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Abstract: Introduction: With rapid economic development and urbanization, urban and rural ar-
eas face environmental challenges. Traditional optimization methods struggle with complexity
and often fail to find global optima.

Method:  This  study  integrates  a  Bidirectional  Long  Short-Term Memory  Network  (BiLSTM)
with Genetic Algorithm (GA)-Ant Colony Optimization (ACO) to improve environmental plann-
ing. BiLSTM captures long-term data correlations and predicts future trends, achieving an average
Mean Squared Error (MSE) of 0.0217. GA-ACO, using GA-generated solutions as initial input for
ACO, identifies optimal planning solutions.

Results: This approach enhances air quality indicators and provides robust predictions and opti-
mizations for sustainable urban and rural development.

Conclusion: To sum up, future development needs comprehensive technical progress, policy sup-
port  and public participation to form a multi-level  and multi-field collaborative mechanism to
achieve the real sustainable development goal.

Keywords: Urban and rural environment, planning optimization, bidirectional long short-term memory network, genetic algo-
rithm, ant colony optimization.

1. INTRODUCTION
With  the  acceleration  of  urbanization  and  continuous

population growth, urban and rural environmental problems
have become increasingly prominent, becoming one of the
important factors affecting the sustainable development of
the country [1,  2].  The gap between urban and rural  areas
not only shows significant differences in economic develop-
ment levels but also shows significant imbalances in environ-
mental quality, resource utilization, and social services. Tra-
ditional urban and rural planning [3, 4] often relies on experi-
ence and expert judgment, making it difficult to fully consid-
er the complexity and diversity of the urban and rural envi-
ronment,  resulting  in  poor  implementation  of  planning
schemes and difficulty in  achieving overall  environmental
optimization. It is feasible to evaluate urban and rural envi-
ronmental data more thoroughly, investigate the patterns hid-
den in the data, and create more precise and scientific urban
and rural planning models by merging artificial intelligence
technology [5, 6] with optimization algorithms. This has im-
portant practical significance for promoting urban and rural
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environmental optimization and promoting urban-rural inte-
gration development.

The  main  contribution  of  this  study  is  to  combine  the
bidirectional long short-term memory network with the ge-
netic  algorithm-ant  colony  optimization  algorithm  to  pro-
pose a new optimization method for urban and rural environ-
mental  planning.  This  method  aims  to  address  the  limita-
tions  of  traditional  optimization  methods  in  dealing  with
complex  environmental  problems.  Traditional  linear  pro-
gramming and dynamic programming methods often fail to
find  the  global  optimal  solution  when  dealing  with  urban
and rural environmental problems due to the complexity of
their  algorithms  and  the  limitations  of  local  optimal  solu-
tions. By introducing the BiLSTM model, this study effec-
tively  captures  the  long-term correlation of  environmental
data and provides accurate predictions of future environmen-
tal quality changes. BiLSTM can consider past and future in-
formation, overcome the shortcomings of traditional LSTM
and GRU in dealing with long-term dependencies, and thus
show superior performance in environmental quality predic-
tion.

In terms of optimization, this study combines GA with
ACO so that the solution generated by GA becomes the ini-
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tial  information of  ACO, thereby improving the  optimiza-
tion  effect  of  environmental  planning.  The  GA-ACO
method can more effectively explore and optimize environ-
mental planning schemes by comprehensively utilizing the
advantages of genetic algorithms and ant colony algorithms.
The  results  show  that  compared  with  using  GA  or  ACO
alone, GA-ACO shows the best effect in optimizing air quali-
ty, drinking water quality, and soil quality. Especially when
dealing  with  complex  environmental  data  and  planning
problems, GA-ACO provides an effective optimization ap-
proach to  improve environmental  quality  while  promoting
sustainable development in cities and rural areas.

The innovation of this study is to apply the combination
of BiLSTM and GA-ACO algorithms to the optimization of
urban  and  rural  environmental  planning.  First,  as  an  ad-
vanced time series prediction model, BiLSTM has the advan-
tage of bidirectional propagation and can more comprehen-
sively capture the temporal dependencies in environmental
data.  This  bidirectional  structure  enables  BiLSTM  to  use
past and future information to make more accurate predic-
tions of long-term trends, thereby improving the accuracy of
environmental quality predictions. This innovative applica-
tion breaks through the limitations of traditional models and
provides new ideas and methods for environmental data anal-
ysis and prediction. Combining GA with ACO to optimize
environmental planning is another important innovation of
this  study.  GA  generates  potential  high-quality  solutions
through genetic  operations,  and  ACO uses  these  solutions
for local search to find better planning solutions. This hybrid
optimization strategy not only improves the global search ca-
pability  of  the  algorithm,  but  also  effectively  reduces  the
convergence  time  of  the  algorithm.  Although  the  conver-
gence time of GA-ACO is slightly longer than that of GA
alone, the optimization effect is significantly better.

