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Abstract:  Background:  Path  planning  technology  has  a  wide  range  of  applications  in  many
fields. Applications in the field of high technology include: autonomous and touchless action of
robots; obstacle avoidance and defense flight of drones; cruise missiles to avoid radar search, an-
ti-bouncing attacks, and to complete the task of sudden defense and demolition. Applications in
daily life include: GPS navigation; road planning based on GIS system; urban road network plann-
ing and navigation. Applications in the field of decision-making management include: vehicle
problem (VRP) in logistics management and similar resource allocation problems in resource man-
agement. Routing problems in the field of communication technology. Any planning problem that
can be topologized as a point and line network can basically be solved by the method of path plan-
ning. Different intelligent algorithms have different characteristics, and their application scope
and fields are also different, so it is of great significance for the development of path planning
technology to study the path planning intelligent algorithms from the characteristics of the algo-
rithms themselves and their applications.

Objective: Analyze the advantages and disadvantages of various types of planning algorithms,
look forward to the future development trend of mobile robot path planning, and provide certain
ideas for the research of mobile robot path planning.

Method: Search journals, patents, conferences, and papers related to mobile robot path planning,
and summarize and analyze the advantages and disadvantages of various planning algorithms.

Results: Based on the research results of many scholars, this study summarizes different mobile
robot path planning methods. It is divided into four categories: traditional planning, intelligent
search, artificial intelligence and local obstacle avoidance. This paper introduces and analyzes the
latest research results of these types, including their design ideas, advantages and disadvantages,
and improvement measures. The research methods adopted are analyzed in order to maximize the
advantages of each algorithm and expand the application field of robot path planning to provide
ideas and references.

Conclusion: This paper provides guidance for the design and optimization of robot path planning.
Finally, this paper summarizes the future development trend of robot path planning, and looks for-
ward to the future development trend and key areas of robot path planning.

Keywords: Path planning, mobile robots, algorithm classification and summarization, global planning, local planning.

1. INTRODUCTION
Mobile Robot Path Planning Technology is the process

by which a robot autonomously plans a safe path of opera-
tion to efficiently complete a task, using sensors to sense the
environment [1].
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It addresses three main problems: 1) enabling the robot
to move from an initial point to a target point; 2) using algo-
rithms to enable the robot to bypass obstacles; and 3) opti-
mizing the robot's trajectory as much as possible while com-
pleting the task. This technology is one of the core elements
of intelligent mobile robot research, originating in the 1970s
and accumulating a large number of research results.

Based  on  the  existing  research  results  of  mobile  robot
path planning algorithm, this paper divides the existing algo-
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rithms into four categories: traditional planning algorithm,
intelligent search algorithm, artificial intelligence algorithm
and  local  obstacle  avoidance  algorithm  [2,  3].  The  main-
stream algorithm of mobile robot path planning is shown in
Fig. (1).

2. CONVENTIONAL PLANNING ALGORITHM
Conventional planning algorithms usually need to estab-

lish a geometric model of obstacles in a known environment
and select an appropriate path for geometric model path plan-
ning. This kind of algorithm depends on the display expres-
sion of the environment.

2.1. Bug Algorithm
When the mobile robot only has limited computing pow-

er, the simple structure of the Bug algorithm is the most sim-
ple and effective path planning algorithm. In the Bug1 algo-
rithm proposed by Lumelsky, the robot will plan by bypass-
ing the edge of the obstacle [4]. This method is inefficient,
but  it  can  ensure  that  the  robot  will  reach  any  reachable
goal. Aiming at the problem of low efficiency of Bug1 algo-
rithm, Lumelsky proposed Bug2 algorithm based on Bug1 al-
gorithm [5]. Bug2 is more ' greedy ' than Bug1, which effec-
tively  shortens  the  planning  path,  but  the  disadvantage  is
that  in  the  case  of  complex  environment,  Bug2  algorithm
may judge that the target point is not reachable.

Aiming at the problem that the standard Bug algorithm
always bypasses in the same direction when encountering ob-
stacles and has low efficiency, Kamon proposed the DistBug
algorithm and the Tangent Bug algorithm [6, 7]. Both algo-
rithms overcome the defect that the standard Bug algorithm
may fall into a cycle around the circular obstacle, but they

cannot guarantee the global optimization of the path and re-
al-time fast online planning. Aiming at the problem that the
robot in the Bug algorithm does not make full use of the ad-
jacent environment information in the limited area that can
be detected at any time in the planning process, Kang Liang
proposed to use the concept of virtual obstacle to deal with
the defect that the mobile robot is easy to wander around the
local extremum point on the basis of the original Bug algo-
rithm, which improves the optimization of the path and the
completeness  of  the  algorithm.  However,  this  algorithm
does not consider the existence of dynamic obstacles in the
environment [8]. Peng et al. proposed the Multi-Bug algo-
rithm, which adds the crawler splitting rule and the crawler
death  condition  judgment  rule  [9].  Experiments  show that
the algorithm is better than the DistBug algorithm in reduc-
ing the path cost, real-time performance, and versatility.

2.2. Grid Map
Grid map (GM) is  generally  used as  an  environmental

modeling technique for path planning. As a method of path
planning, it is difficult to solve the problem of complex envi-
ronmental information.

The idea  is  to  discretize  the  external  environment  into
grids  of  the  same  size  according  to  a  specific  resolution.
Each grid has only two states. The path planning algorithm
occupies a grid and plans a path composed of multiple grids
by  searching  for  free  grids  and  avoiding  obstacles.  This
method is simple and easy to implement, and it also has the
ability  to  express  irregular  obstacles.  The  disadvantage  is
that the representation efficiency is not high, and there is a
contradiction between space-time overhead and solution ac-
curacy. The diagram of the principle is shown in Fig. (2).

Fig. (1). Classification of path planning algorithms for mobile robots.
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Fig. (2). Schematic diagram of the grid map method. (A higher res-
olution / colour version of this figure is available in the electronic
copy of the article).

2.2.1. Dijkstra Algorithm
Dijkstra algorithm belongs to the breadth-first algorithm,

which  is  to  obtain  the  shortest  path  through  the  forward
traversal comparison of all nodes [10]. Because it will tra-
verse all nodes, the success rate of the shortest path is high
and the robustness is good. However, this algorithm belongs
to the undirected search algorithm, and many traversal nodes
and low efficiency are the fatal shortcomings when it is ap-
plied to large-scale complex path topology networks [11]. In
addition,  the  Dijkstra  algorithm  cannot  deal  with  the
problem  of  negative  weight  edges

At present, the research and improvement of Dijkstra al-
gorithm focus on algorithm optimization and algorithm appli-
cation. For example, Idwan studied the heuristic algorithm
to improve it and applied it to find the shortest path in large-
scale graphics [12]. The experimental results show that the
improved algorithm has obvious advantages in terms of in-
put / output operation time and quantity. Tintor studied the
use of distributed sparse matrix to optimize it and applied it
in translucent optical network routing, which proved the ef-
fectiveness of the improved algorithm in opaque networks
[13].

