Skip to content
2000
Volume 19, Issue 9
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Introduction

The blood-brain barrier (BBB) is a semipermeable, discerning barrier that keeps the CNS's internal environment stable. Constructing a concise statement on BBB permeability is challenging, yet it remains a crucial factor in developing central nervous system (CNS)-acting drugs. Clinical studies provide the most reliable assessment of BBB permeability, but they require substantial time and effort. Consequently, various computational approaches have been explored to estimate BBB permeability.

Methods

However, there has always been a problem with the precision of models used to predict BBB permeability. Using a dataset of 3912 chemicals, we trained a deep-learning (DL) and machine learning (ML) algorithm to better predict BBB permeability. There were 1,917 features stored for each compound; they included 1356 physicochemical (1D & 2D) attributes, 174 molecular-access-system (MACCS), & 311 substructure fingerprints.

Results and Discussion

We compared and contrasted the created models' prediction performance metrics. It was determined that the prediction accuracy of the DNN was 99.58%, the one-dimensional convolutional neural network (CNN-1D) was 98.36%, and the CNN by transfer learning (VGG16) achieved 97.23%. The “DeePred-BBB” framework, which predicts the BBB-permeability of substances utilizing their simplified-molecular-input-line-entry-system (SMILES) notations, was built using the top-performing DNN-based model. It might be helpful in the early phases of medication development for screening compounds according to their BBB permeability.

Conclusion

This advancement highlights its potential utility in early CNS drug development. Additionally, “DeePred-BBB” integrates a user-friendly interface, enabling seamless compound screening for researchers and drug developers.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121342031250218042131
2025-06-23
2025-11-29
Loading full text...

Full text loading...

/deliver/fulltext/eng/19/9/ENG-19-9-03.html?itemId=/content/journals/eng/10.2174/0118722121342031250218042131&mimeType=html&fmt=ahah