This  article  comprehensively  applies  bidirectional
LSTM and GA-ACO algorithms to optimize urban and rural
environmental planning and uses bidirectional LSTM to ana-
lyze and predict urban and rural environmental data. It com-
bines GA and ACO algorithms to optimize and solve urban
and  rural  environmental  planning  problems,  ultimately
achieving comprehensive optimization of urban and rural en-
vironmental planning. It is possible to clean and normalize
the collected environmental quality data. Trained bidirection-
al LSTM can be used to analyze and predict urban and rural
environmental data and predict future trends in environmen-
tal quality changes.

2. RELATED WORK
Urban  and  rural  environmental  planning  can  optimize

the  spatial  structure  of  urban  and  rural  areas,  allocate  re-
sources and factors reasonably, promote the organic flow of
resources, industries, population and other factors between
urban and rural areas, promote coordinated development of
urban and rural economies, and narrow the urban-rural gap.
Urban and rural environmental planning [7, 8] can scientifi-
cally protect and utilize ecological resources, reasonably de-
velop and utilize land and water resources, preserve the in-

tegrity and stability of natural ecosystems, reduce environ-
mental pollution and ecological damage, and ensure harmo-
nious coexistence between humans and nature. Urban and ru-
ral environmental planning [9, 10] focuses on long-term de-
velopment,  guided  by  the  concept  of  sustainable  develop-
ment, and unifies economic, social, and environmental inter-
ests. It promotes resource conservation and recycling, pro-
motes coordinated development between economic develop-
ment and environmental protection, and achieves sustainable
economic and social development. Wang Zhao-lin [11] used
an ant colony algorithm to optimize the spatial pattern evolu-
tion of rural settlements in the study area, showing a trend of
concentration  and  close  evolution.  The  results  show  that
69.1% of rural residential patches are concentrated in suit-
able and relatively suitable areas, with a concentration occur-
ring near convenient transportation, complete public facili-
ties, convenient production, and central villages. To evaluate
the changes in scale from rural to urban areas over the past
20  years,  Degerli,  Burcu  [12]  conducted  animal  statistical
analysis by distinguishing cities and rural areas located on
the coastline. From 2000 to 2020, the green space area in the
study area decreased by 14.1%. The optimization of urban
and rural environmental planning [13, 14] can promote the
integrated development of urban and rural areas and achieve
the orderly flow and complementarity of resources, indus-
tries, population and other factors between urban and rural
areas. By reasonably planning the layout, functional zoning,
and transportation network of urban and rural areas, it can
achieve interconnectivity between urban and rural areas, pro-
mote optimal resource allocation, and promote coordinated
economic and social development between urban and rural
areas.  Analyzing  urban  and  rural  environmental  planning
problems  through  ant  colony  optimization  algorithms  can
promote resource optimization allocation, but there is a lack
of using artificial intelligence technology to achieve automat-
ed analysis and pattern recognition of urban and rural envi-
ronmental data.

Artificial  intelligence technology can analyze and pre-
dict a large amount of data, learn the trends and laws of envi-
ronmental changes from historical data, predict future envi-
ronmental conditions, population changes, resource utiliza-
tion, etc., and provide the scientific basis for planning. Artifi-
cial intelligence technology [15, 16] can combine sensor net-
works and the Internet of Things technology to achieve real--
time monitoring and adjustment of urban and rural environ-
ments. By monitoring indicators such as environmental qual-
ity, traffic conditions, and population density, problems can
be identified in a timely manner and corresponding planning
and adjustment measures can be taken to improve the adapta-
bility and sustainability of urban and rural environments. Ar-
tificial intelligence technology [17, 18] can be used to evalu-
ate  the  environmental  impact  of  urban  and  rural  planning
schemes. By simulating and analyzing the implementation
effects of different planning schemes, the impact on air quali-
ty, water resources, ecosystems, and other aspects can be pre-
dicted,  helping  planners  develop  more  environmentally
friendly and sustainable planning schemes. By utilizing arti-
ficial intelligence technology [19], intelligent management
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and recycling of urban and rural resources can be achieved,
which can reduce resource consumption and environmental
pollution. Ma, Shijun [20] applied artificial neural network
methods to estimate urban solid waste in China. From 1990
to 2017, organic components, paper, and plastic showed an
increasing  trend,  while  ash  and  stone  significantly  de-
creased. By combining artificial intelligence and other tech-
nologies, automated analysis and pattern recognition of ur-
ban and rural environmental data can be achieved. However,
the above research lacks a comprehensive application of arti-
ficial intelligence and intelligent information processing al-
gorithms for optimizing urban and rural environmental plan-
ning analysis.

3.  METHODS FOR OPTIMIZING URBAN AND RU-
RAL ENVIRONMENTAL PLANNING

3.1. Collect Data Related to Urban and Rural Environ-
ments

The selected area is a city in China, and the collection pe-
riod is from 2000 to 2020. The collected data on urban envi-
ronmental quality is shown in Table 1.

With the increasing awareness of environmental protec-
tion  and  the  continuous  improvement  of  relevant  regula-
tions, the air quality in cities is gradually improving.

