Skip to content
2000
image of Low-loss Low-rank Representation for Medical Image Analysis

Abstract

Background

There has been extensive research on low-rank representation methods, and we firmly believe that this approach holds tremendous potential in addressing image-related challenges.

Objective

Medical image databases.

Method

We present low-loss low-rank representation(LLRR) to build a low-loss low-rank classifier (LLC) and a low-loss Low-rank discriminant projection(LLDP).

Results

The LLC algorithm exhibits a disease classification accuracy that is superior, with a maximum difference of 10%, compared to other algorithms. After pairing the feature extractors with a Nearest Neighbor Classifier, LLDP achieved a maximum 5.6% advantage in disease classification accuracy. In other words, feature extraction and classification methods can be constructed based on the representation method proposed, and the performance of LLRR is superior.

Conclusion

The experimental results indicate that LLDP and LLC consistently outperform other state-of-the-art methods, thus establishing LLRR as an effective data representation method.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121349744250102163111
2025-01-21
2025-10-29
Loading full text...

Full text loading...

/deliver/fulltext/eng/10.2174/0118722121349744250102163111/BMS-ENG-2024-126.html?itemId=/content/journals/eng/10.2174/0118722121349744250102163111&mimeType=html&fmt=ahah

References

  1. Turk M. Pentland A. Face Recognition Using Eigenfaces Proc. IEEE Conf. on Computer Vision and Pattern Recognition(CVPR) 586 591 1991
    [Google Scholar]
  2. Candès E.J. Li X. Ma Y. Wright J. Robust principal component analysis? J. Assoc. Comput. Mach. 2011 58 3 1 37 10.1145/1970392.1970395
    [Google Scholar]
  3. Wright J. Ganesh A. Rao S. Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization. Proc. Neural Information Processing Systems (NIPS), Vancouver, BC, Canada, pp. 2080-2088.
    [Google Scholar]
  4. Liu G.C. Lin Z.C. Yu Y. Robust subspace segmentation by low-rank representation Proc. International Conference on Machine Learning (ICML) 2010 663 670
    [Google Scholar]
  5. Ni Y.Z. Sun J. Yuan X.T. Robust low-rank subspace segmentation with semidefinite guarantees Proc. 2010 IEEE International Conference on Data Mining (ICDM) Workshop, Sydney, NSW, Australia, 2010, pp.1179-1188. 10.1109/ICDMW.2010.64
    [Google Scholar]
  6. Favaro P. Vidal R. Ravichandran A. A closed form solution to robust subspace estimation and clustering Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition(CVPR) 2011 1801 1807 10.1109/CVPR.2011.5995365
    [Google Scholar]
  7. Cai J.F. Candès E.J. Shen Z. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010 20 4 1956 1982 10.1137/080738970
    [Google Scholar]
  8. Li S. Fu Y. Learning Balanced and Unbalanced Graphs via Low-Rank Coding. IEEE Trans. Knowl. Data Eng. 2015 27 5 1274 1287 10.1109/TKDE.2014.2365793
    [Google Scholar]
  9. Zheng Z. Yu M. Jia J. Liu H. Xiang D. Huang X. Yang J. Fisher discrimination based low rank matrix recovery for face recognition. Pattern Recognit. 2014 47 11 3502 3511 10.1016/j.patcog.2014.05.001
    [Google Scholar]
  10. Nguyen H. Yang W. Sheng B. Sun C. Discriminative low-rank dictionary learning for face recognition. Neurocomputing 2016 173 P3 541 551 10.1016/j.neucom.2015.07.031
    [Google Scholar]
  11. Zhang N. Yang J. Low-rank representation based discriminative projection for robust feature extraction. Neurocomputing 2013 111 13 20 10.1016/j.neucom.2012.12.012
    [Google Scholar]
  12. Zhang N. Chen Y. Xi M. Wang F. Qu Y. Feature extraction based on Low-rank affinity matrix for biological recognition. J. Comput. Sci. 2018 27 199 205 10.1016/j.jocs.2018.06.001
    [Google Scholar]
  13. Zhao J. Zhao L. Low-rank and sparse matrices fitting algorithm for low-rank representation. Comput. Math. Appl. 2020 79 2 407 425 10.1016/j.camwa.2019.07.012
    [Google Scholar]
  14. Zhang Y. Xiang M. Yang B. Low-rank preserving embedding. Pattern Recognit. 2017 70 112 125 10.1016/j.patcog.2017.05.003
