Skip to content
2000
image of Transforming Plastic Waste into Biofuel Oil: An Evaluation and Conceptual Outlook with Implications for Transitional Energy

Abstract

As traditional fuel sources such as gasoline, diesel, and petroleum continue to dwindle rapidly, the search for alternative fuels becomes increasingly urgent. While renewable energy sources are often touted as a viable option, their efficiency remains compromised by high costs and challenges in harnessing energy. However, recent advancements have spotlighted a promising avenue: generating electricity from waste. Pyrolysis, particularly of plastic waste, has emerged as a viable energy source, thanks to technological progress. This article delves into an in-depth exploration of the pyrolysis process and its resulting byproducts. Researchers have meticulously analyzed the liquid oil yielded from this operation, examining the interplay of factors such as operating temperature, reaction duration, biomass infusion, and catalysts. The calorific values of oils derived from various polymers are found to rival those of traditional fuels, underscoring the potential of pyrolysis. Moreover, incorporating biomass resources like paper and wood has been shown to enhance both yield and calorific value. Identified avenues for further investigation highlight the ongoing potential of pyrolysis as a cutting-edge technology for energy conversion. In essence, pyrolysis offers a dual solution: mitigating plastic waste while also contributing to sustainable energy production.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121331855241212031631
2025-01-07
2025-10-29
Loading full text...

Full text loading...

/deliver/fulltext/eng/10.2174/0118722121331855241212031631/BMS-ENG-2024-HT56-5178-12.html?itemId=/content/journals/eng/10.2174/0118722121331855241212031631&mimeType=html&fmt=ahah

References

  1. Kabeyi M.J.B. Olanrewaju O.A. Fuel from plastic wastes for sustainable energy transition. 11th annual international conference on industrial engineering and operations management 2021
    [Google Scholar]
  2. Jeswani H. Krüger C. Russ M. Horlacher M. Antony F. Hann S. Azapagic A. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery. Sci. Total Environ. 2021 769 144483 10.1016/j.scitotenv.2020.144483 33486181
    [Google Scholar]
  3. Pahl C. Converting Plastic Waste to Fuel. 2020 Available from: https://www.plugandplaytechcenter.com/insights/converting-plastic-waste-fuel
  4. Emmanouilidou E. Mitkidou S. Agapiou A. Kokkinos N.C. Solid waste biomass as a potential feedstock for producing sustainable aviation fuel: A systematic review. Renew. Energy 2023 206 897 907 10.1016/j.renene.2023.02.113
    [Google Scholar]
  5. Reimagining plastics waste as energy solutions: Challenges and opportunities. NPJ Mater. Sustain. 2024 2 2
    [Google Scholar]
  6. Kabeyi M.J.B. Olanrewaju O.A. Review and design overview of plastic waste-to-pyrolysis oil conversion with implications on the energy transition. J. Energy 2023 2023 1 25 10.1155/2023/1821129
    [Google Scholar]
  7. Qi R. Jones D.L. Li Z. Liu Q. Yan C. Behavior of microplastics and plastic film residues in the soil environment: A critical review. Sci. Total Environ. 2020 703 134722 10.1016/j.scitotenv.2019.134722 31767311
    [Google Scholar]
  8. He G. Pan Y. Park A. Sawada Y. Tan E.S. Reducing single-use cutlery with green nudges: Evidence from China’s food-delivery industry. Science 2023 381 6662 eadd9884 10.1126/science.add9884 37676957