Due to factors such as industrial production, transporta-
tion, and population density, urban air often contains a large
amount of particulate matter, harmful gases, and volatile or-
ganic compounds. Activities such as automobile exhaust, fac-
tory emissions, and construction can lead to a decrease in ur-
ban air quality and the formation of haze weather. In con-
trast, rural areas usually do not have as dense transportation
and industrial activities as cities, and the air quality is rela-
tively better. However, in some rural areas, the use of pesti-
cides,  fertilizers,  and  animal  husbandry  activities  can  also
lead to a certain degree of pollution in the air in rural areas.

Urban and rural environmental analysis can provide a sci-
entific basis for urban and rural planning decisions. By ana-
lyzing environmental quality, resource utilization, and other
aspects, reasonable planning and policies can be formulated
for the development of urban and rural areas, promoting co-
ordinated  development  of  economy,  society,  and  environ-
ment. Urban and rural environmental analysis helps to pro-
mote the integrated development of urban and rural  areas,
and  achieve  coordinated  development  of  urban  and  rural
economy, society, and environment.

To ensure the quality and availability of data, preprocess-
ing can be performed on collected data, which includes data
cleaning  and  normalization  [21,  22].  Missing  value  han-
dling, outlier handling, and duplicate value handling can be
performed on the collected data.

Table 1. Partial urban environmental quality data.

Years
PM2.5 Concentration

(μg/m3)
PM10 Concentration

(μg/m3)
SO2 Concentration

(μg/m3)
CO Concentration

(mg/m3)
O3 Concentration

(μg/m3)
NO2 Concentration

(μg/m3)

2000 80.7 100.2 51.0 1.6 80.8 60.7

2001 82.6 98.4 48.9 1.9 82.1 62.2

2002 85.7 95.8 45.5 2.1 85.1 65.8

2003 83.7 96.4 46.7 1.9 83.8 63.1

2004 81.9 98.1 47.3 2.9 81.5 61.0

2005 79.2 99.4 48.4 2.9 79.3 59.7

2006 77.1 96.9 49.2 2.7 77.6 57.0

2007 75.2 94.2 50.9 2.4 75.8 55.1

2008 73.7 93.1 51.7 2.7 73.2 53.5

2009 71.5 94.9 52.7 2.9 71.2 51.6

2010 70.0 95.4 53.8 3.4 69.5 49.1

2011 67.1 92.3 54.8 3.1 67.8 47.7

2012 65.2 91.3 55.2 3.3 65.1 45.4

2013 63.6 90.2 56.1 3.6 63.9 43.2

2014 61.1 89.6 57.3 3.0 61.5 41.9

2015 59.2 87.4 58.8 3.3 59.2 39.1

2016 58.0 88.2 59.9 3.5 57.6 37.9

2017 55.1 85.1 60.5 3.3 55.8 35.2

2018 53.3 85.5 61.6 4.0 53.5 33.1

2019 51.6 84.9 62.3 3.8 51.4 31.6

2020 49.6 83.9 63.9 4.3 49.8 29.3
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For missing and outliers, the mean of the data is used to
fill  in  and  replace  them.  The  formula  for  calculating  the
mean of the data is:

                                             (1)
The dataset can be checked for duplicate data, detecting

completely duplicate rows or samples, deleting duplicate da-
ta, and retaining only one piece of data information.

In the collected data, the range and units of values for dif-
ferent features may vary, which can lead to significant differ-
ences  between  different  features.  Data  normalization  can
eliminate the dimensional influence between different fea-
tures,  making  each  feature  within  the  same  dimensional
range,  which  is  beneficial  for  improving  the  stability  and
convergence speed of the model. The normalized formula is
represented as:

                                    (2)

3.2. Establishing a Bidirectional LSTM Model
With the acceleration of urbanization and the improve-

ment  of  industrialization,  urban  and  rural  environmental
problems are becoming increasingly prominent, such as air
pollution, water pollution, soil pollution, etc. By predicting
and  analyzing  urban  and  rural  environmental  data,  it  can
identify the changing trends and potential risks of environ-
mental problems in advance, providing a scientific basis for
environmental protection and governance. By predicting and
analyzing urban and rural environmental data, timely discov-
ering changes in environmental quality is beneficial for ear-
ly warning of  environmental  risks and ensuring the health
and safety of residents.

The bidirectional long short-term memory network is an
improved  LSTM  structure  that  runs  two  independent
LSTMs simultaneously on the input sequence of each time
step [23, 24]: one reads the sequence from front to back, and
the other reads the sequence from back to front.

The model structure of bidirectional LSTM is shown in
Fig. (1).

At each time step, the backward LSTM receives the in-
put at the current moment and the hidden state at the next
moment and outputs the output at the current moment and a
new hidden state.

The output of bidirectional LSTM is a concatenation of
forward LSTM and backward LSTM outputs, which can cap-
ture  the  contextual  information of  the  current  time step  at
each time step. For each time step t, the output of bidirection-
al LSTM is a connection between forward and backward out-
puts:

                                              (3)
Introducing nonlinearity through activation functions to

solve the problem of linear inseparability. The formula for
the sigmoid function is expressed as:

                                                         (4)
During  the  training  process,  bidirectional  LSTM  can

backpropagate errors based on the loss function and update
model parameters through optimization algorithms such as
gradient descent to better fit the training data. The loss func-
tion formula is:

  (5)
The update rule for gradient descent is:

                                    (6)
In formula 6, θt represents the result of the t-th iteration

of the model parameters, α is the learning rate, and L(θt) is
the rate of change of the loss function at the current parame-
ter point.  Trained bidirectional LSTM can be used to ana-
lyze and predict urban and rural environmental data and pre-
dict future trends in environmental quality changes.