References

  1. RadchenkoE.V. DyabinaA.S. PalyulinV.A. Towards deep neural network models for the prediction of the blood–brain barrier permeability for diverse organic compounds.Mol.20202524590110.3390/molecules2524590133322142
    [Google Scholar]
  2. TangQ. NieF. ZhaoQ. ChenW. A merged molecular representation deep learning method for blood–brain barrier permeability prediction.Brief. Bioinform.2022235bbac35710.1093/bib/bbac35736002937
    [Google Scholar]
  3. de OliveiraE.C.L. HirmzH. WynendaeleE. Seixas FeioJ.A. MoreiraI.M.S. da CostaK.S. LimaA.H. De SpiegeleerB. de Sales JúniorC.D.S. Brainpeppass: A framework based on supervised dimensionality reduction for predicting blood-brain barrier-penetrating peptides.J. Chem. Inf. Model.20236472368238210.1021/acs.jcim.3c0095138054399
    [Google Scholar]
  4. KumarV. BanerjeeA. RoyK. Innovative strategies for the quantitative modeling of blood–brain barrier (BBB) permeability: Harnessing the power of machine learning-based q-RASAR approach.Mol. Syst. Des. Eng.20249772974310.1039/D4ME00056K
    [Google Scholar]
  5. JoshiK.P. PrasadM.L. NatchadalingamR. ReddyP.C.S. MukherjeeS. BabuG.C. An Accurate Prediction of Coronary Heart Disease Using Ensemble Algorithms.2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE).Ballari, India, 02-03 Nov 2023, pp. 1-5.10.1109/AIKIIE60097.2023.10390172
    [Google Scholar]
  6. KumarR. SharmaA. AlexiouA. BilgramiA.L. KamalM.A. AshrafG.M. DeePred-BBB: A blood brain barrier permeability prediction model with improved accuracy.Front. Neurosci.20221685812610.3389/fnins.2022.85812635592264
    [Google Scholar]
  7. L.C.S. Rosa, C.O. Argolo, C.M.C. Nascimento, and A.S. Pimentel, "Identifying substructures that facilitate compounds to penetrate the blood–brain barrier via passive transport using machine learning explainer models", ACS Chem. Neurosci., vol. 15, no. 11, pp. 2144-2159, 2024.10.1021/acschemneuro.3c0084038723285
  8. EdrosR. FengR. Ab GhaniN. MokhtarS.U. DongR. Prediction of blood-brain barrier permeability of compounds by machine learning algorithms.JOAASR.202333226927610.37934/araset.33.2.269276
    [Google Scholar]
  9. TongX. WangD. DingX. TanX. RenQ. ChenG. RongY. XuT. HuangJ. JiangH. ZhengM. LiX. Blood–brain barrier penetration prediction enhanced by uncertainty estimation.J. Cheminform.20221414410.1186/s13321‑022‑00619‑235799215
    [Google Scholar]
  10. AnsariM.Y. ChandrasekarV. SinghA.V. DakuaS.P. Re-routing drugs to blood brain barrier: A comprehensive analysis of machine learning approaches with fingerprint amalgamation and data balancing.IEEE Access.2023119890990610.1109/ACCESS.2022.3233110
    [Google Scholar]
  11. SaxenaD. SharmaA. SiddiquiM.H. KumarR. Development of machine Learning based blood-brain barrier permeability prediction models using physicochemical properties, maccs and substructure fingerprints.Curr. Bioinform.202116685586410.2174/1574893616666210203104013
    [Google Scholar]
  12. AshreethaB. DeviM.R. KumarU.P. ManiM.K. SahuD.N. ReddyP.C.S. Soft optimization techniques for automatic liver cancer detection in abdominal liver images.Int. J. Health Sci.20226108201083110.53730/ijhs.v6nS1.7597
    [Google Scholar]
  13. ShiZ. ChuY. ZhangY. WangY. WeiD.Q. Prediction of blood-brain barrier permeability of compounds by fusing resampling strategies and extreme gradient boosting.IEEE Access.202199557956610.1109/ACCESS.2020.3047852
    [Google Scholar]
  14. TheodorakisP.E. MüllerE.A. CrasterR.V. MatarO.K. Physical insights into the blood–brain barrier translocation mechanisms.Phys. Biol.201714404100110.1088/1478‑3975/aa708a28586313
    [Google Scholar]
  15. PlissonF. PiggottA.M. Predicting blood–brain barrier permeability of marine-derived kinase inhibitors using ensemble classifiers reveals potential hits for neurodegenerative disorders.Mar. Drugs.20191728110.3390/md1702008130699889
    [Google Scholar]
  16. MoralesJ.F. RuizM.E. StratfordR.E. TaleviA. Application of machine learning to predict unbound drug bioavailability in the brain.Front. Drug Discov.20244136073210.3389/fddsv.2024.1360732