    [Google Scholar]
  9. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options. Paris OECD Publishing 2022
    [Google Scholar]
  10. Lattimer R.P. Direct analysis of polypropylene compounds by thermal desorption and pyrolysis—mass spectrometry. J. Anal. Appl. Pyrolysis 1993 26 2 65 92 10.1016/0165‑2370(93)85019‑U
    [Google Scholar]
  11. Ritchie H. Ocean plastics: how much do rich countries contribute by shipping their waste overseas? Our World in Data. Available from: https://ourworldindata.org/plastic-waste-trade 2022
  12. Ritchie H. Samborska V. Roser M. Plastic Pollution. 2023 Available from: https://ourworldindata.org/plastic-pollution'
  13. Borrelle S.B. Ringma J. Law K.L. Monnahan C.C. Lebreton L. McGivern A. Murphy E. Jambeck J. Leonard G.H. Hilleary M.A. Eriksen M. Possingham H.P. De Frond H. Gerber L.R. Polidoro B. Tahir A. Bernard M. Mallos N. Barnes M. Rochman C.M. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 2020 369 6510 1515 1518 10.1126/science.aba3656 32943526
    [Google Scholar]
  14. Li J. Yu D. Pan L. Xu X. Wang X. Wang Y. Recent advances in plastic waste pyrolysis for liquid fuel production: Critical factors and machine learning applications. Appl. Energy 2023 346 121350 10.1016/j.apenergy.2023.121350
    [Google Scholar]
  15. Ellis L.D. Rorrer N.A. Sullivan K.P. Otto M. McGeehan J.E. Román-Leshkov Y. Wierckx N. Beckham G.T. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 2021 4 7 539 556 10.1038/s41929‑021‑00648‑4
    [Google Scholar]
  16. Nanda S. Berruti F. Thermochemical conversion of plastic waste to fuels: a review. Environ. Chem. Lett. 2021 19 1 123 148 10.1007/s10311‑020‑01094‑7
    [Google Scholar]
  17. Amobonye A. Bhagwat P. Singh S. Pillai S. Plastic biodegradation: Frontline microbes and their enzymes. Sci. Total Environ. 2021 759 143536 10.1016/j.scitotenv.2020.143536 33190901
    [Google Scholar]
  18. Zhang T. Wu X. Shaheen S.M. Abdelrahman H. Ali E.F. Bolan N.S. Ok Y.S. Li G. Tsang D.C.W. Rinklebe J. Improving the humification and phosphorus flow during swine manure composting: A trial for enhancing the beneficial applications of hazardous biowastes. J. Hazard. Mater. 2022 425 127906 10.1016/j.jhazmat.2021.127906 34891020
    [Google Scholar]
  19. Jiao X. Zheng K. Hu Z. Zhu S. Sun Y. Xie Y. Conversion of waste plastics into value‐added carbonaceous fuels under mild conditions. Adv. Mater. 2021 33 50 2005192 10.1002/adma.202005192 33834571
    [Google Scholar]
  20. Yu D. Guo J. Meng J. Sun T. Biofuel production by hydro-thermal liquefaction of municipal solid waste: Process characterization and optimization. Chemosphere 2023 328 138606 10.1016/j.chemosphere.2023.138606 37023903
    [Google Scholar]
  21. Dai L. Zhou N. Lv Y. Cheng Y. Wang Y. Liu Y. Cobb K. Chen P. Lei H. Ruan R. Pyrolysis technology for plastic waste recycling: A state-of-the-art review. Pror. Energy Combust. Sci. 2022 93 101021 10.1016/j.pecs.2022.101021
    [Google Scholar]
  22. Krall E.M. Klein T.W. Andersen R.J. Nett A.J. Glasgow R.W. Reader D.S. Dauphinais B.C. Mc Ilrath S.P. Fischer A.A. Carney M.J. Hudson D.J. Robertson N.J. Controlled hydrogenative depolymerization of polyesters and polycarbonates catalyzed by Ruthenium(II) PNN pincer complexes. Chem. Commun. (Camb.) 2014 50 38 4884 4887 10.1039/c4cc00541d 24647792
    [Google Scholar]
  23. Uekert T. Kasap H. Reisner E. Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst. J. Am. Chem. Soc. 2019 141 38 15201 15210 10.1021/jacs.9b06872 31462034