Fig. (1). Bidirectional LSTM model.
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3.3. GA-ACO Algorithm Design
With the acceleration of population mobility and urban-

ization,  the imbalance of urban-rural  development and the
pressure on resources and the environment are becoming in-
creasingly prominent. It is necessary to solve the problems
of development differences and uneven resource allocation
between urban and rural  areas  through planning optimiza-
tion and achieve common prosperity between urban and ru-
ral areas. Urban and rural environmental planning optimiza-
tion can improve the quality of living environment for urban
and rural residents, including air quality, water quality, soil
quality, etc., through reasonable layout and design and en-
hance the quality of life and health level of residents.

The environmental quality directly affects the health and
quality of life of residents. Good environmental quality can
reduce the harm of air, water, and soil pollution to residents’
health,  lower  the  incidence  of  diseases,  and  improve  their
sense of happiness and satisfaction in life. Moreover, good
environmental quality is the foundation of sustainable eco-
nomic development. A high-quality environment helps to en-
hance the overall image and attractiveness of urban and rural
areas,  promote  the  development  of  ecotourism,  ecological
agriculture, and ecological industries, and inject new impe-
tus into economic growth.

The  goal  of  optimizing  urban  and  rural  environmental
planning is to maximize environmental quality, achieve opti-
mal levels of environmental quality indicators (such as air
quality, water quality, soil quality, etc.), and maximize the
quality of life and health of residents. The formula for opti-
mizing the objective function is:

         (7)
In  formula  7,  A,  B,  and  C  represent  air  quality,  water

quality, and soil quality, respectively, and w1, w2, w3 repre-
sent  the weights  corresponding to the three environmental
qualities.

The estimation formula for air quality is expressed as:

     (8)
In formula 8, A1, A2, A3, A4, A5, A6 represent PM2.5 con-

centration, PM10 concentration, SO2 concentration, CO con-
centration, O3 concentration, and NO2 concentration, respec-
tively.

The formula for estimating water quality is expressed as:

         (9)
In formula 9, B1, B2, B3 represent dissolved oxygen, wa-

ter quality pH, and total phosphorus, respectively.
The estimation formula for soil quality is expressed as:

        (10)
In formula 10, C1, C2, C3 represent soil pH, nitrogen con-

tent, and phosphorus content, respectively.
Genetic algorithm [25-28] is an optimization algorithm

inspired by natural evolution and genetic mechanisms used
to solve complex optimization problems. It simulates the pro-
cess of biological evolution in nature, searching for optimal
or approximate optimal solutions through continuous evolu-
tion and survival of the fittest. A genetic algorithm encodes
candidate solutions in the problem space and continuously
generates new solutions through a series of evolutionary op-
erations in order to find the optimal solution to the problem.

The  ant  colony  optimization  algorithm  [29,  30]  simu-
lates the pheromone deposition and volatilization behavior
of ants in the process of searching for food, and searches for
the optimal solution of the problem through cooperation and
information sharing among individuals in the ant colony.

In order to better optimize urban and rural environmen-
tal planning, GA and ACO are combined to fully utilize the
advantages of the two algorithms and enhance the effective-
ness of global search. The optimization process of GA-ACO
is shown in Fig. (2).

Firstly,  bidirectional LSTM is used to predict environ-
mental quality, with the optimization goal of maximizing en-
vironmental quality. Excellent individuals can be selected as
parents  for  reproduction  based  on  their  fitness  function.
Cross operations can be performed on the selected parents to
generate new offspring individuals, and mutation operations
can be performed on the generated offspring to introduce cer-
tain  random perturbations.  Newly  generated  offspring  can
be added to the population and some individuals with lower
fitness can be discarded. The results of genetic algorithm op-
timization can be passed into ACO. Each ant makes path se-
lection based on the concentration of pheromones and up-
dates the pheromone concentration on the path according to
the ant’s selection. It can iterate GA and ACO processes re-
peatedly to find the optimal solution.

In the process of genetic algorithm optimization, multi--
point crossing can be used to exchange the gene sequences
of two-parent individuals at multiple crossing points. By per-
forming positional variation operations, the gene values of
individuals are changed at gene loci. The genetic algorithm
has  excellent  global  search  ability  and  fast  solving  speed,
but it does not make good use of information feedback for
adjustment, which may lead to blind optimization direction.

The ant colony optimization algorithm constructs a solu-
tion space jointly by multiple ants and achieves information
feedback by integrating the pheromones left by multiple ants
on the path, thereby improving the optimization effect. This
article combines the genetic algorithm with the ant colony
optimization algorithm and uses the solution generated by
the GA process as the initial information of the ACO algo-
rithm to find the optimal planning solution.
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Fig. (2). Optimization process of GA-ACO.