    [Google Scholar]
  17. VangalaS.R. KrishnanS.R. BungN. SrinivasanR. RoyA. Domain-aware representation of small molecules for explainable property prediction models.New YorkUnder review at the MLDD workshop, ICLR 20232023113
    [Google Scholar]
  18. EdrosR. FengT.W. DongR.H. Utilizing machine learning techniques to predict the blood-brain barrier permeability of compounds detected using LCQTOF-MS in malaysian kelulut honey.SAR QSAR Environ. Res.202334647550010.1080/1062936X.2023.223086837409842
    [Google Scholar]
  19. ReddyL.C.S. JayakarthikR. KiranA. SharmaN. SharmaS. ReddyP.C.S. An uncertainty-aware deep learning-based model for COVID-19 diagnosis.2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC).Tumkur, India, 04-05 Dec 2023, pp. 1-6.202310.1109/ICMNWC60182.2023.10435818
    [Google Scholar]
  20. NooriA. ArangoI. ByrdW.E. AminN. Multi-objective generative AI for designing novel brain-targeting small molecules.Biomolecules20244240710.48550/arXiv.2407.00004
    [Google Scholar]
  21. GuZ.F. HaoY.D. WangT.Y. CaiP.L. ZhangY. DengK.J. LinH. LvH. Prediction of blood–brain barrier penetrating peptides based on data augmentation with augur.BMC Biol.20242218610.1186/s12915‑024‑01883‑438637801
    [Google Scholar]
  22. I. Mármol, S. Abizanda-Campo, J.M. Ayuso, I. Ochoa, and S. Oliván, "Towards novel biomimetic in vitro models of the blood-brain barrier for drug permeability evaluation", Bioeng., vol. 10, no. 5, p. 572, 2023.10.3390/bioengineering1005057237237642
  23. SampathS. ParameswariR. PrasadM.L. KumarD.A. HussainM.M. ReddyP.C.S. Ensemble nonlinear machine learning model for chronic kidney diseases prediction.2023 IEEE 3rd Mysore Sub Section International Conference (MysuruCon).HASSAN, India, 01-02 Dec 2023, pp. 1-6.202310.1109/MysuruCon59703.2023.10397049
    [Google Scholar]
  24. MauriA. BertolaM. Alvascience: A new software suite for the QSAR workflow applied to the blood–brain barrier permeability.Int. J. Mol. Sci.202223211288210.3390/ijms23211288236361669
    [Google Scholar]
  25. LiX. SunY. ZhouZ. LiJ. LiuS. ChenL. ShiY. WangM. ZhuZ. WangG. LuQ. Deep learning-driven exploration of pyrroloquinoline quinone neuroprotective activity in alzheimer’s disease.Adv. Sci. (Weinh.)20241118230897010.1002/advs.20230897038454653
    [Google Scholar]
  26. KumarS. PollutroD. Method for predicting blood-brain barrier permeability using deep learning models.U.S. Patent US11604879B22023.
    [Google Scholar]
  27. FredrikssonM. KönigsmannJ. Blood-brain barrier permeability prediction using a multi-layered neural network.U.S. Patent US11762453B22023.
    [Google Scholar]
  28. DengZ. GuR. WenH. Application of deep learning for studying NMDA receptors.Methods Mol. Biol.2024279928129010.1007/978‑1‑0716‑3830‑9_16
    [Google Scholar]
  29. RamanaA.V. BhogaU. DhulipallaR.K. KiranA. CharyB.D. ReddyP.C.S. Abnormal behavior prediction in elderly persons using deep learning.2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3).Srinagar Garhwal, India, 08-09 June 2023, pp. 1-5.10.1109/IC2E357697.2023.10262547
    [Google Scholar]
  30. SomnatheA.T. TayubiI.A. ReddyP.C.S. SharmaN. SharmaV. YesubabuM. Brain computer interaction framework for speech and motor impairment using deep learning.2023 International Conference on Power Energy, Environment & Intelligent Control (PEEIC).Greater Noida, India, 19-23 Dec 2023, pp. 1008-1013.10.1109/PEEIC59336.2023.10450481
    [Google Scholar]
  31. CalkinC. McClellandC. CairnsK. KamintskyL. FriedmanA. Insulin resistance and blood-brain barrier dysfunction underlie neuroprogression in bipolar disorder.Front. Psychiatry20211263617410.3389/fpsyt.2021.63617434113269
    [Google Scholar]
  32. MamathaB. RashmiD. TiwariK.S. SikrantP.A. JovithA.A. ReddyP.C.S. Lung cancer prediction from ct images and using deep learning techniques.2023 Second International Conference on Trends in Electrical, Electronics, and Computer Engineering (TEECCON).Bangalore, India, 23-24 Aug 2023, pp. 263-267.10.1109/TEECCON59234.2023.10335801
    [Google Scholar]
