑879 11599737
    [Google Scholar]
  4. ChomvarinC. JumroenjitW. TangkanakulW. Genotype and Drug Resistance of Clinical and Environmental Vibrio cholerae Non-O1/Non-O139 in Northeastern Thailand.Southeast Asian J. Trop. Med. Public Health201445613541364 26466421
    [Google Scholar]
  5. EjaM.E. EtokC.A. AsikongB.E. MbotoC.I. ArikpoG.E. Incidence of enteric bacterial pathogens in water found at the bottom of commercial freezers in calabar, southeastern Nigeria.Southeast Asian J. Trop. Med. Public Health2006372394399 17125005
    [Google Scholar]
  6. DuttaD. ChowdhuryG. PazhaniG.P. Vibrio cholerae non-O1, non-O139 serogroups and cholera-like diarrhea, Kolkata, India.Emerg. Infect. Dis.201319346446710.3201/eid1903.121156 23622872
    [Google Scholar]
  7. DalsgaardA. ForslundA. BodhidattaL. A high proportion of Vibrio cholerae strains isolated from children with diarrhoea in Bangkok, Thailand are multiple antibiotic resistant and belong to heterogenous non-O1, non-O139 O-serotypes.Epidemiol. Infect.1999122221722610.1017/S0950268899002137 10355785
    [Google Scholar]
  8. RudraS. MahajanR. MathurM. KathuriaK. TalwarV. Cluster of cases of clinical cholera due to Vibrio cholerae 010 in east Delhi.Indian J. Med. Res.19961037173 8714141
    [Google Scholar]
  9. OnifadeT.M. HutchinsonR. Van ZileK. BodagerD. BakerR. BlackmoreC. Toxin producing Vibrio cholerae O75 outbreak, United States, March to April 2011.Euro Surveill.201116201987010.2807/ese.16.20.19870‑en 21616048
    [Google Scholar]
  10. MalaW. FaksriK. SamerpitakK. Antimicrobial resistance and genetic diversity of the SXT element in Vibrio cholerae from clinical and environmental water samples in northeastern Thailand.Infect. Genet. Evol.201752899510.1016/j.meegid.2017.04.013 28412524
    [Google Scholar]
  11. PetsarisO. NousbaumJ.B. QuiliciM.L. Le CoadouG. PayanC. AbalainM.L. Non-O1, non-O139 Vibrio cholerae bacteraemia in a cirrhotic patient.J. Med. Microbiol.201059101260126210.1099/jmm.0.021014‑0 20616193
    [Google Scholar]
  12. AzzayaD. GantuyaB. OyuntsetsegK. High antibiotic resistance of Helicobacter pylori and its associated novel gene mutations among the Mongolian population.Microorganisms202087106210.3390/microorganisms8071062
    [Google Scholar]
  13. GhoshA. RamamurthyT. Antimicrobials & cholera: Are we stranded?Indian J. Med. Res.20111332225231 21415499
    [Google Scholar]
  14. SahaD. KarimM.M. KhanW.A. AhmedS. SalamM.A. BennishM.L. Single-dose azithromycin for the treatment of cholera in adults.N. Engl. J. Med.2006354232452246210.1056/NEJMoa054493 16760445
    [Google Scholar]
  15. MoherD. LiberatiA. TetzlaffJ. AltmanD.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement.Int. J. Surg.201085336341
    [Google Scholar]
  16. Meta: An R Package for Meta-Analysis. 2007. Available From: https://journal.r-project.org/articles/RN-2007-029/RN-2007-029.pdf
  17. Team RCJhwR-poR: A language and environment for statistical computing.Vienna, AustriaR Foundation for Statistical Computing2013
    [Google Scholar]
  18. AmaroC. AznarR. GarayE. AlcaideE. R plasmids in environmental Vibrio cholerae non-O1 strains.Appl. Environ. Microbiol.198854112771277610.1128/aem.54.11.2771‑2776.1988 3214157
    [Google Scholar]
  19. AkoachereJ.F.T.K. MbuntchaC.K.P. Water sources as reservoirs of Vibrio cholera O1 and non-O1 strains in Bepanda, Douala (Cameroon): Relationship between isolation and physico-chemical factors.BMC Infect. Dis.201414142110.1186/1471‑2334‑14‑421 25073409
    [Google Scholar]