4.  EVALUATION  OF  URBAN  AND  RURAL  ENVI-
RONMENTAL PLANNING OPTIMIZATION

With the acceleration of economic development and ur-
banization, the urban population continues to increase, and
the problem of urban-rural development imbalance is becom-
ing increasingly prominent. Urban overcrowding and, insuf-
ficient  resource  and environmental  carrying  capacity  have
become prominent issues, while rural resource idleness and
environmental  quality  decline  have  become  prominent
problems. Therefore, urban and rural environmental plann-
ing needs to achieve coordinated development between ur-
ban and rural areas through reasonable planning and regula-
tion.

The calculation formula for MSE is:

                                (11)
After using BiLSTM to predict urban and rural environ-

mental quality, this article uses GA-ACO to optimize urban
and  rural  environmental  planning.  In  order  to  effectively
highlight the optimization effect of GA-ACO, GA-ACO can
be compared with GA and ACO. The goal of optimization is
to maximize environmental quality, comparing it from three
aspects: air quality, water quality, and soil quality.

In order to better reflect the effectiveness of different al-
gorithms in optimizing urban and rural environmental plann-

ing, unoptimized environmental quality data can be used as
control data to compare and observe the effects of different
optimization algorithms on environmental quality optimiza-
tion. In addition, in order to comprehensively optimize the
performance  of  the  algorithm,  the  convergence  time  and
number  of  convergence  iterations  of  the  algorithm can  be
evaluated.

5. RESULTS AND DISCUSSION

5.1. Environmental Quality Prediction Performance
Environmental quality prediction is one of the important

means of environmental protection and management. By pre-
dicting environmental quality, the development trends and
possible changes in environmental problems can be identi-
fied in a timely manner, providing a reference for environ-
mental management departments to formulate scientific and
reasonable policies and measures. The MSE results of envi-
ronmental quality prediction are shown in Fig. (3).

Fig.  (3)  shows  the  environmental  quality  prediction
MSE of BiLSTM, LSTM, and GRU models. The bidirection-
al  structure  allows  BiLSTM  to  have  two  hidden  states  in
each time step, allowing for a more comprehensive capture
of features in the time series. BiLSTM can be used to pre-
dict environmental quality accurately, and timely detect the
development trends and possible changes of environmental
problems.  From the  simulation  results  in  Fig.  (4),  we  can
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conclude that the BiLSTM model performs better in environ-
mental quality prediction than the LSTM and GRU models,
with  the  lowest  mean  square  error  (MSE)  (0.0217).  This
shows that BiLSTM can better capture long-term dependen-

cies in time series data, more accurately predict the chang-
ing trend of environmental quality, and help detect environ-
mental problems in a timely manner.

Fig. (3). MSE for environmental quality prediction. (A higher resolution / colour version of this figure is available in the electronic copy of
the article).

Fig. (4). Convergence time and number of convergence iterations. (A) Convergence time (B) Convergence iterations. (A higher resolution /
colour version of this figure is available in the electronic copy of the article).
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5.2. Air Quality Optimization Results
The air quality optimization results of GA are shown in

Table 2.
Table 2 shows the air quality optimization results of GA.

Compared to Table 1, the application of the GA algorithm
can comprehensively reduce the content of six air pollution
indicators. Genetic algorithms can be used to optimize urban
layout, plan spatial structures such as roads, buildings, and
green spaces in a reasonable manner, reduce traffic conges-
tion and industrial emissions, and reduce the emission of air
pollutants. After GA optimization, the PM2.5 concentration,
PM10 concentration, SO2 concentration, CO concentration,
O3  concentration,  and NO2  concentration  in  2020 are  46.4
µg/m3, 82.0 µg/m3, 63.1 µg/m3, 3.9 mg/m3, 46.1 µg/m3, and
25.9 µg/m3 respectively.

The air quality optimization results of ACO are shown in
Table 3.

Table  3  shows  the  air  quality  optimization  results  of
ACO. Compared to Table 1, ACO can also reduce the con-
tent of air pollution indicators and improve air quality. The
air quality optimized by ACO is worse than that optimized
by GA, because ACO tends to perform local search in the
search space rather than global search. This leads to ACO be-

ing limited by the local optimal solution when looking for
the optimal solution, but unable to achieve the global opti-
mal solution. After ACO optimization, the PM2.5 concentra-
tion, PM10 concentration, SO2 concentration, CO concentra-
tion,  O3  concentration,  and NO2  concentration in 2020 are
46.9 µg/m3, 83.3 µg/m3, 61.8 µg/m3, 3.9 mg/m3, 46.6 µg/m3,
and 26.3 µg/m3 respectively.

GA-ACO was  used  for  urban  and  rural  environmental
planning optimization, and the results of air quality optimiza-
tion are shown in Table 4.