    [Google Scholar]
  24. Ding X. Li M. Jin J. Huang X. Wu X. Feng L. Graphene aerogel supported Pt-Ni alloy as efficient electrocatalysts for alcohol fuel oxidation. Chin. Chem. Lett. 2022 33 5 2687 2691 10.1016/j.cclet.2021.09.076
    [Google Scholar]
  25. Li C. Li J. Xie S. Zhang G. Pan L. Wang R. Wang G. Pan X. Wang Y. Angelidaki I. Enhancement of heavy metal immobilization in sewage sludge biochar by combining alkaline hydrothermal treatment and pyrolysis. J. Clean. Prod. 2022 369 133325 10.1016/j.jclepro.2022.133325
    [Google Scholar]
  26. Anuar Sharuddin S.D. Abnisa F. Wan Daud W.M.A. Aroua M.K. A review on pyrolysis of plastic wastes. Energy Convers. Manage. 2016 115 308 326 10.1016/j.enconman.2016.02.037
    [Google Scholar]
  27. Li J. Pan L. Suvarna M. Tong Y.W. Wang X. Fuel properties of hydrochar and pyrochar: Prediction and exploration with machine learning. Appl. Energy 2020 269 115166 10.1016/j.apenergy.2020.115166
    [Google Scholar]
  28. Yang C. Guo R. Jing X. Li P. Yuan J. Wu Y. Degradation mechanism and modeling study on reversible solid oxide cell in dual-mode — A review. Int. J. Hydrogen Energy 2022 47 89 37895 37928 10.1016/j.ijhydene.2022.08.240
    [Google Scholar]
  29. Li J. Suvarna M. Li L. Pan L. Pérez-Ramírez J. Ok Y.S. Wang X. A review of computational modeling techniques for wet waste valorization: Research trends and future perspectives. J. Clean. Prod. 2022 367 133025 10.1016/j.jclepro.2022.133025
    [Google Scholar]
  30. Quan R. Li Z. Liu P. Li Y. Chang Y. Yan H. Minimum hydrogen consumption‐based energy management strategy for hybrid fuel cell unmanned aerial vehicles using direction prediction optimal foraging algorithm. Fuel Cells 2023 23 2 221 236 10.1002/fuce.202200121
    [Google Scholar]
  31. Li J. Pan L. Li Z. Wang Y. Unveiling the migration of Cr and Cd to biochar from pyrolysis of manure and sludge using machine learning. Sci. Total Environ. 2023 885 163895 10.1016/j.scitotenv.2023.163895 37146809
    [Google Scholar]
  32. MacLeod M. Arp H.P.H. Tekman M.B. Jahnke A. The global threat from plastic pollution. Science 2021 373 6550 61 65 10.1126/science.abg5433 34210878
    [Google Scholar]
  33. Liu L. Tang Y. Liu D. Investigation of future low-carbon and zero-carbon fuels for marine engines from the view of thermal efficiency. Energy Rep. 2022 8 6150 6160 10.1016/j.egyr.2022.04.058
    [Google Scholar]
  34. Çepelioğullar Ö. Pütün A.E. Utilization of two different types of plastic wastes from daily and industrial life. Journal of Selcuk University Natural and Applied Science 2013 2 2 694 706
    [Google Scholar]
  35. Li D. Lei S. Wang P. Zhong L. Ma W. Chen G. Study on the pyrolysis behaviors of mixed waste plastics. Renew. Energy 2021 173 662 674 10.1016/j.renene.2021.04.035
    [Google Scholar]
  36. Akancha Kumari N. Singh R.K. Co-pyrolysis of waste polypropylene and rice bran wax‒ production of biofuel and its characterization. Journal of the Energy Institute 2019 92 4 933 946 10.1016/j.joei.2018.07.011
    [Google Scholar]
  37. Singh R.K. Ruj B. Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel 2016 174 164 171 10.1016/j.fuel.2016.01.049
    [Google Scholar]
  38. López A. de Marco I. Caballero B.M. Laresgoiti M.F. Adrados A. Pyrolysis of municipal plastic wastes: Influence of raw material composition. Waste Manag. 2010 30 4 620 627 10.1016/j.wasman.2009.10.014 19926462