Zhou Lei et al. optimized the Dijkstra algorithm with the
data  structure  of  adjacent  linked  list  and  minimum binary
heap  [14].  The  improved  algorithm  has  reduced  running
time and improved efficiency. In order to solve the problem
of path planning efficiency of AGV in factory logistics trans-
portation, Tang Hongjie proposed a Dijkstra algorithm with
storage mode change, and stored the storage model of unex-
tended nodes through binary heap [15]. The algorithm has ef-
fectively improved the operation efficiency and occupied me-
mory space. Khadr Mohamed S studied the control and path
planning  of  tracked  mobile  robot  based  on  Dijkstra  algo-
rithm in ROS [16]. The results show that the method can suc-
cessfully realize the obstacle avoidance path planning.

2.2.2. A* Algorithm
The  A*  algorithm  is  based  on  the  Dijkstra  algorithm,

and the heuristic function is designed according to the prior
information of the starting point and the ending point, so as
to  reduce  the  number  of  search  expansion  nodes  and  im-
prove the efficiency of path search [17]. The core idea of the
algorithm is  to  select  the  block with  the  lowest  '  cost  '  by
comprehensively considering the actual distance and heuris-
tic distance, so as to achieve the goal of searching the short-
est path as efficiently as possible.

The advantages of A* algorithm are less extended nodes,
good robustness, fast calculation speed and fast response to
environmental  information.  The  disadvantage  is  that  the
planning path often has more inflection points and insuffi-
cient global optimization ability.

Researchers have also given different solutions to vari-
ous defects of the A* algorithm. Aiming at the problem of
unsmooth path, Min Haitao added the cost of path curvature
in  the  design  of  heuristic  function,  which  improved  the
smoothness of the path [18]. Other studies are to optimize
the generated path and increase the smoothness of the path.
For example, Chen Jiao et al. combined the Floyd algorithm
to  optimize  the  path,  and  Chen  Jiabao  smoothed  the  path
through the B-spline curve, which effectively improved the
smoothness  of  the  path,  and  the  required  performance  did
not  increase  significantly  [19,  20].  Aiming at  the  problem
that the traditional A* algorithm has insufficient global opti-
mization ability, Zhang Xinyan et al. proposed an improved
A* algorithm with  time factor  to  find  a  path  scheme with
fewer turns [21]. The results show that the improved algo-
rithm has advantages in path length and planning time.

In order to solve the problems of large memory overhead
and  long  calculation  time  of  A*  pathfinding  algorithm  in
large scenarios, Zhao et al. proposed an improved A* algo-
rithm  based  on  jump  point  search  algorithm  to  replace  a
large number of unnecessary nodes that may be added with
jump points, thus reducing the amount of calculation [22].
The  improved  A*  algorithm  can  effectively  improve  the
pathfinding  speed.  Ou  et  al.  tried  to  use  bidirectional  A*
search, and the results showed that the search efficiency was
improved  by  about  40%  [23].  Zhao  et  al.  adopted  a  vari-
able-scale A* programming algorithm to improve the compu-
tational efficiency while maintaining a high resolution [24].

In  view of  the  situation  that  path  planning  is  prone  to
conflict and locking in multi-robot environment, Liao et al.
increased the actual cost of path turning cost and path over-
lap on the basis of A* algorithm, which effectively reduced
the occurrence of this situation [25].

2.2.3. D* Algorithm
The D* algorithm is developed from the A* algorithm,

and its principle innovation is reflected in the dynamic updat-
ing of the heuristic estimates of the nodes with the passing
of the search process, taking into account changes and up-
dates from previous searches in order to progressively ob-
tain better path planning results [26].
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It is suitable for scenarios where the environment is un-
known or the environment is dynamically changing, especial-
ly in the case of incremental update, it also has high search
efficiency and path planning speed. However, the D* algo-
rithm  does  not  improve  the  shortcomings  of  the  tortuous
path in the A* algorithm. It also requires more computing re-
sources and has a higher dependence on heuristic functions
than the A* algorithm. The heuristic  function of  the algo-
rithm is shown in Fig. (3).

Fig. (3). Schematic diagram of the heuristic function. (A higher res-
olution / colour version of this figure is available in the electronic
copy of the article).

Similar to A* algorithm, the improvement of D* algo-
rithm  is  mainly  focused  on  two  aspects:  improving  path
smoothness and improving search efficiency. Zhu et al. used
the uniform B-spline curve fitting model for path smoothing
[27];  Liu  et  al.  coordinated  the  relationship  between  path
length and smoothness  by adding a'  turning factor  '  to  the
path  smoothness  function  [28].  Both  methods  considered
smoothing in path generation, reflecting the different focus
from smoothing  the  generated  path  again.  In  order  to  im-
prove the search efficiency, Zhang et al. used the jump point
search algorithm to reduce the search time in the D* algo-
rithm to  improve  the  A*  algorithm,  so  as  to  speed  up  the
search process. Another idea is to narrow the search area to
improve  efficiency  [29].  For  example,  Wang  introduced
Voronoi diagram to obtain local optimal target points and im-
prove the computing power of the algorithm [30]. This idea
needs to be used with other improved methods, otherwise it
is easy to fall into the local optimal solution problem.

In practical application, Wang Xiaokang provides a path
planning method for flight area using D* algorithm, which
solves the technical problem of low planning efficiency in

the existing methods to a certain extent [31]. A path plann-
ing method based on D * lite algorithm and multiple interme-
diate voxels is proposed for multi-objective three-dimension-
al dynamic path planning [32].

2.3. Vector Field Histogram Method
Vector field histogram method (VFH) was proposed in

1991 [33]. The core idea of this method is to express the en-
vironmental information as vector field and histogram, and
to plan the moving path of the robot by analyzing the histo-
gram  to  select  the  safe  direction.  The  algorithm  flow  is
shown  in  Fig.  (4).

Fig. (4). Flow of VFH algorithm.

The advantage of the VFH method is that it does not re-
quire global map construction and positioning, and only re-
lies on local laser scanning data. It has the characteristics of
strong real-time performance, high computational efficiency
and good adaptability, which enables mobile robots to quick-
ly and reliably perform obstacle avoidance and path plann-
ing in complex environments.  However,  because the VFH
method  only  considers  the  local  laser  scanning  data,  it  is
easy to cause the algorithm to fall into the local minimum
value in the narrow area, and the range and resolution of the
laser scanning may be limited, resulting in the inaccuracy of
the path planning.

At present, the application of VFH algorithm in practice
has the following directions [34]: 1) set more uniformly dis-
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tributed  high-resolution  sensors.  2)  Using  mathematical
methods and simulation experiments to determine the appro-
priate decision threshold. 3) Gridding and data processing of
the environment. These three methods have a certain degree
of improvement in the application of the decision-making ef-
ficiency  improvement  algorithm.  For  the  improvement  of
VFH algorithm itself, there are VFH+ algorithm and VFH*
algorithm proposed by Ulrich [35,  36].Compared with the
traditional VFH algorithm, VFH+ algorithm takes more in-
formation into account when constructing histogram, such
as the distribution and shape of obstacles, the shape of the
robot, etc., which can more accurately represent the feasible
motion direction in  the  environment  and improve the  ver-
satility of the algorithm. The VFH* algorithm is more inc-
lined to improve the computational efficiency and optimize
the dynamic environment.

Zhu Shaoming applied a dynamic window that can auto-
matically adjust the range, and set adaptive thresholds under
different window modes, so that the robot can quickly adapt
to  different  environments  while  reaching  the  target  point
without collision and smoothly [37].