GA-ACO can effectively improve air quality, and the op-
timized  air  pollution  indicators  of  GA-ACO are  generally
lower than those of GA and ACO. GA-ACO combines the
population evolution and crossover operations of genetic al-
gorithms,  as  well  as  the  pheromone  updating  and  local
search  strategies  of  ant  colony  algorithms.  This  diverse
search strategy can help avoid getting stuck in local optima,
increase the coverage of the search space, and improve the
probability of finding the global optimal solution. After GA-
ACO optimization, the PM2.5 concentration, PM10 concen-
tration, SO2 concentration, CO concentration, O3 concentra-
tion,  and  NO2  concentration  in  2020  are  45.7  µg/m3,  81.6
µg/m3, 61.8 µg/m3, 3.6 mg/m3, 44.9 µg/m3, and 24.9 µg/m3

respectively.

Table 2. Optimization results of air quality for GA.

Years PM2.5 Concentration
(μg/m3)

PM10 Concentration
(μg/m3)

SO2 Concentration
(μg/m3)

CO Concentration
(mg/m3)

O3 Concentration
(μg/m3)

NO2 Concentration
(μg/m3)

2011 64.6 90.8 51.7 3.0 66.3 44.9
2012 62.1 88.3 51.9 3.2 60.6 41.9
2013 59.9 87.5 54.7 3.3 60.9 39.2
2014 57.2 87.8 55.1 2.8 58.2 40.9
2015 57.9 84.1 56.9 3.0 55.9 36.1
2016 53.5 87.5 57.3 3.2 55.9 35.1
2017 54.4 83.2 57.4 3.1 55.3 31.9
2018 50.9 82.8 58.6 3.2 52.6 30.6
2019 49.4 82.8 58.4 3.5 49.9 30.1
2020 46.4 82.0 63.1 3.9 46.1 25.9

Table 3. ACO air quality optimization results.

Years PM2.5 Concentration
(μg/m3)

PM10 Concentration
(μg/m3)

SO2 Concentration
(μg/m3)

CO Concentration
(mg/m3)

O3 Concentration
(μg/m3)

NO2 Concentration
(μg/m3)

2011 64.7 91.5 51.3 3.1 66.7 46.3
2012 62.6 89.0 51.6 3.2 60.9 42.9
2013 60.6 87.7 53.8 3.3 60.0 39.7
2014 56.6 86.6 53.5 2.9 57.5 39.9
2015 58.2 84.3 56.9 3.1 55.6 35.5
2016 55.0 86.6 57.6 3.3 56.5 35.4
2017 53.1 83.0 58.0 3.2 55.2 33.0
2018 51.7 82.4 59.3 3.8 51.0 30.9
2019 49.6 83.7 58.2 3.7 49.8 29.9
2020 46.9 83.3 61.8 3.9 46.6 26.3
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5.3. Water Quality Optimization Results
The water quality is reflected by the content of dissolved

oxygen, water pH, and total phosphorus. The optimization re-
sults of water quality in 2020 are shown in Table 5.

Table 5 shows the water quality optimization results for
2020. The higher the dissolved oxygen concentration in the
water,  the  better,  with  a  good range  of  6.0-9.0  mg/L.  The
closer the pH in water is to 7, the better the water quality. Ex-
cessive total phosphorus content may lead to eutrophication
of water bodies, causing massive algae proliferation and af-
fecting water quality. The dissolved oxygen in urban water
after GA-ACO optimization is 7.21 mg/L, and the dissolved
oxygen in rural  water  is  9.23 mg/L,  both higher  than GA,

ACO, and the dissolved oxygen data without optimization.
GA-ACO, GA, and ACO can all improve water quality, and
GA-ACO has the most significant optimization effect on wa-
ter quality. The pH of urban water optimized by GA-ACO is
6.7 and total phosphorus is 0.15 mg/L, while the pH of rural
water optimized by GA-ACO is 7.0 and total phosphorus is
0.11 mg/L. Therefore,  using GA-ACO for urban and rural
environmental  planning  optimization  can  effectively  im-
prove  water  quality.

5.4. Soil Quality Optimization Results
The  optimization  results  of  soil  quality  in  2020  are

shown in  Table  6,  which  reflects  soil  quality  through  soil
pH, nitrogen content, and phosphorus content.

Table 4. Optimization results of air quality for GA-ACO.

Years
PM2.5 Concentration

(μg/m3)
PM10 Concentration

(μg/m3)
SO2 Concentration

(μg/m3)
CO Concentration

(mg/m3)
O3 Concentration

(μg/m3)
NO2 Concentration

(μg/m3)

2011 64.3 89.9 50.7 2.5 65.0 44.9

2012 61.6 87.7 51.2 2.6 60.3 41.0

2013 59.6 87.4 53.2 3.1 59.8 38.9

2014 56.5 86.5 53.4 2.6 57.0 39.2

2015 56.3 82.8 55.5 2.6 54.3 34.4

2016 53.4 85.6 57.2 2.7 55.1 34.2

2017 52.7 81.6 57.0 2.7 53.6 31.5

2018 50.5 81.1 57.4 2.8 50.6 29.1

2019 48.8 82.6 57.5 3.2 49.1 29.3

2020 45.7 81.6 61.8 3.6 44.9 24.9

Table 5. Water quality optimization results in 2020.