    [Google Scholar]
  39. Onwudili J.A. Muhammad C. Williams P.T. Influence of catalyst bed temperature and properties of zeolite catalysts on pyrolysis-catalysis of a simulated mixed plastics sample for the production of upgraded fuels and chemicals. Journal of the Energy Institute 2019 92 5 1337 1347 10.1016/j.joei.2018.10.001
    [Google Scholar]
  40. Mastral F.J. Esperanza E. García P. Juste M. Pyrolysis of high-density polyethylene in a fluidised bed reactor. Influence of the temperature and residence time. J. Anal. Appl. Pyrolysis 2002 63 1 1 15 10.1016/S0165‑2370(01)00137‑1
    [Google Scholar]
  41. Xu F. Wang B. Yang D. Hao J. Qiao Y. Tian Y. Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: Pyrolysis behaviors and kinetic analysis. Energy Convers. Manage. 2018 171 1106 1115 10.1016/j.enconman.2018.06.047
    [Google Scholar]
  42. Liu S. Kots P.A. Vance B.C. Danielson A. Vlachos D.G. Plastic waste to fuels by hydrocracking at mild conditions. Sci. Adv. 2021 7 17 eabf8283 10.1126/sciadv.abf8283 33883142
    [Google Scholar]
  43. Akubo Kaltume Nahil Mohamad Anas Williams Paul T. Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts. Journal of the Energy Institute 2019 92 1 195 202 10.1016/j.joei.2017.10.009
    [Google Scholar]
  44. Zhang Z. Gora-Marek K. Watson J.S. Tian J. Ryder M.R. Tarach K.A. López-Pérez L. Martínez-Triguero J. Melián-Cabrera I. Recovering waste plastics using shape-selective nano-scale reactors as catalysts. Nat. Sustain. 2019 2 1 39 42 10.1038/s41893‑018‑0195‑9
    [Google Scholar]
  45. Rodríguez E. Palos R. Gutiérrez A. Vela F.J. Arandes J.M. Bilbao J. Effect of the FCC equilibrium catalyst properties and of the cracking temperature on the production of fuel from HDPE pyrolysis waxes. Energy Fuels 2019 33 6 5191 5199 10.1021/acs.energyfuels.9b00993
    [Google Scholar]
  46. Tekade S.P. Gugale P.P. Gohil M.L. Gharat S.H. Patil T. Chaudhari P.K. Patle D.S. Sawarkar A.N. Pyrolysis of waste polyethylene under vacuum using zinc oxide. Energy Sources A Recovery Util. Environ. Effects 2020 2020 1 15 10.1080/15567036.2020.1856976
    [Google Scholar]
  47. Sun K. Themelis N.J. Bourtsalas A.C.T. Huang Q. Selective production of aromatics from waste plastic pyrolysis by using sewage sludge derived char catalyst. J. Clean. Prod. 2020 268 122038 10.1016/j.jclepro.2020.122038
    [Google Scholar]
  48. Hauserman William B. Girdano Nicola Recupero Vincenzo Biomass gasifiers for fuel cells systems. Chimica elIndustria 1997
    [Google Scholar]
  49. Baykara S. Z. Bilgen E. A feasibility study on solar gasification of albertan coal. Alternative Energy Sources 1981
    [Google Scholar]
  50. Barducci G. The RDF gasifier of Florentine area. No. NREL/CP-200-5768-Vol. 1; CONF-9308106-Vol. 1. National Renewable Energy Lab. Golden, CO, United States NREL 1993
    [Google Scholar]
  51. Blasi C.D. Dynamic behaviour of stratified downdraft gasifiers. Chem. Eng. Sci. 2000 55 15 2931 2944 10.1016/S0009‑2509(99)00562‑X
    [Google Scholar]
  52. Appell H.R. Converting organic wastes to oil. Agr Eng 1972
    [Google Scholar]
  53. Wampler T.P. Levy E.J. Effects of slow heating rates on products of polyethylene pyrolysis. Analyst 1986 111 9 1065 1067 10.1039/an9861101065
    [Google Scholar]
  54. Sekine Y. Fujimoto K. Catalytic degradation of PP with an Fe/activated carbon catalyst. J. Mater. Cycles Waste Manag. 2003 5 2 107 112 10.1007/s10163‑003‑0091‑9
    [Google Scholar]
