Skip to content
2000
Volume 19, Issue 9
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Introduction

With advances in medical technology and an aging population, the number of patients with upper limb movement disorders has increased, who are facing difficulties in self-care and occupational integration. Traditional rehabilitation methods have limitations, such as unstable results, long cycle times, and insufficient resources. Therefore, upper limb rehabilitation robotics has emerged, combining robotics, medicine, and other fields to simulate upper limb movement for targeted rehabilitation training in order to improve effectiveness, shorten the cycle, and reduce the burden on therapists.

Objective

This study aimed to introduce the classification, advantages and disadvantages, and development trend in existing upper limb rehabilitation robots and provide a basis for other researchers to understand the current status of their development and future trends.

Methods

Various studies and patents on upper limb rehabilitation robots were reviewed, revealing the structural characteristics, along with the advantages and disadvantages, of typical robotic arms used for upper limb rehabilitation.

Results and Discussion

Through the analysis of various upper limb rehabilitation robots, the characteristics and problems of upper limb rehabilitation robots were identified, and the development trend of upper limb rehabilitation robots was prospected.

Conclusion

Upper limb rehabilitation robots have many advantages, such as good adaptability, personalized customization, safety and reliability, ., but they also have some disadvantages, such as difficult control, high manufacturing cost, and short service life. In the future, upper limb rehabilitation robots will develop towards simpler structures, greater comfort, affordability, diverse functions, better efficacy, and increased safety.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121317025240913071318
2024-12-13
2025-11-29
Loading full text...

Full text loading...