Type Water Quality Indicators GA-ACO GA ACO Not Optimized

Urban

Dissolved oxygen (mg/L) 7.21 7.01 6.78 5.52

Water quality pH 6.7 6.5 6.4 6.2

Total phosphorus (mg/L) 0.15 0.19 0.21 0.23

Rural

Dissolved oxygen (mg/L) 9.23 8.84 8.62 7.82

Water quality pH 7.0 7.1 7.1 7.2

Total phosphorus (mg/L) 0.11 0.13 0.14 0.15

Table 6. Optimization results of soil quality in 2020.

Type Soil Indicators GA-ACO GA ACO Not Optimized

Urban

Soil pH 6.6 5.9 5.7 4.2
Nitrogen content (g/kg) 1.45 1.89 1.93 2.34

Phosphorus content (g/kg) 0.42 0.49 0.51 0.57
Sound pressure level (dB) 45 50 55 65

Rural

Soil pH 6.8 6.5 6.4 5.4
Nitrogen content (g/kg) 1.23 1.65 1.72 2.44

Phosphorus content (g/kg) 0.34 0.45 0.47 0.52
Shannon diversity index 2.75 2.50 2.34 2.21
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Table  6  shows the  soil  quality  optimization  results  for
2020, with the suitable soil pH range for most crops ranging
from 5.5 to 7.0. The standard ranges for nitrogen and phos-
phorus content in soil are 0.10-2.0 g/kg and 0.01-0.5 g/kg, re-
spectively. From the optimization results, it can be seen that
GA-ACO can restore the slightly acidic soil environment to
a near-neutral soil environment. The pH values of urban and
rural soils optimized by GA-ACO are 6.6 and 6.8, respective-
ly. The nitrogen and phosphorus content of the soil that was
not optimized exceeded the standard. The application of the
three  optimization algorithms can reduce the  nitrogen and
phosphorus content. The nitrogen and phosphorus content af-
ter  GA-ACO  optimization  are  most  significantly  reduced,
and the application of GA-ACO can effectively improve soil
quality. The dynamic nature of factors such as sound pres-
sure levels and biodiversity in ecosystems, affected by cli-
mate  change  or  disruptive  events  such  as  epidemics,  can
cause environmental conditions to change dramatically. This
variability can render the parameters of optimization meth-
ods invalid, limiting their accuracy and relevance.

5.5. Convergence Time and Number of Convergence Iter-
ations

Convergence time and number of convergence iterations
are important indicators for evaluating the efficiency of opti-
mization algorithms. Comparing GA-ACO, GA, ACO, PSO,
SA, and DE, the convergence time and number of conver-
gence iterations of the optimization algorithm are shown in
Fig. (4).

In Fig. (4A), GA has the shortest convergence time, fol-
lowed by DE. The convergence times of the six optimization
algorithms are sorted from small to large as GA, DE, GA-A-
CO, PSO, ACO, and SA, with convergence times of 5.4 h,
5.8 h, 5.9 h, 6.3 h, 6.7 h, and 7.2 h, respectively. The GA-A-
CO algorithm fully utilizes the advantages of the genetic al-
gorithm and ant colony optimization algorithm. The conver-
gence time of GA-ACO is between GA and ACO, but from
the perspective of urban and rural environmental planning
optimization,  GA-ACO  is  better  than  GA  and  ACO.  Fig.
(4B)  shows  the  convergence  iterations  of  different  algo-
rithms, with each algorithm having over 600 convergence it-
erations, while GA has a minimum of 628 convergence itera-
tions.  GA  adopts  a  population  parallel  search  approach,
where each generation undergoes evolutionary operations on
the  entire  population.  Therefore,  multiple  individuals  are
searched simultaneously in each generation, accelerating the
convergence speed of the algorithm. The convergence itera-
tion number of GA-ACO is 721. To accelerate the conver-
gence speed of the GA-ACO algorithm, we can consider in-
troducing dynamic adjustment  strategies,  such as  adaptive
mutation rate and crossover rate,  or  optimizing the update
method of heuristic information. At the same time, the calcu-
lation process can be parallelized to improve efficiency.

6. APPLICATION SECTION
Traditional environmental planning methods face many

challenges in dealing with environmental problems brought

about  by  urbanization  and  industrialization.  These  chal-
lenges include the complexity of data, the diversity of envi-
ronmental factors and the difficulty in predicting their dy-
namic changes. To this end, this paper proposes to combine
the bidirectional long short-term memory network with the
genetic algorithm-ant colony optimization algorithm and ap-
ply it to urban and rural environmental planning optimiza-
tion. This combination method not only improves the predic-
tion accuracy but  also  optimizes  the  planning scheme and
achieves  effective  response  to  complex  environmental
problems.

6.1. Practical Application of BiLSTM in Environmental
Quality Prediction

Environmental quality prediction is the basis for formu-
lating effective environmental policies. As an improved long
short-term memory network, BiLSTM can consider the past
and  future  information  of  data  at  each  time  step,  which
makes it perform well in processing time series data. In prac-
tical applications, BiLSTM is used to analyze urban and ru-
ral environmental data, including air quality, water quality,
and soil quality. By training on a large amount of historical
data, BiLSTM can accurately predict the changing trend of
future environmental quality.

