Skip to content
2000
Volume 3, Issue 2
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Optimization of Liquid Composite Molding (LCM) processes using Darcy flow numerical simulation requires inputting accurate reinforcement permeability data. Historically introduced by its author to describe infiltration phenomenon, permeability coming from Darcy's law is usually used in LCM processes as a rheological parameter in order to predict the macroscopic resin motion during the filling stage. Resulting from the flow through a complex fibrous architecture, its measurement is very sensitive to the test conditions due to the high filaments flexibility and mesostructure heterogeneity. Reinforcements are currently anisotropic fibrous media and their in-plane permeability measurement requires specific facilities. Measurements can be performed in transient or steady state conditions, and in one-, two- or three-dimensional configurations. This paper describes the different existing experimental configurations, identification procedures and instrumentation techniques. Advantages and drawbacks of each method are discussed, in the particular case of 2D transient measurements, which are the most representative of Resin Transfer Molding process. Two recent patents using different instrumentation techniques are detailed. They are focused on the simultaneous identification of the in-plane principal permeability values in an anisotropic fibrous reinforcement. Some perspectives are suggested to improve the repeatability of such measurement results.

Loading

Article metrics loading...

/content/journals/eng/10.2174/187221209788462508
2009-06-01
2025-09-09
Loading full text...

Full text loading...

/content/journals/eng/10.2174/187221209788462508
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test