2.4. Voronoi Diagram Method
The Voronoi diagram method is an algorithm that com-

bines the Voronoi diagram characteristics with the path plan-
ning algorithm. The core idea is that the method divides the
target  area  into  several  sub-regions,  uses  the  equidistant
points  of  adjacent  two  points  on  the  obstacle  boundary  to
construct all the boundary lines, and then uses the search al-
gorithm to obtain the collision-free path [38]. The Voronoi
diagram method enables path planning to better consider the
geometry and connectivity of the environment, and is more
suitable  for  complex  environments.  However,  the  cost  is
high computational complexity and may be limited by the lo-
cal optimal solution problem, and it cannot adapt to changes
in a dynamic environment in time. Additional mechanisms
are needed to deal with dynamic obstacles.

Aiming at the path planning problem of mobile robots us-
ing Voronoi diagram method in complex dynamic environ-
ments,  Ayawli et al.  proposed an improved algorithm that
adds nodes to the initial route map nodes to calculate a new
path for re-planning and discards failed nodes [39]. The algo-
rithm can effectively determine the collision threat moving
obstacles  and  avoid  unnecessary  re-planning  calculations.
Aiming at the problem of multiple mobile robots in dynamic
unknown environment,  Hu  et  al.  proposed  a  multi-mobile
robot cooperative exploration strategy based on Voronoi par-
tition and a collision-free algorithm based on deep reinforce-
ment learning [40]. Compared with the traditional method,
this strategy reduces the overall time and energy consump-
tion of task completion, and verifies the effectiveness of the
collision-free algorithm. Zhu proposed a multi-UAV cooper-
ative region algorithm based on Voronoi diagram centroid,
and  proposed  a  DCPS  strategy  for  dynamic  environment
changes  [41].  The  strategy  uses  the  V-graph  centroid  to
guide the UAV to move toward the target point, thereby im-
proving the search efficiency and improving the computatio-
nal efficiency of the algorithm.

Jiang  Lin  provides  a  Voronoi  path  planning  algorithm
for new skeleton extraction of mobile robots, which removes
the sharp points on the path and makes the final optimized
path smoother [42].

3. INTELLIGENT SEARCH ALGORITHM
The intelligent search algorithm is an algorithm that ap-

proaches the optimal solution through randomly generated
initial solutions or sampling points and multiple iterations.
Its biggest feature is that it can continuously obtain new in-
formation in the planning to optimize the path, which is ran-
dom, so its solution is not unique.

3.1. Heuristic
The heuristic intelligent search method is proposed rela-

tive to the traditional deterministic search algorithm. The al-
gorithm randomly generates a feasible initial solution and us-
es an iterative improvement strategy to approximate the opti-
mal path. Compared with the traditional deterministic search
algorithm, the heuristic intelligent search algorithm is more
flexible  and  adaptable  in  the  search  process  by  using  the
characteristics of heuristic function and randomness, which
helps to overcome the complexity of the problem and find a
better solution.

3.1.1. ACO Algorithm
In the ACO algorithm, the path in the ' pheromone' set

has  a  heuristic  effect  on  searching  for  the  next  node  [43].
The principle of the algorithm is that the ant foraging tends
to choose the path of the ' pheromone ' set. The idea is ap-
plied to the path planning as the ACO algorithm. The sche-
matic diagram of the algorithm is shown in Fig. (5).

ACO algorithm has strong robustness and applicability,
and is suitable for solving various combinatorial optimiza-
tion problems [44]. Its applicability is mainly reflected in its
ability to adapt to the dynamic changes of the problem space
and different search environments [45]. Another typical ad-
vantage of ACO algorithm is that it can be implemented in
parallel in distributed systems, and multiple subsystems can
exchange pheromones with each other. However, as a heuris-
tic  algorithm,  the  performance  of  ant  colony  algorithm  is
greatly affected by parameter setting, and it needs to be ad-
justed repeatedly to obtain better results. In addition, the con-
vergence speed of the algorithm is slow, especially there is a
negative correlation between the global optimization ability
and the convergence speed, and it is easy to fall into the lo-
cal optimal solution problem.

The improved algorithm mainly improves the optimiza-
tion ability of the algorithm from the aspects of algorithm
structure, parameter selection and optimization, and combi-
nation  with  other  intelligent  algorithms  [46].  Ant  Colony
System (ACS) and the meta-heuristic ant colony optimiza-
tion algorithm (ACO-MH) proposed by Dorigo et al.  have
improved the algorithm structure [47, 48]. These algorithms
provide a general algorithm framework for solving complex
problems,  but  generally  lack  flexibility.  In  order  to  avoid
falling into local optimum, Jiao et al. proposed a polymorph-
ic ant colony  optimization  algorithm  for  path  planning,
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Fig. (5). Schematic diagram of the ACO algorithm. (A higher resolution / colour version of this figure is available in the electronic copy of
the article).

using adaptive state transition strategy and adaptive phero-
mone  update  strategy  to  ensure  the  relative  importance  of
pheromone intensity and heuristic information in the itera-
tive process [49].  Mahi et  al.  designed a hybrid algorithm
based  on  particle  swarm  and  ant  colony,  using  particle
swarm optimization to optimize the main parameters of ant
colony algorithm, so as to improve the search efficiency and
the computational efficiency of the algorithm [50]. In the lit-
erature,  the  problem  is  divided  into  two  stages:  the  first
stage uses the fast reverse gradient method to obtain the pos-
sible optimal solution; in the second stage, ACO algorithm
is used to further improve the quality of the solution [51].

In the practical application of ant colony algorithm. An
improved algorithm considering the rotation angle and the
actual distance of the target, and using the actual distance as
the selection probability parameter for path planning [52]. In
the multi-robot path planning task, Li calls the improved K
Means clustering algorithm for clustering tasks, so that the
balance of energy consumption is better, and the overall per-
formance is better than the basic ant colony algorithm [53].

3.1.2. Genetic Algorithm
Genetic algorithm (GA) is a method of searching for the

optimal solution by using genetic operators to select, cross
and mutate to simulate the natural heredity and evolution of
organisms  in  adapting  to  the  environment  [54,  55].  The
biggest advantage of this algorithm is that it can be well inte-
grated  with  other  algorithms  while  giving  full  play  to  its
own iterative advantages [56]. Therefore, by introducing the
mechanism of randomness, diversity, parallel search and evo-
lutionary optimization, genetic algorithm has better global
search ability, better ability to overcome local minima, and
can effectively deal with the optimization and search tasks
in complex problems. However, the operation rate of genetic
algorithm is low and takes up a lot of resources, and the ap-
plication under initial conditions is not as good as ant colony
algorithm. The steps of genetic algorithm in path planning
are shown in Fig. (6) [57].

In order to improve its performance, many scholars have
proposed  different  improvement  methods  in  recent  years.
Aiming at the problem of  slow  convergence  rate and poor
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Fig. (6). Genetic algorithm path planning flowchart.

local search ability, Wang et al's improved method is to im-
prove the search efficiency by improving the fitness evalua-
tion  index,  which  effectively  shortens  the  average  path
length and reduces the number of iterations [58]. Aiming at
the  problem  that  the  optimal  solution  cannot  be  found  by
multiple iterations of the initial solution due to the influence
of  the size  of  the environment  grid,  Nazarahari  et  al.  pro-
posed a hybrid method for path planning of multiple mobile
robots  in  a  continuous  environment  [59].  After  improve-
ment, not only the collision-free path is determined, but also
all robots can be found close to the optimal solution. Aiming
at the shortcomings of poor convergence and ignoring the co-
operation  between  populations,  Qu et  al.  proposed  an  im-
proved genetic modification operator based on co-evolution
mechanism [60]. The improved algorithm can better avoid
the local optimal problem and has faster convergence speed.
In  view of  the  deficiency  that  the  crossover  and  mutation
probabilities  remain  fixed  during  the  evolution  process,
Wang et al. proposed a method to automatically adjust the
crossover probability and mutation probability according to
the fitness value, which can not only accelerate the conver-

gence speed of genetic algorithm, but also effectively pre-
vent the algorithm from falling into local optimum [61].