References

  1. WangL. Summary of the Report on Stroke Prevention and Control in China 2020.Chinese J. Cere. Dise.20221902136144
    [Google Scholar]
  2. LinX. WangH. RongX. HuangR. PengY. Exploring stroke risk and prevention in China: Insights from an outlier.Aging20211311156591567310.18632/aging.20309634086602
    [Google Scholar]
  3. FeiginV.L. NorrvingB. MensahG.A. Global Burden of Stroke.Circ. Res.2017120343944810.1161/CIRCRESAHA.116.30841328154096
    [Google Scholar]
  4. NaghaviM. AbajobirA.A. AbbafatiC. AbbasK.M. Abd-AllahF. AberaS.F. AboyansV. AdetokunbohO. AfshinA. AgrawalA. AhmadiA. AhmedM.B. AichourA.N. AichourM.T.E. AichourI. AiyarS. AlahdabF. Al-AlyZ. AlamK. AlamN. AlamT. AleneK.A. Al-EyadhyA. AliS.D. Alizadeh-NavaeiR. AlkaabiJ.M. AlkerwiA. AllaF. AllebeckP. AllenC. Al-RaddadiR. AlsharifU. AltirkawiK.A. Alvis-GuzmanN. AmareA.T. AminiE. AmmarW. AmoakoY.A. AnberN. AndersenH.H. AndreiC.L. AndroudiS. AnsariH. AntonioC.A.T. AnwariP. ÄrnlövJ. AroraM. ArtamanA. AryalK.K. AsayeshH. AsgedomS.W. AteyT.M. Avila-BurgosL. AvokpahoE.F.G. AwasthiA. BabalolaT.K. BachaU. BalakrishnanK. BaracA. BarbozaM.A. Barker-ColloS.L. BarqueraS. BarregardL. BarreroL.H. BauneB.T. BediN. BeghiE. BéjotY. BekeleB.B. BellM.L. BennettJ.R. BensenorI.M. BerhaneA. BernabéE. BetsuB.D. BeuranM. BhattS. BiadgilignS. BienhoffK. BikbovB. BisanzioD. BourneR.R.A. BreitbordeN.J.K. BultoL.N.B. BumgarnerB.R. ButtZ.A. Cahuana-HurtadoL. CameronE. CampuzanoJ.C. CarJ. CárdenasR. CarreroJ.J. CarterA. CaseyD.C. Castañeda-OrjuelaC.A. Catalá-LópezF. CharlsonF.J. ChibuezeC.E. Chimed-OchirO. ChisumpaV.H. ChitheerA.A. ChristopherD.J. CiobanuL.G. CirilloM. CohenA.J. ColombaraD. CooperC. CowieB.C. CriquiM.H. DandonaL. DandonaR. DarganP.I. das NevesJ. DavitoiuD.V. DavletovK. de CourtenB. DefoB.K. DegenhardtL. DeiparineS. DeribeK. DeribewA. DeyS. DickerD. DingE.L. DjalaliniaS. DoH.P. DokuD.T. Douwes-SchultzD. DriscollT.R. DubeyM. DuncanB.B. EchkoM. El-KhatibZ.Z. EllingsenC.L. EnayatiA. ErmakovS.P. ErskineH.E. EskandariehS. EsteghamatiA. EstepK. FarinhaC.S.S. FaroA. FarzadfarF. FeiginV.L. FereshtehnejadS-M. FernandesJ.C. FerrariA.J. FeyissaT.R. FilipI. FinegoldS. FischerF. FitzmauriceC. FlaxmanA.D. FoigtN. FrankT. FraserM. FullmanN. FürstT. FurtadoJ.M. GakidouE. Garcia-BasteiroA.L. GebreT. GebregergsG.B. GebrehiwotT.T. GebremichaelD.Y. GeleijnseJ.M. Genova-MalerasR. GesesewH.A. GethingP.W. GillumR.F. GirefA.Z. GiroudM. GiussaniG. GodwinW.W. GoldA.L. GoldbergE.M. GonaP.N. GopalaniS.V. GoudaH.N. GoulartA.C. GriswoldM. GuptaR. GuptaT. GuptaV. GuptaP.C. HaagsmaJ.A. Hafezi-NejadN. HailuA.D. HailuG.B. HamadehR.R. HambisaM.T. HamidiS. HammamiM. HancockJ. HandalA.J. HankeyG.J. HaoY. HarbH.L. HareriH.A. HassanvandM.S. HavmoellerR. HayS.I. HeF. HedayatiM.T. HenryN.J. Heredia-PiI.B. HerteliuC. HoekH.W. HorinoM. HoritaN. HosgoodH.D. HostiucS. HotezP.J. HoyD.G. HuynhC. IburgK.M. IkedaC. IleanuB.V. IrensoA.A. IrvineC.M.S. IslamS.M.S. JacobsenK.H. JahanmehrN. JakovljevicM.B. JavanbakhtM. JayaramanS.P. JeemonP. JhaV. JohnD. JohnsonC.O. JohnsonS.C. JonasJ.B. JürissonM. KabirZ. KadelR. KahsayA. KamalR. KarchA. KarimiS.M. KarimkhaniC. KasaeianA. KassawN.A. KassebaumN.J. KatikireddiS.V. KawakamiN. KeiyoroP.N. KemmerL. KesavachandranC.N. KhaderY.S. KhanE.A. KhangY-H. KhojaA.T.A. KhosraviM.H. KhosraviA. KhubchandaniJ. KiadaliriA.A. KielingC. KievlanD. KimY.J. KimD. KimokotiR.W. KinfuY. KissoonN. KivimakiM. KnudsenA.K. KopecJ.A. KosenS. KoulP.A. KoyanagiA. KulikoffX.R. KumarG.A. KumarP. KutzM. KyuH.H. LalD.K. LallooR. LambertT.L.N. LanQ. LansinghV.C. LarssonA. LeeP.H. LeighJ. LeungJ. LeviM. LiY. Li