  55. Venuto P. Landis P. Zeolite catalysis in synthetic organic chemistry. Adv. Catal. 1968 18 259 267 10.1016/S0360‑0564(08)60430‑7
    [Google Scholar]
  56. Lopez G. Artetxe M. Amutio M. Bilbao J. Olazar M. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals - A review. Renew. Sustain. Energy Rev. 2017 73 346 368 10.1016/j.rser.2017.01.142
    [Google Scholar]
  57. Wong S.L. Ngadi N. Abdullah T.A.T. Inuwa I.M. Current state and future prospects of plastic waste as source of fuel: A review. Renew. Sustain. Energy Rev. 2015 50 1167 1180 10.1016/j.rser.2015.04.063
    [Google Scholar]
  58. Miandad R. Barakat M.A. Aburiazaiza A.S. Rehan M. Nizami A.S. Catalytic pyrolysis of plastic waste: A review. Process Saf. Environ. Prot. 2016 102 822 838 10.1016/j.psep.2016.06.022
    [Google Scholar]
  59. Kunwar B. Cheng H.N. Chandrashekaran S.R. Sharma B.K. Plastics to fuel: a review. Renew. Sustain. Energy Rev. 2016 54 421 428 10.1016/j.rser.2015.10.015
    [Google Scholar]
  60. Songip A.R. Masuda T. Kuwahara H. Hashimoto K. Test to screen catalysts for reforming heavy oil from waste plastics. Appl. Catal. B 1993 2 2-3 153 164 10.1016/0926‑3373(93)80045‑F
    [Google Scholar]
  61. Mordi R.C. Fields R. Dwyer J. Thermolysis of low density polyethylene catalysed by zeolites. J. Anal. Appl. Pyrolysis 1994 29 1 45 55 10.1016/0165‑2370(93)00789‑P
    [Google Scholar]
  62. Aguado J. Serrano D.P. Escola J.M. Garagorri E. Fernández J.A. Catalytic conversion of polyolefins into fuels over zeolite beta. Polym. Degrad. Stabil. 2000 69 1 11 16 10.1016/S0141‑3910(00)00023‑9
    [Google Scholar]
  63. Comelli R.A. Canavese S.A. Querini C.A. Fígoli N.S. Coke deposition on platinum promoted WOx–ZrO2 during n-hexane isomerization. Appl. Catal. A Gen. 1999 182 2 275 283 10.1016/S0926‑860X(99)00024‑1
    [Google Scholar]
  64. Triwahyono S. Yamada T. Hattori H. IR study of acid sites on WO3–ZrO2 and Pt/WO3–ZrO2. Appl. Catal. A Gen. 2003 242 1 101 109 10.1016/S0926‑860X(02)00523‑9
    [Google Scholar]
  65. Kappers M.J. van der Maas J.H. Correlation between CO frequency and Pt coordination number. A DRIFT study on supported Pt catalysts. Catal. Lett. 1991 10 5-6 365 373 10.1007/BF00769171
    [Google Scholar]
  66. Corma A. Wojciechowski B.W. The chemistry of catalytic cracking. Catal. Rev., Sci. Eng. 1985 27 1 29 150 10.1080/01614948509342358
    [Google Scholar]
  67. Bhan A. Gounder R. Macht J. Iglesia E. Entropy considerations in monomolecular cracking of alkanes on acidic zeolites. J. Catal. 2008 253 1 221 224 10.1016/j.jcat.2007.11.003
    [Google Scholar]
  68. Kim D.S. Ostromecki M. Wachs I.E. Kohler S.D. Ekerdt J.G. Preparation and characterization of WO3/SiO2 catalysts. Catal. Lett. 1995 33 3-4 209 215 10.1007/BF00814225
    [Google Scholar]
  69. Daniel M.F. Desbat B. Lassegues J.C. Gerand B. Figlarz M. Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates. J. Solid State Chem. 1987 67 2 235 247 10.1016/0022‑4596(87)90359‑8
    [Google Scholar]
  70. Liu H. Huang S. Zhang L. Liu S. Xin W. Xu L. The preparation of active WO3 catalysts for metathesis between ethene and 2-butene under moist atmosphere. Catal. Commun. 2009 10 5 544 548 10.1016/j.catcom.2008.10.030
    [Google Scholar]
  71. Venkatesh K.R. Hu J. Wang W. Holder G.D. Tierney J.W. Wender I. Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified zirconium oxides. Energy Fuels 1996 10 6 1163 1170 10.1021/ef960049j
    [Google Scholar]