  20. Lamrani AlaouiH. OufdouK. MezriouiN. Determination of several potential virulence factors in non-o1 Vibrio cholerae, Pseudomonas aeruginosa, faecal coliforms and streptococci isolated from Marrakesh groundwater.Water Sci. Technol.20106171895190510.2166/wst.2010.263 20371949
    [Google Scholar]
  21. BakhshiB. PourshafieM.R. NavabakbarF. Comparison of distribution of virulence determinants in clinical and environmental isolates of Vibrio cholera.Iran. Biomed. J.2008123159165 18762819
    [Google Scholar]
  22. BarjaJ.L. SantosY. HuqI. ColwellR.R. ToranzoA.E. Plasmids and factors associated with virulence in environmental isolates of Vibrio cholerae non-O 1 in Bangladesh.J. Med. Microbiol.199033210711410.1099/00222615‑33‑2‑107 2231676
    [Google Scholar]
  23. BaronS. LesneJ. JouyE. Antimicrobial Susceptibility of Autochthonous Aquatic Vibrio cholerae in Haiti.Front. Microbiol.20167167110.3389/fmicb.2016.01671 27818656
    [Google Scholar]
  24. BidinostC. SakaH.A. AliendroO. Virulence factors of non-O1 non-O139 Vibrio cholerae isolated in Córdoba, Argentina.Rev. Argent. Microbiol.2004364158163 15786867
    [Google Scholar]
  25. BierN. SchwartzK. GuerraB. StrauchE. Survey on antimicrobial resistance patterns in Vibrio vulnificus and Vibrio cholerae non-O1/non-O139 in Germany reveals carbapenemase-producing Vibrio cholerae in coastal waters.Front. Microbiol.20156117910.3389/fmicb.2015.01179 26579088
    [Google Scholar]
  26. CamposL.C. ZahnerV. AvelarK.E.S. Genetic diversity and antibiotic resistance of clinical and environmental Vibrio cholerae suggests that many serogroups are reservoirs of resistance.Epidemiol. Infect.2004132598599210.1017/S0950268804002705 15473163
    [Google Scholar]
  27. CeccarelliD. ChenA. HasanN.A. RashedS.M. HuqA. ColwellR.R. Non-O1/non-O139 Vibrio cholerae carrying multiple virulence factors and V. cholerae O1 in the Chesapeake Bay, Maryland.Appl. Environ. Microbiol.20158161909191810.1128/AEM.03540‑14 25556194
    [Google Scholar]
  28. DalsgaardA. SerichantalergsO. PitarangsiC. EcheverriaP. Molecular characterization and antibiotic susceptibility of Vibrio cholerae non-O1.Epidemiol. Infect.19951141516310.1017/S0950268800051906 7867743
    [Google Scholar]
  29. FalcãoD.P. LustriW.R. BauabT.M. Incidence of non-01 Vibrio cholerae and Aeromonas spp. in fresh water in Araraquara, Brazil.Curr. Microbiol.1998371283110.1007/s002849900332 9625786
    [Google Scholar]
  30. ImzilnB. HassaniL. Antimicrobial susceptibility of non-O1 Vibrio cholerae isolated from wastewater stabilization ponds in Marrakesh, Morocco.World J. Microbiol. Biotechnol.199410223023110.1007/BF00360895 24420955
    [Google Scholar]
  31. Isaac-MárquezA.P. Lezama-DávilaC.M. Eslava- Campos C, Navarro-Ocaña A, Cravioto-Quintana A. Serotypes of Vibrio cholerae non-O1 isolated from water supplies for human consumption in Campeche, México and their antibiotic susceptibility pattern.Mem. Inst. Oswaldo Cruz1998931172210.1590/S0074‑02761998000100004 9698837
    [Google Scholar]
  32. IslamM.S. JahidM.I.K. RahmanM.M. Biofilm acts as a microenvironment for plankton-associated Vibrio cholerae in the aquatic environment of Bangladesh.Microbiol. Immunol.200751436937910.1111/j.1348‑0421.2007.tb03924.x 17446676
    [Google Scholar]
  33. JagadeeshanS. KumarP. AbrahamW.P. ThomasS. Multiresistant Vibrio cholerae non‐O1/non‐O139 from waters in South India: Resistance patterns and virulence‐associated gene profiles.J. Basic Microbiol.200949653854410.1002/jobm.200900085 19810041
    [Google Scholar]