KappeD. LiangX. LibenM.L. LimS.S. LiuP.Y. LiuA. LiuY. LodhaR. LogroscinoG. LorkowskiS. LotufoP.A. LozanoR. LucasT.C.D. MaS. MacarayanE.R.K. MaddisonE.R. Magdy Abd El RazekM. MajdanM. MajdzadehR. MajeedA. MalekzadehR. MalhotraR. MaltaD.C. ManguerraH. ManyazewalT. MapomaC.C. MarczakL.B. MarkosD. Martinez-RagaJ. Martins-MeloF.R. MartopulloI. McAlindenC. McGaugheyM. McGrathJ.J. MehataS. MeierT. MelesK.G. MemiahP. MemishZ.A. MengeshaM.M. MengistuD.T. MenotaB.G. MensahG.A. MeretojaT.J. MeretojaA. MillearA. MillerT.R. MinnigS. MirarefinM. MirrakhimovE.M. MisganawA. MishraS.R. MohamedI.A. MohammadK.A. MohammadiA. MohammedS. MokdadA.H. MolaG.L.D. MollenkopfS.K. MolokhiaM. MonastaL. MontañezJ.C. MonticoM. MooneyM.D. Moradi-LakehM. MoragaP. MorawskaL. MorozoffC. MorrisonS.D. Mountjoy-VenningC. MrutsK.B. MullerK. MurthyG.V.S. MusaK.I. NachegaJ.B. NaheedA. NaldiL. NangiaV. NascimentoB.R. NasherJ.T. NatarajanG. NegoiI. NgunjiriJ.W. NguyenC.T. NguyenQ.L. NguyenT.H. NguyenG. NguyenM. NicholsE. NingrumD.N.A. NongV.M. NoubiapJ.J.N. OgboF.A. OhI-H. OkoroA. OlagunjuA.T. OlsenH.E. OlusanyaB.O. OlusanyaJ.O. OngK. OpioJ.N. OrenE. OrtizA. OsmanM. OtaE. PaM. PacellaR.E. PakhaleS. PanaA. PandaB.K. Panda-JonasS. PapachristouC. ParkE-K. PattenS.B. PattonG.C. PaudelD. PaulsonK. PereiraD.M. Perez-RuizF. PericoN. PervaizA. PetzoldM. PhillipsM.R. PigottD.M. PinhoC. PlassD. PletcherM.A. PolinderS. PostmaM.J. PourmalekF. PurcellC. QorbaniM. QuintanillaB.P.A. RadfarA. RafayA. Rahimi-MovagharV. RahmanM.H.U. RahmanM. RaiR.K. RanabhatC.L. RankinZ. RaoP.C. RathG.K. RawafS. RayS.E. RehmJ. ReinerR.C. ReitsmaM.B. RemuzziG. RezaeiS. RezaiM.S. RokniM.B. RonfaniL. RoshandelG. RothG.A. RothenbacherD. RuhagoG.M. SaR. SaadatS. SachdevP.S. SadatN. SafdarianM. SafiS. SafiriS. SagarR. SahathevanR. SalamaJ. SalamatiP. SalomonJ.A. SamyA.M. SanabriaJ.R. Sanchez-NiñoM.D. SantomauroD. SantosI.S. Santric MilicevicM.M. SartoriusB. SatpathyM. SchmidtM.I. SchneiderI.J.C. Schulhofer-WohlS. SchutteA.E. SchwebelD.C. SchwendickeF. SepanlouS.G. Servan-MoriE.E. ShackelfordK.A. ShahrazS. ShaikhM.A. ShamsipourM. ShamsizadehM. SharmaJ. SharmaR. SheJ. SheikhbahaeiS. SheyM. ShiP. ShieldsC. ShigematsuM. ShiriR. ShirudeS. ShiueI. ShomanH. ShrimeM.G. SigfusdottirI.D. SilpakitN. SilvaJ.P. SinghJ.A. SinghA. SkiadaresiE. SligarA. SmithD.L. SmithA. SmithM. SobaihB.H.A. SonejiS. SorensenR.J.D. SorianoJ.B. SreeramareddyC.T. SrinivasanV. StanawayJ.D. StathopoulouV. SteelN. SteinD.J. SteinerC. SteinkeS. StokesM.A. StrongM. StrubB. SubartM. SufiyanM.B. SunguyaB.F. SurP.J. SwaminathanS. SykesB.L. Tabarés-SeisdedosR. TadakamadlaS.K. TakahashiK. TakalaJ.S. TalongwaR.T. TarawnehM.R. TavakkoliM. TaveiraN. TegegneT.K. Tehrani-BanihashemiA. TemsahM-H. TerkawiA.S. ThakurJ.S. ThamsuwanO. ThankappanK.R. ThomasK.E. ThompsonA.H. ThomsonA.J. ThriftA.G. Tobe-GaiR. Topor-MadryR. TorreA. TortajadaM. TowbinJ.A. TranB.X. TroegerC. TruelsenT. TsoiD. TuzcuE.M. TyrovolasS. UkwajaK.N. UndurragaE.A. UpdikeR. UthmanO.A. UzochukwuB.S.C. van