  72. Escola J.M. Aguado J. Serrano D.P. García A. Peral A. Briones L. Calvo R. Fernandez E. Catalytic hydroreforming of the polyethylene thermal cracking oil over Ni supported hierarchical zeolites and mesostructured aluminosilicates. Appl. Catal. B 2011 106 3-4 405 415 10.1016/j.apcatb.2011.05.048
    [Google Scholar]
  73. Liang Z. Chen L. Alam M.S. Zeraati Rezaei S. Stark C. Xu H. Harrison R.M. Comprehensive chemical characterization of lubricating oils used in modern vehicular engines utilizing GC × GC-TOFMS. Fuel 2018 220 792 799 10.1016/j.fuel.2017.11.142
    [Google Scholar]
  74. Weisz P.B. Polyfunctional heterogeneous catalysis. Advances in Catalysis. Academic Press 1962 13 137 190
    [Google Scholar]
  75. Weisz P. Schwartz A.B. Diffusivity of porous-oxide-gel? Derived catalyst particles. J. Catal. 1962 1 5 399 406 10.1016/0021‑9517(62)90090‑8
    [Google Scholar]
  76. Charles P. The physical-chemical properties of chromia-alumina catalysts. Advances in Catalysis. Academic Press 1967 17 223 314
    [Google Scholar]
  77. Ponec V. Catalysis by alloys in hydrocarbon reactions. Advances in catalysis. Academic Press 1983 Vol. 32 149 214
    [Google Scholar]
  78. Zdražil M. Recent advances in catalysis over sulphides. Catal. Today 1988 3 4 269 365 10.1016/0920‑5861(88)87051‑2
    [Google Scholar]
  79. Thomas J.M. Klinowski J. The study of aluminosilicate and related catalysts by high-resolution solid-state NMR spectroscopy. Adv. Catal. 1985 33 199 374 10.1016/S0360‑0564(08)60261‑8
    [Google Scholar]
  80. Jones J. Xiong H. DeLaRiva A.T. Peterson E.J. Pham H. Challa S.R. Qi G. Oh S. Wiebenga M.H. Pereira Hernández X.I. Wang Y. Datye A.K. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016 353 6295 150 154 10.1126/science.aaf8800 27387946
    [Google Scholar]
  81. Arafat A. Jansen J.C. Ebaid A.R. van Bekkum H. Microwave preparation of zeolite Y and ZSM-5. Zeolites 1993 13 3 162 165 10.1016/S0144‑2449(05)80272‑6
    [Google Scholar]
  82. Lebreton L. Andrady A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 2019 5 1 6 10.1057/s41599‑018‑0212‑7
    [Google Scholar]
  83. Santos B.P.S. Almeida D. Marques M.F.V. Henriques C.A. Petrochemical feedstock from pyrolysis of waste polyethylene and polypropylene using different catalysts. Fuel 2018 215 515 521 10.1016/j.fuel.2017.11.104
    [Google Scholar]
  84. Beltrame P.L. Carniti P. Audisio G. Bertini F. Catalytic degradation of polymers: Part II—Degradation of polyethylene. Polym. Degrad. Stabil. 1989 26 3 209 220 10.1016/0141‑3910(89)90074‑8
    [Google Scholar]
  85. Zhao D. Wang X. Miller J.B. Huber G.W. The chemistry and kinetics of polyethylene pyrolysis: A process to produce fuels and chemicals. ChemSusChem 2020 13 7 1764 1774 10.1002/cssc.201903434 31917892
    [Google Scholar]
  86. Celik G. Kennedy R.M. Hackler R.A. Ferrandon M. Tennakoon A. Patnaik S. LaPointe A.M. Ammal S.C. Heyden A. Perras F.A. Pruski M. Scott S.L. Poeppelmeier K.R. Sadow A.D. Delferro M. Upcycling single-use polyethylene into high-quality liquid products. ACS Cent. Sci. 2019 5 11 1795 1803 10.1021/acscentsci.9b00722 31807681
    [Google Scholar]
  87. Patni N. Shah P. Agarwal S. Singhal P. Alternate strategies for conversion of waste plastic to fuels. Int. Sch. Res. Notices 2013 ••• 2013
    [Google Scholar]
  88. Zhang F. Zeng M. Yappert R.D. Sun J. Lee Y.H. LaPointe A.M. Peters B. Abu-Omar M.M. Scott S.L. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 2020 370 6515 437 441 10.1126/science.abc5441 33093105