In practical applications, genetic algorithm is more de-
pendent on prior knowledge. For example, Huang Meng de-
signed crossover,  insertion,  deletion,  smoothing  and colli-
sion avoidance operators according to the characteristics of
prior knowledge and application scenarios, which improved
the  search  efficiency  and  ensured  the  convergence  to  the
global  optimal  solution.  It  overcomes the shortcomings of
standard  genetic  algorithm  [62].  Algorithm  fusion  is  also
easy to integrate with other algorithms. For example, Xing
Dongxu first uses genetic algorithm to speed up the conver-
gence  speed  and  improve  the  efficiency  of  path  planning,
and then uses ant colony algorithm to obtain the best inspec-
tion path and improve the accuracy of path planning results
[63].

3.1.3. Particle Swarm Optimization Algorithm
The particle swarm optimization (PSO) simulates the be-

havior of biological groups such as birds or fish in searching
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and optimizing problems [64].  It  has the characteristics of
easy implementation, simple calculation and few parameters
[65]. The main drawback of the particle swarm optimization
algorithm  is  the  lack  of  rigorous  mathematical  proof  in
terms of convergence theory and parameter setting. Its appli-
cation is mainly based on experience and experiments. In ad-
dition, different particle swarm topologies simulate different
social  situations  and  have  their  own  scope  of  application.
When  dealing  with  problems,  appropriate  algorithms  and
topologies should be selected according to the characteris-
tics of the problem and engineering experience.

By adjusting the parameters, the overall performance of
the algorithm can be improved. For example, Ao set the iner-
tia weight factor of particles with poor fitness value to zero
in the iterative process, which further improved the conver-
gence of  the algorithm [66].  Clerc.M et  al.  introduced the
compression factor into the particle swarm optimization algo-
rithm, so that the particles have the opportunity to search dif-
ferent regions in the space and obtain high-quality particles
[67]. The experimental results show that it greatly improves
the convergence speed and convergence accuracy of particle
swarm optimization. Zhang proposes a non-linear dynamic
adjustment method of inertia weight for the problems exist-
ing in the traditional particle swarm optimization algorithm
[68]. At the same time, the concept of smoothness and safe-
ty is introduced into the fitness function. This method can
significantly reduce the probability of the algorithm falling
into local optimum.

Some  scholars  have  also  introduced  better  ideas  from
other algorithms from the perspective of improving the algo-
rithm itself to improve performance. Jia introduced the hen
update equation and the chick update equation in the chick-
en swarm algorithm to perturb the search stagnant particles,
so that the disturbed particles are close to the global optimal
solution, which verifies that the improved algorithm has the
advantages of high optimization accuracy and good robust-
ness in problem optimization [69]. Ding proposed a particle
swarm optimization algorithm with genetic factors [70]. By
referring to the idea of genetic algorithm crossover and muta-
tion, the particles are operated to increase the population di-
versity, effectively reduce the number of iterations of the al-
gorithm and improve the convergence speed. Chen proposed
an  improved  particle  swarm optimization  algorithm based
on neural network [71]. The simulation results show that the
improved particle swarm optimization algorithm can be ap-
plied to static and dynamic obstacle environments to quickly
plan a collision-free smooth path. At present, the reference
algorithms introduced by other  scholars  also  include:  krill
herd algorithm, genetic algorithm, bat algorithm, firefly algo-
rithm and differential evolution algorithm. Experiments also
prove that there are different degrees of improvement and op-
timization. However, the shortcomings of particle swarm op-
timization,  such  as  low  convergence  accuracy  and  search
stagnation, are still the main research points.

In practical applications, particle swarm optimization is
often  combined  with  other  algorithms  to  improve  perfor-
mance. For example, high macro force uses improved adap-

tive hybrid annealing particle swarm-dynamic programming
to  avoid  the  stagnation  of  traditional  particle  swarm  opti-
mization  [72].  The  patent  combines  PSO  and  DWA  to
achieve  a  dynamic  path  planning  method  that  can  shorten
the path length and improve smoothness and real-time per-
formance [73]. The patent combines the advantages of grey
wolf algorithm and particle swarm optimization algorithm.
The improved algorithm converges quickly and reduces the
risk of falling into local optimum [74].

3.2. Stochastic
The common point of the random intelligent search algo-

rithm is  that  it  will  perform path  planning by establishing
sampling points.  The advantage is  that  it  does not need to
model the environment specifically, and can randomly ex-
plore  appropriate  path  points  in  the  environment.  It  can
quickly plan and process high-dimensional space and adjust
according to the collected information. However, due to the
strong randomness, the planned path is often not the optimal
solution, and secondary optimization is needed in practical
application.

3.2.1. PRM Algorithm
The PRM method based on random sampling technique

approximates the free space by constructing an undirected
graph, as shown in Fig. (7) [75]. This method transforms the
planning  problem  in  continuous  space  into  topological
space,  which  can  effectively  solve  the  path  planning
problem in high-dimensional space and complex constraints
[76]. However, the PRM algorithm is very dependent on the
initialization conditions, and the number of sampling points
is too small, which may lead to the failure of path planning.
In  addition,  because  the  graph  structure  generated  by  the
PRM algorithm in the learning phase is based on the static
environment, the adaptability to the dynamic environment is
also limited.

Reducing planning time and improving path security is
one  of  the  basic  research  directions  of  the  algorithm.  Zou
used the random node generation function to generate ran-
dom nodes in free space [77]. Under the condition that the
number of sampling nodes is constant, they can find a feasi-
ble  path  with  fewer  random  sampling  points,  which  im-
proves the utilization rate of nodes and reduces the number
of nodes in the path. Aiming at the problems of high compu-
tational cost and poor real-time performance of the PRM al-
gorithm  in  complex  environments,  Ravankar  proposed  a
PRM method based on hybrid potential and proved that the
planning  success  rate  of  the  improved  algorithm  is  more
than 95% in both global and local environments [78]. These
two methods can be used as effective references to provide
improvement ideas.

In order to solve the difficulty of the PRM algorithm in
the narrow channel region, Liu proposed the PRM algorithm
in the potential field, thereby increasing the number of sam-
pling points in the narrow channel space and realizing the op-
timal  path  connection,  but  the  use  of  repulsive  magnetic
field  is  easy  to  cause  uneven  sampling  points  [79].  Li
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Fig. (7). PRM Connect. (A higher resolution / colour version of this figure is available in the electronic copy of the article).

proposed a PRM algorithm based on distance transform to
obtain a reasonable distribution of sampling points [80]. Th-
ese  methods  have  a  certain  degree  of  representativeness,
which effectively solve the narrow channel problem. Short-
ening the overall path length is also one of the research direc-
tions. Cheng uses the method of changing the distance of the
connection points of the sampling points to reduce the unrea-
sonable paths in the path network diagram, which effective-
ly improves the efficiency and safety of the actual robot path
planning  [81].  Mohanta  proposed  a  new  probabilistic
roadmap  fuzzy  control  system,  which  makes  the  mobile
robot turn smoothly at the sharp inflection point and find the
optimal  path  in  the  environment  with  complex  obstacles
[82].