BovenJ.F.M. VasankariT. VenketasubramanianN. ViolanteF.S. VlassovV.V. VollsetS.E. VosT. WakayoT. WallinM.T. WangY-P. WeiderpassE. WeintraubR.G. WeissD.J. WerdeckerA. WestermanR. WhetterB. WhitefordH.A. WijeratneT. WiysongeC.S. WoldeyesB.G. WolfeC.D.A. WoodbrookR. WorkichoA. XavierD. XiaoQ. XuG. YaghoubiM. YakobB. YanoY. YaseriM. YimamH.H. YonemotoN. YoonS-J. YotebiengM. YounisM.Z. ZaidiZ. ZakiM.E.S. ZegeyeE.A. ZenebeZ.M. ZerfuT.A. ZhangA.L. ZhangX. ZipkinB. ZodpeyS. LopezA.D. MurrayC.J.L. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016.Lancet2017390101001151121010.1016/S0140‑6736(17)32152‑928919116
    [Google Scholar]
  5. PengB. LiuM. New evidence, new guideline: Interpretation of the Chinese guidelines for diagnosis and treatment of acute ischemic stroke, 2018
    [Google Scholar]
  6. RuitaoL. LiuZ. Construction and Effect of Limb Functional Rehabilitation Training Program for Stroke Hemiplegia Patients.Inner Mongolia Med. Uni. J.202143S1100102
    [Google Scholar]
  7. SuF. XuW.D. Enhancing Brain Plasticity to Promote Stroke Recovery.Front. neurol.202011
    [Google Scholar]
  8. LiY. The Effect of Upper Limb Rehabilitation Robot Combined with Conventional Upper Limb Rehabilitation Training on Upper Limb Function of Stroke Patients in Recovery Period.Southern Medical University2020
    [Google Scholar]
  9. ZhangL. JiaG. MaJ. WangS. ChengL. Short and long-term effects of robot-assisted therapy on upper limb motor function and activity of daily living in patients post-stroke: A meta-analysis of randomized controlled trials.J. Neuroeng. Rehabil.20221917610.1186/s12984‑022‑01058‑835864524
    [Google Scholar]
  10. FanY. YuJ. ChenH. ZhangJ. DuanJ. MoD. ZhuW. WangB. OuyangF. ChenY. LanL. ZengJ. Chinese Stroke Association guidelines for clinical management of cerebrovascular disorders: Executive summary and 2019 update of clinical management of cerebral venous sinus thrombosis.Stroke Vasc. Neurol.20205215215810.1136/svn‑2020‑00035832409571
    [Google Scholar]
  11. QassimH.M. Wan HasanW.Z. A Review on Upper Limb Rehabilitation Robots.Appl. Sci.20201019697610.3390/app10196976
    [Google Scholar]
  12. AlrabghiL. AlnemariR. AloteebiR. AlshammariH. AyyadM. Al IbrahimM. AlotayfiM. BugshanT. AlfaifiA. AljuwaydH. Stroke types and management.Int. J. Community Med. Public Health201859371510.18203/2394‑6040.ijcmph20183439
    [Google Scholar]
  13. YuL YuHL Research Progress in Upper Limb Rehabilitation Robots.Prog. Biomed. Eng.2020413134143
    [Google Scholar]
  14. ReznickE. KyleR. Lower-limb kinematics and kinetics during continuously varying human locomotion.arXiv2021
    [Google Scholar]
  15. WangA. GeY. HuN. Control Design of Lower Limb Rehabilitation Robot Based on Gait Data.Kongzhi Gongcheng2021
    [Google Scholar]
  16. HussainF. GoeckeR. MohammadianM. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.Proc. Inst. Mech. Eng. H.2021235121375138510.1177/09544119211032010
    [Google Scholar]
  17. WangZ. WangY. QiuS. Research Progress on Upper Limb Rehabilitation Robots for Stroke.CJCNN20232311521
    [Google Scholar]