    [Google Scholar]
  15. Meng X. Feng L. Wang H. Multi-view Low-rank Preserving Embedding: A novel method for multi-view representation. Eng. Appl. Artif. Intell. 2021 99 104140 10.1016/j.engappai.2020.104140
    [Google Scholar]
  16. Zhu X.Z. Xu H.Y. Consensus graph learning-based multi-view clustering method. U.S. Patent 2024143699, 2024.
  17. Chen S.C. Zhong Y.Y. Multi-view outlier detection for potential relationship capture with paired comparison avoidance. U.S. Patent 2023418900, 2023.
  18. Kang U Konuru R. Determining a similarity between graphs. U.S. Patent 10535007, 2020.
  19. Chen X.W. Zou D.Q Cao G.Y. Method for video matting via sparse and low-rank representation. U.S. Patent 201615182459, 2019.
  20. Pan L. Cui Y. Huang X.F. Unsupervised latent low-rank projection learning method for feature extraction of hyperspectral images. U.S. Patent 202117913854, 2023.
  21. Chung J. Dakka W. Crutchfield C.Y. Fast image style transfers. U.S. Patent 202217980879, 2024.
  22. Saragadam V.R.V. Balestrierro R. Veeraraghavan A. System and method for low-rank tensor decomposition with neural network priors. U.S. Patent 202318182924, 2024.
  23. Danquah M.K. Chisholm R.D. Welsh A.K. Biological degradation of low-rank coals. U.S. Patent 202318498656, 2024.
  24. Chen W.Z. Hu J.F. Shen Y.L. Low-Rank Adaptation of Neural Network Models. U.S. Patent 202117325117, 2022.
  25. Zhang T. Xu D. Liu X.Y. GPU-based third-order low-rank tensor completion method and the apparatus. U.S. Patent 202016818140, 2022.
  26. Hargreaves B.A. Hu Y.X. Diffusion-weighted MRI with magnitude-based locally low-rank regularization. U.S. Patent 202016824582, 2022.
  27. Daniel B.L. Hargreaves B.A. Hu Y.X. Motion robust reconstruction of multi-shot diffusion-weighted images without phase estimation via locally low-rank regularization. U.S. Patent 201916416700, 2022.
  28. Pan L. Huang X.F. Liao H.Z. Latent Low-rank Projection Learning based Unsupervised Feature Extraction Method for Hyperspectral Image. C.N. Patent 2021079597, 2022.
  29. Zhao J. Underwater Acoustic Broadband Scattering Source Positioning Method based on Low-Rank Matrix Reconstruction. C.N. Patent 2020121403, 2021.
  30. Kang U. Konuru R. Tong H.H. Determining a similarity between graphs U.S. Patent 201313743666, 2020.
  31. Li D.B. Christodoulou A. Fan Z.Y. Low-Rank Tensor Imaging for Quantitative MRI. U.S. Patent 201916406977, 2019.
  32. Timothy G. Systems and methods for low-rank matrix approximation. U.S. Patent 201514832486, 2019.
  33. Zeng W.J. Cheung So H. Chen J.Y. Systems and methods for robust low-rank matrix approximation. U.S. Patent 201715676600, 2019.
  34. Ni K.Y. Benvenuto J. Feature transformation of neural activity with sparse and low-rank (SLR) decomposition. U.S. Patent 201514626915, 2019.
  35. Chen X.W. Guo K. Zhao Q.P. Method for co-segmentating three-dimensional models represented by sparse and low-rank feature. U.S. Patent 201715448540, 2018.
  36. Li D.B. Christodoulou A.G. Shaw J. Low-rank tensor Imaging for multidimensional cardiovascular MRI. U.S. Patent 201715495588, 2018.
  37. Gordo A.S. License plate recognition with low-rank, shared character classifiers. U.S. Patent 201615290561, 2018.
  38. Francis J. George S. Devassy B.M. George S.N. Development of a unified framework of low-rank approximation and deep neural networks for predicting the spatial variability of SSC in ‘Spania’ watermelons using vis/NIR hyperspectral imaging. Postharvest Biol. Technol. 2025 219 113222 10.1016/j.postharvbio.2024.113222
    [Google Scholar]
  39. Yu J. Li Z. Ma G. Wang J. Zou T. Zhou G. Low-rank sparse fully-connected tensor network for tensor completion. Pattern Recognit. 2025 158 111000 10.1016/j.patcog.2024.111000
    [Google Scholar]
  40. Yang L.Q. Liu Y. Kou K.L. Enhanced multimodal low-rank embedding based feature selection model for multimodal Alzheimer's disease diagnosis. IEEE Transactions on Medical Imaging 2025 10.1016/j.dsp.2024.104781
    [Google Scholar]