In  practical  applications,  the  PRM  algorithm  is  often
used as a preprocessing method to construct an undirected
road map, and then other algorithms are used to obtain the
shortest obstacle avoidance path. For example, patent [83]
uses the Dijkstra search algorithm to search in the connected
path map. Patent [84-86] uses the A * search algorithm to
search on the undirected road map to obtain the shortest obs-
tacle avoidance path. This method can significantly reduce
the amount of computation and has the ability to find the op-
timal path.

3.2.2. RRT Algorithm
In order to make up for the shortcomings of the PRM al-

gorithm, Lavalle proposed a fast random expansion tree algo-
rithm (RRT) based on sampling [87]. The algorithm has the
advantages  of  fast  exploration,  strong  robustness,  strong
adaptability to the environment, and can be used for real--
time online planning. However, the computational complexi-
ty of RRT algorithm is higher than that of PRM algorithm,
and the algorithm itself lacks optimization ability, which is
not suitable for mobile robots to adopt directly. The exten-
sion process of RRT algorithm is shown in Fig. (8).

The main improvements to RRT in the existing literature
are unidirectional random tree extensions, multidirectional
random  tree  extensions,  and  fusion  with  other  algorithms
[88].

Among them, the one-way random tree expansion takes
the starting point of the path as the root node of the random
tree. The overall structure is simple, solves the problem of '
dimension explosion ', and can be well used for robot path
planning with high-dimensional  complete  constraints  such
as manipulators and quadrotors. Frazzoli et al. proposed the
RRT* algorithm with asymptotic optimality [89]. Based on
the RRT node expansion, the random geometric graph and
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Fig. (8). RRT algorithm extension process.

pruning  optimization  theory  are  added  to  ensure  that  the
nodes of the random tree can converge to the current opti-
mal value. Nasir et al. proposed the RRT*-smart algorithm
with  intelligent  sampling  and  path  optimization  functions,
which alleviated the problem of slow convergence of RRT*
[90]. However, intelligent sampling focuses on convergence
speed  and  sacrifices  random  exploration  characteristics,
which  may  lose  better  solutions.  Liu  proposed  a  variable
step size search based on RRT. Based on the idea of fast ex-
pansion of large step length and convergence path of small
step length, the search efficiency is improved [91].

The multi-way random tree is extended with a one-way
random tree as the basic tree structure. Multiple random tree
root nodes are constructed in the workspace to optimize the
connection between random trees. At the same time, the ran-
dom search performance is  strong,  which is  more suitable
for path planning in narrow areas or complex environments.
The  patent  discloses  a  bidirectional  RRT  path  planning
method. The algorithm alternately expands the nodes of the
two path trees until the two path trees intersect, and smooth-
es the initial path to obtain the final path [92]. Qureshi pro-
posed an optimal algorithm IB-RRT* for intelligent bidirec-
tional search, which selects extended nodes by random node
neighborhood filling or nearest node weight sorting, and is
dedicated to complex environment search [93]. Burget et al.
proposed a bidirectional search algorithm BI-RRT* that sat-
isfies the task constraints [94]. The algorithm combines the
characteristics of Informed-RRT* and B-RRT*, and uses a
double random tree to generate the initial path to solve the
problem of slow convergence speed. The algorithm is more
efficient than the B-RRT* algorithm.

Integration with other algorithms can also effectively im-
prove the planning ability of the RRT algorithm. For exam-
ple, Jia proposed an improved algorithm that combines artifi-

cial potential field method with RRT algorithm [95]. This al-
gorithm effectively solves the problem that RRT algorithm
is easy to cause local minimum value, greatly improves and
improves the planning efficiency.  Higueras et  al.  used the
fully convolutional neural network (FCN) to learn the path
planning task in an unsupervised learning manner, avoiding
the explicit expression of the cost function [96]. The trained
FCN guided the RRT* extension to complete the actual path
search. Experiments showed that FCN-RRT* achieved bet-
ter results than RLT*. Chter et al. proposed a self-learning
non-uniform node sampling distribution, the possible opti-
mal path area is obtained by offline learning, and then the
sampling  algorithm  is  executed  [97].  The  sampling  nodes
are concentrated in this  area for  bias sampling to improve
the path planning speed.

The patent considers the uncertainty of pose estimation
in practical applications, provides pose estimation uncertain-
ty constraints for trajectory planning in dynamic scenes, and
improves the safety and real-time performance of robot tra-
jectory online planning [98].

4. ARTIFICIAL INTELLIGENCE ALGORITHM
Artificial  intelligence  algorithm is  a  strategy  based  on

machine learning, optimization or search to model the envi-
ronment and learn the best path. It directly iterates with the
environment to obtain the reward value to optimize the strat-
egy, so as to realize the autonomous planning of the optimal
path for mobile robots.

4.1. Q-Learning Algorithm
The Q-Learning algorithm is a reinforcement learning al-

gorithm that uses a look-up table method to describe the val-
ue function Q(st, at) of the state-action pair, allowing the mo-
bile robot to use the learning mechanism to plan a better col-
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lision-free  path  based  on  changes  in  the  environment  [99,
100]. But when the working environment is more complex,
Q-table needs to occupy a lot of memory space, causing the
“disaster of dimensionality” [101].

The traditional reinforcement learning method has no pri-
or knowledge of the environment in the initial stage of learn-
ing  [102].  In  the  application  of  navigation  planning,  there
are often problems such as slow convergence speed and long
learning  time.  In  this  regard,  many  scholars  have  empha-
sized  the  effect  of  using  prior  knowledge  to  guide  during
learning. FRAMLING et al. improved the rate of reinforce-
ment learning by combining the concepts of short-term mem-
ory  and long-term memory [103].  LILLICRAP use  neural
network to fit the Q function to improve the convergence sta-
bility  of  Q-Learning  [104].  Duan  proposed  a  definition
method of environmental state space based on potential ener-
gy field knowledge, which can guide the mobile robot to con-
verge  quickly  in  the  early  stage  of  learning,  improve  the
learning efficiency in the initial stage, and greatly improve
the convergence speed of the algorithm [105].

To address the problem of slow convergence, it is also ef-
fective  to  improve  the  algorithm  itself.  Soong  et  al.  pro-
posed an improved Q-learning algorithm, which proves that
properly initializing the Q value can accelerate the conver-
gence  speed  of  Q-learning  [106].  Mao  proposed  an  im-
proved ε-Q-Learning algorithm. The results show that com-
pared with the existing Q-Learning algorithm, the improved
algorithm can not only find a better path, but also effectively
reduce the cost of iterative search [107]. Bae et al. proposed
a multi-robot path planning algorithm based on Q-learning
and convolutional  neural  network (CNN) algorithm [108].
The experimental results show that this method enables mul-
tiple mobile robots to plan paths quickly and complete tasks
efficiently in different environments.

The patent proposes an APF-DQN algorithm, which real-
izes the path planning process and the key node identifica-
tion  process  simultaneously  [109].  The  patent  proposes  a
path  planning  method  based  on  Q-Learning  algorithm  for
complex sequential logic tasks, which is more reasonable on
the basis of reflecting the characteristics of signal sequential
logic tasks, and makes the path planning results more reason-
able and effective [110].