  18. TerranovaT.T. SimisM. SantosA.C.A. AlfieriF.M. ImamuraM. FregniF. BattistellaL.R. Robot-assisted therapy and constraint-induced movement therapy for motor recovery in stroke: Results from a randomized clinical trial.Front. Neurorobot.20211568401910.3389/fnbot.2021.68401934366819
    [Google Scholar]
  19. DoumasI. EverardG. DehemS. LejeuneT. Serious games for upper limb rehabilitation after stroke: A meta-analysis.J. Neuroeng. Rehabil.202118110010.1186/s12984‑021‑00889‑134130713
    [Google Scholar]
  20. Publication of ‘Rehabilitation Engineering and Biomechanics’.Chinese J. Rehabil. Med.2011265414
    [Google Scholar]
  21. LiuZ. Ergonomic Research on Exoskeleton Upper Limb Motor Function Rehabilitation System.Dissertation, Donghua University2017
    [Google Scholar]
  22. Upper. Limb. KapandjiA.I. GuD. Functional Anatomy of the Musculoskeletal SystemBeijingPeople's Military Medical Press2011
    [Google Scholar]
  23. BrackenridgeJ. BradnamL.V. LennonS. CostiJ.J. HobbsD.A. A Review of Rehabilitation Devices to Promote Upper Limb Function Following Stroke.Neurosci. Biomed. Eng.201641254210.2174/2213385204666160303220102
    [Google Scholar]
  24. AtesS. HaarmanC.J.W. StienenA.H.A. SCRIPT passive orthosis: Design of interactive hand and wrist exoskeleton for rehabilitation at home after stroke.Auton. Robots201741371172310.1007/s10514‑016‑9589‑6
    [Google Scholar]
  25. KangH.B. WangJ.H. Adaptive robust control of 5 DOF Upper-limb exoskeleton robot.Int. J. Control. Autom. Syst.201513373374110.1007/s12555‑013‑0389‑x
    [Google Scholar]
  26. WangY. LiJ. Design and application of a powered lower limb exoskeleton system: A device for enhancing and improving walking function.Chinese J. Rehabil. Theory Pract.2011177628631
    [Google Scholar]
  27. ShenY. SunJ. MaJ. RosenJ. Admittance Control Scheme Comparison of EXO-UL8: A Dual-Arm Exoskeleton Robotic System,2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR),Toronto, ON, Canada, 2019, pp. 611-61.201910.1109/ICORR.2019.8779545
    [Google Scholar]
  28. ShenY. RosenJ. Chapter 5 - EXO-UL Upper Limb Robotic Exoskeleton System Series: From 1 DOF Single-Arm to (7+1) DOFs Dual-Arm.Wearable Robotics Systems and ApplicationsAcademic Press20209110310.1016/B978‑0‑12‑814659‑0.00005‑9
    [Google Scholar]
  29. ZhaoY. XuC. ZhangJ. Analysis and research on key technologies of lower limb exoskeletons for human body.Mach. Design Res.200820081015
    [Google Scholar]
  30. OttenA. VoortC. StienenA. AartsR. van AsseldonkE. van der KooijH. LIMPACT:A Hydraulically Powered Self-Aligning Upper Limb Exoskeleton.IEEE/ASME Trans. Mechatron.20152052285229810.1109/TMECH.2014.2375272
    [Google Scholar]
  31. XieS. MeiJ. LiuH. Research progress and trends of McKibben-type pneumatic artificial muscles.Jisuanji Jicheng Zhizao Xitong201824510651080
    [Google Scholar]
  32. TschierskyM. HekmanE.E.G. BrouwerD.M. HerderJ.L. SuzumoriK. A Compact McKibben Muscle Based Bending Actuator for Close-to-Body Application in Assistive Wearable Robots.IEEE Robot. Autom. Lett.2020523042304910.1109/LRA.2020.2975732
    [Google Scholar]
  33. IrshaidatM. SoufianM. Al-IbadiA. Nefti-MezianiS. A Novel Elbow Pneumatic Muscle Actuator for Exoskeleton Arm in Post-Stroke Rehabilitation2019 2nd IEEE International Conference on Soft Robotics (RoboSoft),Seoul, Korea (South), 2019, pp. 630-635.10.1109/ROBOSOFT.2019.8722813