  33. KimT. YouB.H. HanS. ShinH.C. ChungK.C. ParkH. Quantum artificial neural network approach to derive a highly predictive 3D-QSAR model for blood–brain barrier passage.Int. J. Mol. Sci.202122201099510.3390/ijms22201099534681653
    [Google Scholar]
  34. SudhakarB. SikrantP.A. PrasadM.L. LathaS.B. KumarG.R. SarikaS. Shaker ReddyP.C. Brain tumor image prediction from MR images using cnn based deep learning networks.J. Inf. Technol. Manage.20241614460
    [Google Scholar]
  35. ReshmaS. MeghaK.B. AmirS. RukhiyaS. MohananP.V. Blood brain barrier-on-a-chip to model neurological diseases.J. Drug Deliv. Sci. Technol.20238010417410.1016/j.jddst.2023.104174
    [Google Scholar]
  36. SrilathaK. SravaniC. VasudevaraoM. KiranA. ChitraD. ReddyP.C.S. Classification and discovery of brain tumor using ensemble deep learning.2024 Second International Conference on Networks, Multimedia and Information Technology (NMITCON).Bengaluru, India, 09-10 Aug 2024, pp. 1-6.10.1109/NMITCON62075.2024.10698844
    [Google Scholar]
  37. JanigroD. BaileyD.M. LehmannS. BadautJ. O’FlynnR. HirtzC. MarchiN. Peripheral blood and salivary biomarkers of blood–brain barrier permeability and neuronal damage: Clinical and applied concepts.Front. Neurol.20211157731210.3389/fneur.2020.57731233613412
    [Google Scholar]
  38. ShaikM.K. KalpanaD. SesadriU. MukherjeeS. DastagiraiahC. ReddyP.C.S. Brain tumor classification using unet deep neural networks from 3D MRI images.2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC).Bengaluru, India, 02-03 May 2024, pp. 1-6.10.1109/ICECCC61767.2024.10593884
    [Google Scholar]
  39. YangQ. FanL. HaoE. HouX. DengJ. XiaZ. DuZ. Machine learning exploration of the relationship between drugs and the blood–brain barrier: Guiding molecular modification.Pharm. Res.202441586387510.1007/s11095‑024‑03686‑238605261
    [Google Scholar]
  40. BaskarS. NandhiniI. PrasadM.L. KataleT. SharmaN. ReddyP.C.S. An accurate prediction and diagnosis of alzheimer’s disease using deep learning.2023 IEEE North Karnataka Subsection Flagship International Conference (NKCon)Belagavi, India, 19-20 Nov 2023, pp. 1-7.10.1109/NKCon59507.2023.10396132
    [Google Scholar]
  41. ŁapińskaN. PacławskiA. SzlękJ. MendykA. SerotoninAI: Serotonergic system focused, artificial intelligence-based application for drug discovery.J. Chem. Inf. Model.20246472150215710.1021/acs.jcim.3c0151738289046
    [Google Scholar]
  42. V. Antontsev, A. Jagarapu, Y. Bundey, H. Hou, M. Khotimchenko, J. Walsh, and J. Varshney, "A hybrid modeling approach for assessing mechanistic models of small molecule partitioning in vivo using a machine learning-integrated modeling platform", Sci. Rep., vol. 11, no. 1, p. 11143, 2021.10.1038/s41598‑021‑90637‑134045592
  43. JiangL. ChenJ. HeY. ZhangY. LiG. A method to predict different mechanisms for blood–brain barrier permeability of CNS activity compounds in Chinese herbs using support vector machine.J. Bioinform. Comput. Biol.2016141165000510.1142/S021972001650005026632324
    [Google Scholar]
  44. Castillo-GaritJ.A. Casanola-MartinG.M. Le-Thi-ThuH. Pham-TheH. BarigyeS.J. A simple method to predict blood-brain barrier permeability of drug-like compounds using classification trees.Med. Chem.201713766466928185535
    [Google Scholar]
  45. MiaoR. XiaL.Y. ChenH.H. HuangH.H. LiangY. Improved classification of blood-brain-barrier drugs using deep learning.Sci. Rep.201991880210.1038/s41598‑019‑44773‑431217424
    [Google Scholar]
  46. AlsenanS. Al-TuraikiI. HafezA. A recurrent neural network model to predict blood–brain barrier permeability.Comput. Biol. Chem.20208910737710.1016/j.compbiolchem.2020.10737733010784
    [Google Scholar]
  47. ShakerB. YuM.S. SongJ.S. AhnS. RyuJ.Y. OhK.S. NaD. LightBBB: Computational prediction model of blood-brain-barrier penetration based on LightGBM.Bioinfo.20213781135113910.1093/bioinformatics/btaa91833112379
    [Google Scholar]
/content/journals/eng/10.2174/0118722121342031250218042131
Loading
/content/journals/eng/10.2174/0118722121342031250218042131
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test