4.2. Deep Reinforcement Learning Algorithms
Reinforcement learning (RL) is limited by the dimension

of action space and sample space, and it is difficult to adapt
to  complex  problems  closer  to  the  actual  situation.  Deep
learning (DL) has strong perception ability and can adapt to
complex problems, but it lacks certain decision-making abili-
ty. Therefore, the combination of DL and RL to obtain deep
reinforcement learning (DRL) and its application provides a
new idea and direction for motion planning of mobile robots
in complex environments [111].

The deep reinforcement learning algorithm is mainly di-
vided into the algorithm based on the value function, the al-
gorithm based on the strategy function and the Actor- Critic

architecture algorithm combining the advantages of the two.
The  algorithm  based  on  the  value  function  has  a  network
that fits the action value function, and the representative al-
gorithms are DQN, Rainbow, etc. [112, 113]. The algorithm
based on the strategy function has  a  strategy network that
fits the probability distribution function of the action space,
and the representative algorithms are  PG,  TRPO, etc.  The
Actor-Critic  architecture  algorithm  combining  the  advan-
tages of the two has both a Critic network that evaluates the
quality of the action and an Actor network that selects the ac-
tion.  Its  representative  algorithms  are  A3C,  DDPG,  etc
[114-116].

Currently, the application and improvement of DRL in
path planning is one of the main research hotspots: Kulkarni
et  al.  proposed  a  hierarchical  DQN  algorithm  (hierarchi-
cal-DQN, h-DQN), which divides the control task into sever-
al levels and learns from multi-level strategies [117]. Each
level is responsible for controlling at different time and be-
havior abstraction levels, which improves learning efficien-
cy. Zhu et al. solved DRL 's lack of generalization ability to
new  targets  through  the  Actor-Critic  model  and  proposed
the  AI2-THOR  framework,  which  improved  the  problem
that DRL could not be transferred from the simulated envi-
ronment to the real world [118]. Wang et al. proposed a se-
lective training mode based on the minimum depth informa-
tion,  and  combined  with  the  A3C  algorithm  to  train  the
robot, which improved the path-finding ability of the robot
in an unknown complex environment [119]. Gao et al. pro-
posed a fusion algorithm that combines the dual-delay deep
deterministic  strategy  gradient  of  the  deep  learning  algo-
rithm with the probability roadmap [120]. The experimental
results show that the algorithm improves the generalization
ability of the model. Foerster et al. proposed a multi-robot
behavior-criticism  method,  which  enables  each  agent  to
make decentralized decisions while increasing the common
reward value of all agents, and significantly improves the av-
erage performance of robot path planning [121].

Deep reinforcement learning is also widely used in real
life. Patents solve the problem that endoscopic path planning
cannot be combined with the key information of the inspec-
tion site, and improve the accuracy of endoscopic path plann-
ing [122]. The patent applies the deep reinforcement method
to  the  warehouse  management  system,  which  greatly  im-
proves the real-time performance of the warehouse manage-
ment planning path and ensures the efficient operation of the
warehouse management [123].

At present, the research on three-dimensional path plann-
ing based on deep reinforcement learning mainly focuses on
obstacle avoidance strategy. For all kinds of obstacles, the
same way is used to avoid them, and there is still a certain
deviation from the actual optimal path.

5. LOCAL OBSTACLE AVOIDANCE ALGORITHMS
Local path planning is mainly to perceive the surround-

ing  environment  information  in  real  time  through  various
sensors (such as camera, lidar, millimeter wave radar, ultra-
sonic radar, inertial navigation, etc.) carried by itself. After



12     Recent Patents on Engineering, XXXX, Vol. XXX Wang et al.

obtaining  the  local  obstacle  distribution,  the  local  optimal
path without collision is planned in real time. The common-
ly used local path planning algorithms include time elastici-
ty band method, artificial potential field method and dynam-
ic window approach method.

5.1. Artificial Potential Field Methods
Artificial  Potential  Field  methods  (APF)  is  a  virtual

force method [124]. It constructs a gravitational field and a
repulsive field that work together around the target position
and the obstacle, and then plans a collision-free optimal path
by searching the descending direction of the potential func-
tion [125]. The algorithm has simple structure, good real--
time control and smooth planning path, which is suitable for
local path planning [126].

The algorithm has two main types of limitations due to
its own principles. The first is the problem of target unreach-
ability, and the second is the problem of local minima [127].
Improvements for these two types of shortcomings mainly
lie in three directions: improving or utilizing new potential
field  functions,  eliminating or  avoiding local  minima,  and
combining with other algorithms [128].

In terms of changing the potential field function, Geva et
al.  solved the target  unreachable problem by adding a dy-
namic repulsion gain factor to the repulsion potential field
function [129]. The value of the factor can be dynamically
adjusted by the fuzzy controller. Chen et al. proposed add-
ing  the  relative  angle,  speed  and  acceleration  of  the  robot
and the obstacle as constraints to improve the potential field
function, effectively solving the problem of target unreacha-
bility caused by falling into local optimality, but the time to
solve the problem is too long [130].

To solve the problem of local minimum point, we main-
ly guide the AUV to escape from the local minimum point
by setting up virtual guidance points [131]. Azzabi et al. pro-
posed a new repulsive potential function, which can activate
the virtual escape force when the local minimum value is de-
tected, so that the robot can get rid of the deadlock position
and  smoothly  avoid  the  obstacles  in  the  target  direction
[126]. In order to get rid of the complexity of adding guide
points, Milad et al. proposed a potential field filling strategy
to avoid local minimum points, that is, to search for the glob-
al [59]. If a local minimum point is found, the potential field
of this point is filled to eliminate the local minimum point.

Combined with other algorithms, it not only retains the
advantages of simple principle and rapid response of artifi-
cial potential field method, but also overcomes the shortcom-
ings of the algorithm itself to a certain extent, and further op-
timizes the obstacle avoidance path [132]. Duan et al. pro-
posed a parallel search method combining artificial potential
field model with genetic algorithm [133]. The improved al-
gorithm can avoid obstacles and find the best path of mobile
robot in complex environment. The patent proposes an artifi-
cial potential field path planning method that combines gra-
dient descent and beetle antennae search, which can make
the planned path conform to the robot dynamics constraints,

smooth the path, and break through the local optimum [134].
Abdalla combines the improved artificial potential field algo-
rithm with fuzzy logic [135]. The fuzzy logic controller is
used  for  the  motion  control  of  the  mobile  robot,  and  the
membership function is optimized by PSO algorithm. The si-
mulation  results  show  that  the  robot  can  navigate  in  a
smoother path, react faster, and avoid obstacles effectively
in both static and dynamic environments.

The patent discloses a method of information fusion of
laser point cloud and video image, and local path planning
of obstacle avoidance path based on improved artificial po-
tential  field  algorithm,  so  as  to  better  avoid  ship  collision
[136].

5.2. Dynamic Window Approach
The  Dynamic  Window  Approach  (DWA)  is  a  method

that samples the surrounding at the current moment [137].
The  algorithm  performs  real-time  path  planning  based  on
the robot's constraints and environment information. It can
avoid obstacles and find suitable paths in complex environ-
ments, while also avoiding collisions with obstacles in the
search space. However, it is highly dependent on global pa-
rameters  and  is  not  applicable  to  unknown  environments
[138]. In practical applications, other algorithms are usually
combined to achieve a complete path planning process [139,
140].