  41. Chen Z. Liu Y. Zhang Y. Zhu J. Li Q. Wu X. Enhanced multimodal low-rank embedding based feature selection model for multimodal Alzheimer’s disease diagnosis. IEEE Trans. Med. Imaging 2024 PP 1 10.1109/TMI.2024.3464861 39302791
    [Google Scholar]
  42. Gao Y. Xue Y. Gao J. Emotion recognition from multichannel EEG signals based on low-rank subspace self-representation features. Biomed. Signal Process. Control 2025 99 106877 10.1016/j.bspc.2024.106877
    [Google Scholar]
  43. Liu S. Lei M. Cao J. Yang T. Dynamic MRI reconstruction via multi-directional low-rank tensor regularization. Biomed. Signal Process. Control 2025 99 106848 10.1016/j.bspc.2024.106848
    [Google Scholar]
  44. Du Y. Lu G.F. Joint local smoothness and low-rank tensor representation for robust multi-view clustering. Pattern Recognit. 2025 157 110944 10.1016/j.patcog.2024.110944
    [Google Scholar]
  45. Li Y.F. Chen Y.H. Zhang J.Q. A robust underwater polarization image recovery based on Angle of Polarization with low-rank and sparse decomposition. Optics and Laser Technology 2025 181 111669 10.1016/j.optlastec.2024.111669
    [Google Scholar]
  46. Zang H. Bi A. Zhao L. Ying W. Qian J. Low-rank sparse representation-based transition subspace learning algorithm for epileptic seizure recognition. J. Mech. Med. Biol. 2024 24 8 2440056 10.1142/S0219519424400566
    [Google Scholar]
  47. Long C.F. Li Y.R. Deng Y.J. Wang W-Y. Zhu X-H. Du Q. Low-rank discriminative embedding regression for robust feature extraction of hyperspectral images via weighted schatten p-norm minimization. Remote Sens. 2024 16 16 3081 3081 10.3390/rs16163081
    [Google Scholar]
  48. Jiang X. Wang G. Zhang L. Xi X. Leone R.D. Qiao L. Label-guided low-rank Approximation for functional brain network learning in identifying subcortical vascular cognitive impairment. Biomed. Signal Process. Control 2024 98 106766 10.1016/j.bspc.2024.106766
    [Google Scholar]
  49. Di L. Long H. Shi B. Xia Y. Liang J. Fabric defect detection via low-rank decomposition with multi-priors and visual saliency features. J. Franklin Inst. 2024 361 16 107150 107150 10.1016/j.jfranklin.2024.107150
    [Google Scholar]
  50. Wang C. Zhou G. Gu Y. Takagi–sugeno–kang fuzzy system modeling based on low-rank sparse subspace learning for motor imagery electroencephalogram signal classification. J. Mech. Med. Biol. 2024 24 8 2440035 10.1142/S0219519424400359
    [Google Scholar]
  51. Gao Y. MOOCs video recommendation using low-rank and sparse matrix factorization with inter-entity relations and intra-entity affinity information. Inf. Process. Manage. 2024 61 6 103861 103861 10.1016/j.ipm.2024.103861
    [Google Scholar]
  52. Su X. Wang Y. Chu H. Jiang L. Yan Y. Qiao X. Yu J. Guo K. Zong Y. Wan M. Low-rank prior-based Fast-RPCA for clutter filtering and noise suppression in non-contrast ultrasound microvascular imaging. Ultrasonics 2024 142 107379 10.1016/j.ultras.2024.107379 38981172
    [Google Scholar]
  53. Shao F. Feng X. Tian S. Zhang T. A hierarchical low-rank denoising model for remote sensing images based on deep unfolding. Sensors (Basel) 2024 24 14 4574 4574 10.3390/s24144574 39065972
    [Google Scholar]
  54. Liu X.T. He J.F. Gao P. Denoising of 3D Magnetic resonance images based on balanced low-rank tensor and nonlocal self-similarity. Biomedical Signal Processing and Control 2024 96 106588 10.1016/j.bspc.2024.106588
    [Google Scholar]
  55. Kan Y. Lu G.F. Du Y. An adaptive kernel dictionary-based low-rank representation method for subspace clustering. Neural Netw. 2024 178 106434 10.1016/j.neunet.2024.106434 38941739
    [Google Scholar]
  56. Li X. Yuan Y. Hyperspectral anomaly detection based on weighted low-rank sparse dictionary learning. Neurocomputing 2024 610 128572 10.1016/j.neucom.2024.128572
    [Google Scholar]
  57. Hu D. Qu Q. Liu Z. Chen W. Wang Z. Subspace clustering based on latent low-rank representation with transformed Schatten-1 penalty function. Knowl. Base. Syst. 2024 304 112538 10.1016/j.knosys.2024.112538
    [Google Scholar]