    [Google Scholar]
  89. Hesse N.D. White R.L. Polyethylene catalytic hydrocracking by PtHZSM‐5, PtHY, and PtHMCM‐41. J. Appl. Polym. Sci. 2004 92 2 1293 1301 10.1002/app.20083
    [Google Scholar]
  90. Ge J. Sun J. Zhang P. Xie Z. Wu Z. Liu B. Effect of two-component amorphous silica-alumina (ASA) with different Si/Al molar ratios on hydrocracking reactions for increasing naphtha over NiW/USY-ASA. Catal. Sci. Technol. 2022 12 11 3695 3705 10.1039/D2CY00458E
    [Google Scholar]
  91. Salaudeen S. A. Arku P. Gasification of plastic solid waste and competitive technologies. Plastics to Energy William Andrew Publishing 2019 269 293
    [Google Scholar]
  92. Kartik S. Balsora H.K. Sharma M. Saptoro A. Jain R.K. Joshi J.B. Sharma A. Valorization of plastic wastes for production of fuels and value-added chemicals through pyrolysis – A review. Therm. Sci. Eng. Prog. 2022 32 101316 10.1016/j.tsep.2022.101316
    [Google Scholar]
  93. Kumar G. Ethanol blending program in India: An economic assessment. Energy Sources B Econ. Plan. Policy 2021 16 4 371 386 10.1080/15567249.2021.1923865
    [Google Scholar]
  94. Sarwal R. Kumar S. Mehta A. Roadmap for Ethanol Blending in India 2020-25. NITI Aayog 2021
    [Google Scholar]
  95. Palos R. Gutiérrez A. Vela F.J. Olazar M. Arandes J.M. Bilbao J. Waste refinery: the valorization of waste plastics and end-of-life tires in refinery units. A review. Energy Fuels 2021 35 5 3529 3557 10.1021/acs.energyfuels.0c03918 35310012
    [Google Scholar]
  96. Zhang B. Song C. Liu C. Min J. Azadmanjiri J. Ni Y. Niu R. Gong J. Zhao Q. Tang T. Molten salts promoting the “controlled carbonization” of waste polyesters into hierarchically porous carbon for high-performance solar steam evaporation. J. Mater. Chem. A Mater. Energy Sustain. 2019 7 40 22912 22923 10.1039/C9TA07663H
    [Google Scholar]
  97. Gong J. Chen X. Tang T. Recent progress in controlled carbonization of (waste) polymers. Prog. Polym. Sci. 2019 94 1 32 10.1016/j.progpolymsci.2019.04.001
    [Google Scholar]
  98. Srivastava Manish Srivastava Anamika Yadav Anjali Rawat Varun Source and Control of Hydrocarbon Pollution. Hydrocarbon Pollution and its Effect on the Environment IntechOpen 2019 10.5772/intechopen.86487
    [Google Scholar]
  99. Mani M. Nagarajan G. Sampath S. Characterisation and effect of using waste plastic oil and diesel fuel blends in compression ignition engine. Energy 2011 36 1 212 219 10.1016/j.energy.2010.10.049
    [Google Scholar]
  100. de Marco R. Pyrolysis of scrap tyres. Fuel Process. Technol. 2001 72 1 9 22
    [Google Scholar]
  101. Williams P.T. Brindle A.J. Aromatic chemicals from the catalytic pyrolysis of scrap tyres. J. Anal. Appl. Pyrolysis 2003 67 1 143 164 10.1016/S0165‑2370(02)00059‑1
    [Google Scholar]
  102. Williams P.T. Besler S. Taylor D.T. The pyrolysis of scrap automotive tyres. Fuel 1990 69 12 1474 1482 10.1016/0016‑2361(90)90193‑T
    [Google Scholar]
  103. Ouyang S. Xiong D. Li Y. Zou L. Chen J. Pyrolysis of scrap tyres pretreated by waste coal tar. Carbon Resources Conversion 2018 1 3 218 227 10.1016/j.crcon.2018.07.003
    [Google Scholar]
  104. Aishwarya K.N. Sindhu N. Microwave Assisted Pyrolysis of Plastic Waste. Procedia Technol. 2016 25 990 997 10.1016/j.protcy.2016.08.197
    [Google Scholar]
  105. Al-Salem S.M. Antelava A. Constantinou A. Manos G. Dutta A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manage. 2017 197 177 198 10.1016/j.jenvman.2017.03.084 28384612