Fig.  (9)  is  a  schematic  diagram of DWA. The AGV is
represented by a black boat,  and obstacles are represented
by  gray  rectangles.  The  curve  in  the  figure  represents  the
movement trajectory of the AGV.

Fig. (9). Schematic diagram of DWA.
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Although the application of dynamic window method for
path  planning makes  the  mobile  robot  have  good obstacle
avoidance ability and the path is relatively smooth, it is easy
to fall into the local optimal solution and cannot reach the
specified target along the global optimal path. LI et al. pro-
posed an improved dynamic window method, which consid-
ers the relationship between the size of the mobile robot and
the feasible space between obstacles, so that the algorithm
can  solve  the  local  minimum  problem  and  improve  the
smoothness of the path [141]. Based on the traditional dy-
namic  window algorithm,  EDUARDO et  al.  proposed  the
moving  obstacle  dynamic  window method  (DW4DO)  and
the moving obstacle tree dynamic window method (DW4-
DOT) to deal with dynamic obstacles, which improved the
security and stability of the algorithm [142]. MISSURA   et
al. added a dynamic collision model to the dynamic window
method  to  predict  future  collisions  with  the  environment,
which  not  only  keeps  the  algorithm  computationally  effi-
cient, but also reduces the number of collisions in a dynamic
environment [143].

In terms of algorithm fusion, Chang et al.  proposed an
improved DWA algorithm based on Q-learning to solve the
problem  of  insufficient  DWA  evaluation  function,  which
leads to high dependence on global reference [144]. The al-
gorithm modifies and extends the evaluation function on the
basis of the original DWA algorithm, and adds two evalua-
tion functions to improve the navigation performance. This
method shows high navigation efficiency and success rate in
complex unknown environment.

In practical applications, the dynamic window method is
rarely used as the only path planning method. It is generally

used as a local planning algorithm and other algorithms. On-
ly when the planning pressure is small, it is used as an obsta-
cle avoidance algorithm, such as a patent [145].

5.3. Time Elasticity Band Method
The Temporal Elasticity Band (TEB) method is an im-

proved algorithm based on the  Elasticity  Band (EB) algo-
rithm [146, 147]. The time elastic band method explicitly en-
hances the ' elastic band ' and time information, thus allow-
ing  the  dynamic  constraints  of  the  robot  to  be  considered
and the trajectory to be directly modified, and path optimiza-
tion to be performed within the band [148]. The advantage
of the TEB algorithm is that it takes into account the time
factor and can generate trajectories based on the speed and
acceleration  of  the  robot  to  provide  a  smoother  and  safer
path  [149].  However,  in  the  practical  application  process,
there are still problems such as speed jumps and robot vuln-
erability to shocks. The trajectory composed of the pose of
the continuous robot is shown in Fig. (10).

In  response  to  the  problem  of  unstable  speed  output,
Chen et  al.  proposed  a  TEB-VO trajectory  planning  algo-
rithm that integrates the TEB algorithm and the velocity obs-
tacle method (VO), and dynamically adjusts the discrete in-
tervals  of  the  planned  trajectory  and  the  maximum  linear
speed allowed by the robot [150]. Experiments show that the
algorithm has good trajectory planning and dynamic obsta-
cle avoidance ability. In the process of trajectory optimiza-
tion, Zheng et al. constructed a specific improved TEB algo-
rithm with acceleration constraints [151]. The experimental
results show that the improved TEB algorithm is suitable for
the Ackerman robot, and the planned trajectory is better.

Fig. (10). Trajectory continuous position sequence with time interval. (A higher resolution / colour version of this figure is available in the
electronic copy of the article).
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Table 1. Summary of mainstream path planning algorithms.

Algorithms
Implementation Mechanisms and

Principles
Cutting Edge Limitations

Conventional
planning
algorithm

Bug
Move towards the target point and go

around obstacles.
Fast planning speed; suitable for

real-time path planning
Only applies to 2D space; local

minima problem exists

GM

Dijkstra
Solve for the distance between the

vertices of the right graph
Good robustness; fast computation

speed

Planning is inefficient when the
number of nodes in the graph is too

large.

A*
Find the minimum estimated cost from

the current node to the goal point
Simple calculation; short planning path

High computational effort; more
inflection points in paths

D*
Find the minimum integrated cost

from the current node to the goal point
Faster computation and shorter

planning paths

Paths are closer to the edge of the
obstacle; there are many turning

points in the paths

VFH
Move in the direction of low

obstacle density
High reliability, computational

efficiency and robustness.
Not applicable to narrow regions;

local minima problem exists

Voronoi
Connecting boundaries at a certain
distance from an obstacle to form a

path

Longer distance to obstacles; high
safety

Not applicable to high-dimensional
spaces; high path cost

Intelligent
search

algorithm

Heuristic

ACO
Ants move to places with high

pheromones
High robustness Easy to fall into local optimality

GA
Populations produce new species
through crossover and mutation

Strong asymptotic optimality;
overcoming local optima

Low computing speed;
high memory usage

PSO
Individual and group collaboration and

information sharing

Easy to implement, high robust, good
results on continuous space

optimisation problems

Prone to premature convergence,
search performance is highly

dependent on parameters; Prone to
local minima

stochastic

PRM
Constructing path network graphs

using random sampling in the
workspace

Simplified analytical computation of
the environment, suitable for the

planning of high-latitude free bitmap
spaces

Computationally intensive;
not applicable to online planning

RRT
Random trees are growing and

spreading in all directions

Applicable to high dimensional spaces;
relatively simple algorithm; fast
scaling; applicable to differential

constraints

High stochasticity; high path cost;
decreasing efficiency with
increasing environmental

complexity

Artificial
intelligence
algorithm

Q-Learning algorithm
Reward and punish actions through

interaction with the environment
Convergence is guaranteed without

knowing the model
Not suitable for complex work

environments

Deep Reinforcement
Learning Algorithms

Self-learning intrinsic laws of path
planning samples and planning

feasible movement paths

Strong perceptual skills and ability to
adapt to complex problems

All obstacles are avoided in the
same way, which still deviates from

the
optimal path in reality

Local obstacle
avoidance
algorithms

APF
Changing the direction of robot

motion by combined forces
Simple structure;capable of avoiding

obstacles in real time
Prone to target unreachability and

local minimum problems

DWA
Sampling of speed and motion

parameters and positions

It is possible to reach the target point
quickly and at the same time avoid col-

lisions between the robot and
obstacles

Highly dependent on global
parameters, not suitable for

unknown environments

TEB
Plan paths with fewer obstacles and

include time information
Generate trajectories based on robot

speed and acceleration
Problems with velocity jumps and

robot vulnerability to shocks
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Wen Yu et al. proposed an improved TEB algorithm that
increases the risk penalty factor constraint in order to solve
the  problem  that  traditional  TEB  algorithm  planning  is
prone  to  abnormal  behaviors  such  as  regression  and  large
turns in cluttered scenes [152]. Experiments show that the
improved TEB algorithm can plan safer and smoother trajec-
tories  in  complex  environments  and  reduce  the  impact  on
the robot. Aiming at the defect that the TEB algorithm can-
not distinguish the types of obstacles, Xie et al. proposed an
improved TEB algorithm using two mean filters to filter the
laser point cloud [153]. Experiments show that the dynamic
obstacle avoidance trajectory planning system based on the
improved  TEB algorithm can  perform real-time  trajectory
planning in complex dynamic environments.

