Skip to content
2000
Volume 5, Issue 3
  • ISSN: 1871-5281
  • E-ISSN: 2212-4055

Abstract

Multiple mechanisms have been proposed to explain the immune hyporesponsiveness to fed antigens, a phenomenon named oral tolerance. Low doses of orally administered antigen are reported to favor active suppression with the generation of regulatory cells, whereas high doses would favor clonal anergy/deletion. A major conceptual advance in oral tolerance has been the demonstration that TGF-β plays a central role in oral tolerance as a mediator secreted by Th3 cells. In addition, recent pieces of evidence suggest that TGF-β may be a primary link between distinct populations of regulatory T cells that are induced by feeding. Conversion of CD4+CD25- into CD4+CD25+ T cells by the expression of FoxP3 involves TGF-β . A membrane-bound form of TGF-β (containing latency-associated peptide - LAP) has also been described and LAP+ CD4+ T cells mediate suppression in the gut by a TGF- -dependent mechanism. Most of these regulatory T cells are anergic cells indicating that anergy may be also related to Treg induction. Moreover, deletional events taking place in the gut mucosa induce TGF-β production by either macrophages that phagocyte apoptotic cells or by the dying T cells. Thus, it appears that TGF-β -producing cells are not only crucial for oral tolerance, but they may be master regulators of most of the mechanisms triggered by antigen feeding.

Loading

Article metrics loading...

/content/journals/iadt/10.2174/187152806778256034
2006-09-01
2025-10-07
Loading full text...

Full text loading...

/content/journals/iadt/10.2174/187152806778256034
Loading

  • Article Type:
    Research Article
Keyword(s): LAP+ cells; Oral tolerance; regulatory T cells; TGF-; Th3 cells
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test