  58. Yang J. Zhang D. Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 2004 26 1 131 137
    [Google Scholar]
  59. Wright J. Yang A.Y. Ganesh A. Sastry S.S. Yi Ma Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 2009 31 2 210 227 10.1109/TPAMI.2008.79 19110489
    [Google Scholar]
  60. Zhang L. Yang M. Feng X. Sparse Representation or Collaborative Representation: Which Helps Face Recognition? Proc. 2011 International Conference on Computer Vision(ICCV) 471 478 2011 10.1109/ICCV.2011.6126277
    [Google Scholar]
  61. Zhang Y. Deng L. Zhu H. Wang W. Ren Z. Zhou Q. Lu S. Sun S. Zhu Z. Gorriz J.M. Wang S. Deep learning in food category recognition. Inf. Fusion 2023 98 101859 10.1016/j.inffus.2023.101859
    [Google Scholar]
  62. Wang S. Celebi M.E. Zhang Y.D. Yu X. Lu S. Yao X. Zhou Q. Miguel M-G. Tian Y. Gorriz J.M. Tyukin I. Advances in data preprocessing for biomedical data fusion: an overview of the methods, challenges, and prospects. Inf. Fusion 2021 76 376 421 10.1016/j.inffus.2021.07.001
    [Google Scholar]
  63. Wang S. Chen H. Zhang Y. Bionic artificial neural networks in medical image analysis. Biomimetics (Basel) 2023 8 2 211 10.3390/biomimetics8020211 37218797
    [Google Scholar]
  64. Zhang Y. Zhang X. Zhu W. ANC: Attention network for COVID-19 explainable diagnosis based on convolutional block attention module. Comput. Model. Eng. Sci. 2021 127 3 1037 1058 10.32604/cmes.2021.015807
    [Google Scholar]
  65. Jaeger S. Karargyris A. Candemir S. Folio L. Siegelman J. Callaghan F. Zhiyun Xue Palaniappan K. Singh R.K. Antani S. Thoma G. Yi-Xiang Wang Pu-Xuan Lu McDonald C.J. Automatic tuberculosis screening using chest radiographs. IEEE Trans. Med. Imaging 2014 33 2 233 245 10.1109/TMI.2013.2284099 24108713
    [Google Scholar]
  66. Candemir S. Jaeger S. Palaniappan K. Musco J.P. Singh R.K. Zhiyun Xue Karargyris A. Antani S. Thoma G. McDonald C.J. Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans. Med. Imaging 2014 33 2 577 590 10.1109/TMI.2013.2290491 24239990
    [Google Scholar]
  67. Zhang L.C. Wang L.B. Hui S. Distinguishing schizophrenic patients from healthy controls based on MRI data: A tensor linear discriminant approach Proc. IEEE International Conference on Cognitive Informatics(ICCI) Beijing, China 524 529 2010 10.1109/COGINF.2010.5599683
    [Google Scholar]
  68. Liu J. Ji S. Ye J. Multi-task feature learning via efficient l2,1 norm minimization Proc. the 25th Conference on Uncertainty in Artificial Intelligence (UAI), Montreal, Canada, 2009, pp.339-348.
    [Google Scholar]
  69. Candès E.J. Plan Y. Matrix completion with noise. Proc. IEEE 2010 98 6 925 936 10.1109/JPROC.2009.2035722
    [Google Scholar]
  70. Lin Z. Chen M. Wu L. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. J. Mar. Biol. Assoc. U. K. 2010 55 3 607 626
    [Google Scholar]
  71. He X. Yan S. Hu Y. Niyogi P. Zhang H.J. Face recognition using Laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2005 27 3 328 340 10.1109/TPAMI.2005.55 15747789
    [Google Scholar]
  72. Qiao L. Chen S. Tan X. Sparsity preserving projections with applications to face recognition. Pattern Recognit. 2010 43 1 331 341 10.1016/j.patcog.2009.05.005
    [Google Scholar]
  73. Cover T. Hart P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967 13 1 21 27 10.1109/TIT.1967.1053964
    [Google Scholar]
  74. Vu T.H. Monga V. Learning a low-rank shared dictionary for object classification Proc. International Conference on Image Processing (ICIP), Phoenix, Arizona, USA, 2016, pp.4428-4432. 10.1109/ICIP.2016.7533197
    [Google Scholar]
  75. Fisher R. Discussion of the Analysis of Variance with Various Binomial Transformations. Biometrics 1954 10 1 140 10.2307/3001668
    [Google Scholar]
  76. Bradley A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997 30 7 1145 1159 10.1016/S0031‑3203(96)00142‑2
    [Google Scholar]
/content/journals/eng/10.2174/0118722121349744250102163111
Loading
/content/journals/eng/10.2174/0118722121349744250102163111
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test