  34. MeenaB. AnburajanL. SathishT. Studies on diversity of Vibrio sp. and the prevalence of hapA, tcpI, st, rtxA&C, acfB, hlyA, ctxA, ompU and toxR genes in environmental strains of Vibrio cholerae from Port Blair bays of South Andaman, India.Mar. Pollut. Bull.201914410511610.1016/j.marpolbul.2019.05.011 31179975
    [Google Scholar]
  35. KumarP.A. PattersonJ. KarpagamP. Multiple Antibiotic Resistance Profiles of Vibrio cholerae non-O1 and non-O139.Jpn. J. Infect. Dis.200962323023210.7883/yoken.JJID.2009.230 19468189
    [Google Scholar]
  36. KumarR. LalithaK.V. Prevalence and molecular characterization of Vibrio cholerae O1, non-O1 and non-O139 in tropical seafood in Cochin, India.Foodborne Pathog. Dis.201310327828310.1089/fpd.2012.1310 23489050
    [Google Scholar]
  37. MohapatraH. MohapatraS.S. MantriC.K. ColwellR.R. SinghD.V. Vibrio cholerae non‐O1, non‐O139 strains isolated before 1992 from Varanasi, India are multiple drug resistant, contain int SXT, dfr18 and aadA5 genes.Environ. Microbiol.200810486687310.1111/j.1462‑2920.2007.01502.x 18201198
    [Google Scholar]
  38. MohapatraS.S. RamachandranD. MantriC.K. ColwellR.R. SinghD.V. Determination of relationships among non-toxigenic Vibrio cholerae O1 biotype El Tor strains from housekeeping gene sequences and ribotype patterns.Res. Microbiol.20091601576210.1016/j.resmic.2008.10.008 19028569
    [Google Scholar]
  39. OdjadjareE.E.O. IgbinosaE.O. Multi-drug resistant Vibrio species isolated from abattoir effluents in Nigeria.J. Infect. Dev. Ctries.201711537337810.3855/jidc.8097 30943178
    [Google Scholar]
  40. WaturangiD.E. WennarsM. SuhartonoM.X. WijayaY.F. Edible ice in Jakarta, Indonesia, is contaminated with multidrug-resistant Vibrio cholerae with virulence potential.J. Med. Microbiol.201362335235910.1099/jmm.0.048769‑0 23264457
    [Google Scholar]
  41. Zavala-NorzagarayA.A. AguirreA.A. Velazquez-RomanJ. Isolation, characterization, and antibiotic resistance of Vibrio spp. in sea turtles from Northwestern Mexico.Front. Microbiol.2015663510.3389/fmicb.2015.00635 26161078
    [Google Scholar]
  42. SongY. YuP. LiB. The mosaic accessory gene structures of the SXT/R391-like integrative and conjugative elements derived from Vibrio spp. isolated from aquatic products and environment in the Yangtze River estuary, China.BMC Microbiol.201313121410.1186/1471‑2180‑13‑214 24074349
    [Google Scholar]
  43. AbioyeO.E. NontonganaN. OsunlaC.A. OkohA.I. Antibiotic resistance and virulence genes profiling of Vibrio cholerae and Vibrio mimicus isolates from some seafood collected at the aquatic environment and wet markets in Eastern Cape Province, South Africa.PLoS One2023188e029035610.1371/journal.pone.0290356 37616193
    [Google Scholar]
  44. Laviad-ShitritS. SharabyY. IzhakiI. PeretzA. HalpernM. Antimicrobial susceptibility of environmental non-O1/non-O139 Vibrio cholerae isolates.Front. Microbiol.20189172610.3389/fmicb.2018.01726 30116229
    [Google Scholar]
  45. LepuschitzS. BaronS. LarvorE. Phenotypic and genotypic antimicrobial resistance traits of Vibrio cholerae non-O1/non-O139 isolated from a large Austrian lake frequently associated with cases of human infection.Front. Microbiol.201910260010.3389/fmicb.2019.02600 31781080
    [Google Scholar]
  46. LuoY. WangH. LiangJ. QianH. YeJ. ChenL. Population Structure and Multidrug Resistance of Non-O1/Non-O139 Vibrio cholerae in Freshwater Rivers in Zhejiang, China.Microb. Ecol.2021822319333
    [Google Scholar]
  47. SchmidtK. ScholzH.C. AppeltS. MichelJ. JacobD. DupkeS. Virulence and resistance patterns of Vibrio cholerae non-O1/non-O139 acquired in Germany and other European countries.Front. Microbiol.202314128213510.3389/fmicb.2023.1282135 38075873