In the aspect of algorithm fusion planning, Guo et al. pro-
posed a multi-task navigation scheduling algorithm based on
A* and TEB [154]. The improved A* algorithm avoids the
phenomenon of crossing obstacles and controls the rotation
angle of adjacent path points within 45°. The improved TEB
algorithm reduces the velocity and angular velocity variance
of  the  robot  by  47.1%  and  18.2%  respectively.  Shen  pro-
posed a hierarchical path planning method, which combines
the improved A* algorithm with the TEB algorithm. The im-
proved  A*  algorithm  can  reduce  the  turning  point  by
93.69% and shorten the path length by 0.9% [155]. The im-
proved TEB algorithm can reduce  the  degree  of  deviation
from the global path, and the fusion of the two can effective-
ly avoid unknown obstacles.

In practical applications, it is mostly used in occasions
with  high sensitivity  to  time and high safety.  It  is  used in
conjunction with global planning algorithms such as A* as
local planning algorithms, such as patents [156, 157].

6.  COMPARISON  OF  PATH  PLANNING  ALGO-
RITHMS

This  paper  briefly  summarizes  the  current  mainstream
path planning algorithms, and lists the implementation mech-
anisms, principles, advantages and limitations of related al-
gorithms. The results are shown in Table 1.

The existing path planning algorithms can be adeptly ap-
plied  to  mobile  robots,  as  each  algorithm  possesses  its
unique advantages and applicable scenarios. However, their
development is often constrained by inherent limitations, ne-
cessitating substantial efforts in algorithm optimization. In
practical applications, it is difficult for a single mobile robot
path  planning model  to  simulate  the  changing reality,  and
multi-mobile robot path planning is closer to reality. Multi--
mobile robots have problems such as collaboration and task
scheduling,  so  reasonable  planning  is  needed  to  improve
planning efficiency and reduce energy consumption.

Compared with other path planning algorithms, the net-
work architecture of artificial intelligence algorithms often
enables algorithms to have strong environmental adaptabili-
ty. With the increase of mobile robot application scenarios,
the complexity of the working environment it faces is fur-
ther increased, and the advantages of artificial intelligence al-

gorithms  will  be  further  demonstrated.  Therefore,  it  is  of
great  significance to  apply  deep reinforcement  learning to
mobile robots. In the future work, a lot of research needs to
be done on this application scenario.

At the same time, the algorithm evaluation functions in
different scenarios are different, which is difficult to be ex-
pressed by accurate mathematical models. In the known ap-
plications, obstacles are approximately equivalent to circles,
rectangles, etc., and then path planning is performed on the
environment. The generalization ability in practical applica-
tions needs to be improved.

CONCLUSION
Path planning technology is an important branch in the

field  of  intelligent  mobile  robots,  and  the  use  of  effective
path  planning  methods  can  enhance  efficiency,  save  time,
and reduce the utilization of human and material resources.
The  current  path  planning  algorithms  have  certain  limita-
tions and still require a lot of work to improve their perfor-
mance and applicability. With the development of artificial
intelligence  technology,  multi-technology  integration  pro-
vides opportunities for the advancement of path planning al-
gorithms. By improving the performance and applicability
of the path planning algorithm, the application scenarios of
mobile robots can be broader.

CURRENT & FUTURE DEVELOPMENTS
This paper delves into mobile robot path planning algo-

rithms, categorizing them into four distinct groups: tradition-
al  planning  algorithms,  intelligent  search  algorithms,  AI-
based algorithms, and algorithms designed for local obstacle
avoidance. Following this classification, the paper explores
their respective advantages and application domains. Subse-
quently,  drawing  from  current  research  and  future  trends
identified by scholars, the main focuses of contemporary mo-
bile robot technology research are summarized as follows:

1. Optimizing the Performance of Existing Algorithms
Despite the existing algorithms having inherent limita-

tions,  rendering  them  unsuitable  as  general-purpose  solu-
tions across various scenarios, they still find application in
specific contexts. The underlying mathematical principles re-
main  desirable.  Therefore,  optimizing  path  planning  algo-
rithms with consideration to their limitations becomes cru-
cial. Future work should delve into exploring and applying
additional  mathematical  theories  to  enhance  these  algo-
rithms. Examples include refining the initial parameter sett-
ing of ACO, improving the cost function of A* and D* algo-
rithms, and enhancing the evaluation function of the DWA
algorithm.

2. Multi-sensor Information Fusion
The rapid development of sensors has led to a trend to-

wards multimodal sensor fusion in mobile robotic systems.
In the process of path planning and obstacle avoidance, the
basis  is  map  modeling  and  identification  of  obstacles
through the collection of information about the surrounding
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environment. This involves the effective integration of infor-
mation collected by individual sensors. The purpose of multi-
-sensor information fusion is to eliminate redundant informa-
tion from the data and provide a basis for reliable analysis,
thereby improving accuracy. It is also necessary to compare
the data and automatically exclude erroneous data informa-
tion to ensure that reliable environmental sensing results are
obtained. Effective multi-sensor fusion therefore improves
the accuracy of maps and provides more accurate environ-
ment sensing for mobile robotic systems, leading to more re-
liable,  safe,  and efficient  path planning and obstacle avoi-
dance capabilities.

3. More Efficient Algorithmic Fusion
Path planning has become relatively mature in the pre-

sent day and can already be applied in production life. How-
ever, each algorithm has its own advantages and disadvan-
tages, such as local minima, path inflection points, and low
planning efficiency. The fusion of multiple algorithms can
enhance strengths and mitigate the shortcomings of the plan-
ning  method,  ultimately  achieving  higher  efficiency.  The
use of neural networks in the PRM algorithm for sampling
point learning and prediction can help generate optimal solu-
tions and reduce the generation of invalid sampling points.
This ultimately accelerates the convergence speed of the al-
gorithm. The fusion of the A* algorithm and the ant colony
algorithm, along with the introduction of the evaluation func-
tion of the A* algorithm, optimizes the pheromone updating
method of the ant colony algorithm. This not only speeds up
the  convergence  rate  of  the  algorithm but  also  overcomes
the problem of local minima. Therefore, a more efficient fu-
sion path planning algorithm is also a key research objective
for future path planning.

4. Wider Range of Applications
In the current application scenario, most mobile robots

realize the path planning function through their computing
units.  With  the  increase  in  market  demand,  mobile  robots
are  being  applied  to  a  variety  of  complex  scenarios.  This
trend  highlights  the  inevitable  need  for  high-performance
core processing units in mobile robots. And backed by the
development of Internet of Things technology, data can be
transmitted quickly through the Internet. Therefore, it is also
a  trend  to  transfer  the  large  amount  of  data  that  mobile
robots need to process to high-performance remote servers
through the network.

For example, while traditional driverless cars can only
achieve autonomous path planning through high-speed com-
puting modules equipped with high-speed capabilities, it is
now possible to process a large amount of data collected by
multiple sensors in real-time through network collaboration,
IoT, and other technologies. This method involves transmitt-
ing the information collected by the sensors to a cloud serv-
er in the IoT via a 5G odule. Loud server combines high-pre-
cision maps and large amounts of data to plan a safe and col-
lision-free  path  using  local  obstacle  avoidance  algorithm.
The planning results are then sent back to the mobile robot
for execution.
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