    [Google Scholar]
  106. Al-Salem S.M. Karam H.J. Al-Wadi M.H. Alsamaq S. Jiang G. Wang J. Leeke G.A. Thermal degradation kinetics of real-life reclaimed plastic solid waste (PSW) from an active landfill site: The mining of an unsanitary arid landfill. Ain Shams Eng. J. 2021 12 1 983 993 10.1016/j.asej.2020.05.011
    [Google Scholar]
  107. Ayeleru O.O. Dlova S. Akinribide O.J. Ntuli F. Kupolati W.K. Marina P.F. Blencowe A. Olubambi P.A. Challenges of plastic waste generation and management in sub-Saharan Africa: A review. Waste Manag. 2020 110 24 42 10.1016/j.wasman.2020.04.017 32445915
    [Google Scholar]
  108. Bai B. Liu Y. Meng X. Liu C. Zhang H. Zhang W. Jin H. Experimental investigation on gasification characteristics of polycarbonate (PC) microplastics in supercritical water. Journal of the Energy Institute 2020 93 2 624 633 10.1016/j.joei.2019.06.003
    [Google Scholar]
  109. Bai B. Wang W. Jin H. Experimental study on gasification performance of polypropylene (PP) plastics in supercritical water. Energy 2020 191 116527 10.1016/j.energy.2019.116527
    [Google Scholar]
  110. Bu Q. Chen K. Xie W. Liu Y. Cao M. Kong X. Chu Q. Mao H. Hydrocarbon rich bio-oil production, thermal behavior analysis and kinetic study of microwave-assisted co-pyrolysis of microwave-torrefied lignin with low density polyethylene. Bioresour. Technol. 2019 291 121860 10.1016/j.biortech.2019.121860 31374414
    [Google Scholar]
  111. Fuentes M.J. Font R. Gómez-Rico M.F. Martín-Gullón I. Pyrolysis and combustion of waste lubricant oil from diesel cars: Decomposition and pollutants. J. Anal. Appl. Pyrolysis 2007 79 1-2 215 226 10.1016/j.jaap.2006.12.004
    [Google Scholar]
  112. Padmanabhan S. Kumar T.V. Giridharan K. Stalin B. Nagaprasad N. Jule L.T. Ramaswamy K. An analysis of environment effect on ethanol blends with plastic fuel and blend optimization using a full factorial design. Sci. Rep. 2022 12 1 21719 10.1038/s41598‑022‑26046‑9 36522376
    [Google Scholar]
  113. Mangesh V.L. Tamizhdurai P. Santhana Krishnan P. Narayanan S. Umasankar S. Padmanabhan S. Shanthi K. Green energy: Hydroprocessing waste polypropylene to produce transport fuel. J. Clean. Prod. 2020 276 124200 10.1016/j.jclepro.2020.124200
    [Google Scholar]
  114. Venkatesh A.P. Padmanabhan S. Rajveer G.V. Yuvaja K. Muniyappan M. Effect of fuel injection pressure on the performance and emission analysis of Mahua Methyl ester in a single cylinder diesel engine. International Journal of Ambient Energy 2022 43 1 1556 1560 10.1080/01430750.2020.1712247
    [Google Scholar]
  115. Padmanabhan S. Vinod Kumar T. Chandrasekaran M. Ganesan S. Investigation of Sapindus seed biodiesel with nano additive on single cylinder diesel engine. International Journal of Ambient Energy 2020 41 10 1106 1109 10.1080/01430750.2018.1501755
    [Google Scholar]
  116. Afriansyah H. Ramlan M.R. Roulina T M. Bow Y. Fatria Pyrolysis of Lubricant Waste into Liquid Fuel using Zeolite Catalyst. International Journal of Research in Vocational Studies (IJRVOCAS) 2022 1 4 26 31 10.53893/ijrvocas.v1i4.72
    [Google Scholar]
/content/journals/eng/10.2174/0118722121331855241212031631
Loading
/content/journals/eng/10.2174/0118722121331855241212031631
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Plastic ; Catalyst ; Biofuel ; Reaction time ; Pyrolysis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test