    [Google Scholar]
  48. ValárikováJ. KorcováJ. ZiburováJ. RosinskýJ. ČížováA. BielikováS. Potential pathogenicity and antibiotic resistance of aquatic Vibrio isolates from freshwater in Slovakia.Folia Microbiol. (Praha)202065354555510.1007/s12223‑019‑00760‑w
    [Google Scholar]
  49. AdabiM. BakhshiB. GoudarziH. ZahraeiS.M. PourshafieM.R. Distribution of class I integron and sulfamethoxazole trimethoprim constin in Vibrio cholerae isolated from patients in Iran.Microb. Drug Resist.200915317918410.1089/mdr.2009.0885 19728775
    [Google Scholar]
  50. KitaokaM. MiyataS.T. UnterwegerD. PukatzkiS. Antibiotic resistance mechanisms of Vibrio cholerae.J. Med. Microbiol.201160439740710.1099/jmm.0.023051‑0 21252269
    [Google Scholar]
  51. CLSI. Clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing: Thirtieth information supplement.Wayne, PA, USAClinical and Laboratory Standards Institute2020M100S30
    [Google Scholar]
  52. YousefiA. VaezH. SahebkarA. KhademiF. A systematic review and meta-analysis on the epidemiology of antibiotic resistance of Vibrio cholerae in Iran.Ann. Ig.2019313279290 31069372
    [Google Scholar]
  53. Dengo-BaloiL.C. Semá-BaltazarC.A. ManhiqueL.V. ChitioJ.E. InguaneD.L. LangaJ.P. Antibiotics resistance in El Tor Vibrio cholerae 01 isolated during cholera outbreaks in Mozambique from 2012 to 2015.PLoS One2017128e018149610.1371/journal.pone.0181496 28792540
    [Google Scholar]
  54. AhmadiM.H. Global status of tetracycline resistance among clinical isolates of Vibrio cholerae: A systematic review and meta-analysis.Antimicrob. Resist. Infect. Control202110111510.1186/s13756‑021‑00985‑w 34362438
    [Google Scholar]
  55. KirpichA. WeppelmannT.A. YangY. AliA. MorrisJ.G.Jr LonginiI.M. Cholera Transmission in Ouest Department of Haiti: Dynamic Modeling and the Future of the Epidemic.PLoS Negl. Trop. Dis.2015910e000415310.1371/journal.pntd.0004153 26488620
    [Google Scholar]
  56. LupicaA. GumelA.B. The computation of reproduction numbers for the environment-host-environment cholera transmission dynamics.J. Biol. Syst.2020282149
    [Google Scholar]
  57. Bagheri-JosheghaniS. BakhshiB. MousaviM. Prevalence of Antibiotic Resistance in Vibrio cholerae: A Meta-analysis.Preprint202110.21203/rs.3.rs‑208720/v1
    [Google Scholar]
  58. GarbernS.C. ChuT.C. YangP. Clinical and socio-environmental determinants of multidrug-resistant Vibrio cholerae 01 in older children and adults in Bangladesh.Int. J. Infect. Dis.202110543644110.1016/j.ijid.2021.02.102 33647514
    [Google Scholar]
  59. NarendrakumarL. GuptaS.S. JohnsonJ.B. RamamurthyT. ThomasS. Molecular adaptations and antibiotic resistance in Vibrio cholerae: A communal challenge.Microb. Drug Resist.20192571012102210.1089/mdr.2018.0354 31021308
    [Google Scholar]
  60. ChatterjeeP. KanungoS. BhattacharyaS.K. DuttaS. Mapping cholera outbreaks and antibiotic resistant Vibrio cholerae in India: An assessment of existing data and a scoping review of the literature.Vaccine202038Suppl. 1A93A10410.1016/j.vaccine.2019.12.003 31883807
    [Google Scholar]
  61. GanesanD. GuptaS.S. LegrosD. Cholera surveillance and estimation of burden of cholera.Vaccine202038Suppl. 1A13A1710.1016/j.vaccine.2019.07.036 31326254
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265294870241002091842
Loading
/content/journals/iddt/10.2174/0118715265294870241002091842
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article. Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test