Specific application cases include air quality prediction
in Beijing. In this case, the BiLSTM model was used to ana-
lyze  the  time  series  data  of  air  pollutants  such  as  PM2.5,
PM10, and SO2 in the past few years.

6.2. Practical Application of GA-ACO Algorithm in Envi-
ronmental Planning Optimization

Environmental  planning  optimization  is  a  key  step  in
achieving sustainable development. Traditional optimization
methods often have difficulty in dealing with complex multi-
-objective optimization problems. For this reason, GA and
ACO are combined and applied to environmental planning
optimization,  using  GA  to  generate  preliminary  solutions
and then ACO for deep optimization. This method can effec-
tively find the global optimal solution and refine it locally,
thereby optimizing the environmental planning scheme.

GA  is  used  to  generate  a  series  of  preliminary  green
space layout schemes. These schemes include the distribu-
tion location, area, and functional type of green space. Subse-
quently, the ACO algorithm further optimized these prelimi-
nary plans, taking into account factors such as walking paths
and  green  space  connectivity.  Through  this  combined  ap-
proach,  the  optimized  plan  not  only  increased  the  green
space coverage rate but also optimized the spatial layout of
green space so that urban green space can better serve the
daily activities of residents.

Another application case is in soil management optimiza-
tion in rural areas. The GA-ACO algorithm is used to opti-
mize soil fertilizer application plans. GA generates a variety
of  fertilization  plans,  including  the  types  and  application
amounts  of  different  fertilizers.  ACO performs  local  opti-
mization based on these plans, taking into account the actual
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needs  of  the  soil  and  the  growth  characteristics  of  crops.
Through this optimization, the final fertilization plan effec-
tively improves soil fertility, reduces environmental pollu-
tion, and promotes the healthy growth of crops.

6.3.  Practical Application Effects And Future Develop-
ment Directions

By combining BiLSTM with GA-ACO for environmen-
tal  planning optimization,  this study has achieved remark-
able results in practical applications. In the air quality predic-
tion of Beijing, the mean square error of the BiLSTM model
is 0.0217, showing a high prediction accuracy. In the opti-
mization of urban green space planning, the GA-ACO algo-
rithm improves the optimization effect of green space cover-
age and spatial layout so that urban green space can better
meet the needs of residents. In rural soil management, the op-
timized fertilization scheme improves soil  fertility  and re-
duces environmental pollution.

CONCLUSION
Urbanization  and  industrial  development  pose  signifi-

cant challenges to urban and rural environments, including
air, water, and soil pollution. This study aims to enhance en-
vironmental quality through optimized urban and rural plann-
ing using a Bidirectional LSTM model for data analysis and
prediction. The integration of Genetic Algorithm (GA) and
Ant Colony Optimization (ACO) (GA-ACO) was found to
provide superior environmental quality improvements com-
pared  to  GA  and  ACO  alone.  Although  GA-ACO  has  a
longer convergence time than GA, the difference is minor.
The  use  of  GA-ACO  effectively  improves  environmental
quality  and  supports  sustainable  development.  Future  re-
search should include a broader range of environmental indi-
cators for a more comprehensive assessment.

In the current process of urbanization and industrializa-
tion, environmental protection and sustainable development
have become the focus of global attention. Although some
progress has been made, urban and rural environments still
face many challenges, such as air pollution, water pollution
and soil degradation. By combining the BiLSTM model and
GA-ACO algorithm, this paper shows how to optimize ur-
ban and rural environmental planning and significantly im-
prove environmental quality. This method not only shows su-
periority in air, water and soil quality optimization but also
shows outstanding performance in optimization efficiency.
However, future development should be more comprehen-
sive and diversified, covering more environmental indicators
to provide a more comprehensive environmental quality as-
sessment. In addition, technological progress will further pro-
mote the development of intelligent environmental monitor-
ing and forecasting systems, such as the Internet of Things
and big data analysis, and apply real-time data to environ-
mental  quality  forecasting  and  optimization,  so  as  to  im-
prove the scientificity and timeliness of planning. On the pol-
icy level, we should strengthen the policy orientation of coor-
dinated  development  between  urban  and  rural  areas,  pro-
mote the balanced allocation of resources and, improve the

ecological  compensation  mechanism,  and  fundamentally
solve the problem of unbalanced development between ur-
ban and rural areas. Future research should also pay atten-
tion to public participation and promote the whole society to
work together for environmental protection and sustainable
development by improving public awareness and participa-
tion. In addition, interdisciplinary cooperation will become a
trend,  and  collaborative  innovation  in  environmental  sci-
ence, computer science, economics and other fields will pro-
vide a more comprehensive and systematic solution to envi-
ronmental problems. To sum up, future development needs
comprehensive technical progress, policy support and public
participation to form a multi-level and multi-field collabora-
tive mechanism to achieve the real, sustainable development
goal.
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