    [Google Scholar]
  34. FasoliS.E. KrebsH.I. SteinJ. FronteraW.R. HoganN. Effects of robotic therapy on motor impairment and recovery in chronic stroke.Arch. Phys. Med. Rehabil.200384447748210.1053/apmr.2003.5011012690583
    [Google Scholar]
  35. ZhangY. WangZ. JiL. ShengB. The clinical application of the upper extremity compound movements rehabilitation training robot.9th International Conference on Rehabilitation Robotics, ICORRChicago, IL, 2005, pp. 91-94.10.1109/ICORR.2005.1501059
    [Google Scholar]
  36. DongK. XiaoD. XieQ. A comprehensive upper limb assessment and rehabilitation training robot.C.N. Patent 209092068U2019
    [Google Scholar]
  37. YiJ. JianZ. WangD. Upper limb rehabilitation robot (ArmGuider).C.N. Patent 304630509S2018
    [Google Scholar]
  38. HoganN. KrebsH.I. CharnnarongJ. SrikrishnaP. SharonA. MIT-MANUS: A workstation for manual therapy and training. IProceedings IEEE International Workshop on Robot and Human Communication, Tokyo, Japan2003
    [Google Scholar]
  39. WilliamsD.J. KrebsH.I. HoganN. A robot for wrist rehabilitation.2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey2005
    [Google Scholar]
  40. KrebsH. FerraroM. BuergerS.P. NewberyM.J. MakiyamaA. SandmannM. LynchD. VolpeB.T. HoganN. Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus.J. Neuroeng. Rehabil.200411510.1186/1743‑0003‑1‑515679916
    [Google Scholar]
  41. KrebsH.I. HoganN. Therapeutic Robotics: A Technology Push: Stroke rehabilitation is being aided by robots that guide movement of shoulders and elbows, wrists, hands, arms and ankles to significantly improve recovery of patients.Proc. IEEE20069491727173810.1109/JPROC.2006.88072119779587
    [Google Scholar]
  42. CharlesG. Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience.J. Rehabil. Res. Dev.2001
    [Google Scholar]
  43. RosatiG. GallinaP. MasieroS. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation.IEEE Trans. Neural Syst. Rehabil. Eng.200715456056910.1109/TNSRE.2007.90856018198714
    [Google Scholar]
  44. LaribiM.A. CarboneG. ZeghloulS. On the Optimal Design of Cable Driven Parallel Robot with a Prescribed Workspace for Upper Limb Rehabilitation Tasks.J. Bionics Eng.201916350351310.1007/s42235‑019‑0041‑4
    [Google Scholar]
  45. Ben HamidaI. LaribiM.A. MlikaA. RomdhaneL. ZeghloulS. CarboneG. Multi-Objective optimal design of a cable driven parallel robot for rehabilitation tasks.Mechanism Mach. Theory202115610414110.1016/j.mechmachtheory.2020.104141
    [Google Scholar]
  46. FongJ. CrocherV. TanY. OetomoD. MareelsI. EMU: A transparent 3D robotic manipulandum for upper-limb rehabilitation2017 International Conference on Rehabilitation Robotics (ICORR)201710.1109/ICORR.2017.8009341
    [Google Scholar]
  47. ZhangL. LiJ. CuiY. DongM. FangB. ZhangP. Design and performance analysis of a parallel wrist rehabilitation robot (PWRR).Robot. Auton. Syst.202012510339010.1016/j.robot.2019.103390
    [Google Scholar]
  48. ZhangL.G. YuH.L. MengQ.L. A towed upper limb rehabilitation robot end effector.C.N. Patent 117,323,177.2023
    [Google Scholar]
  49. WangH.B. ZhangX.Z. KangX.Y. LuoJ.J. TianY. ChenL. TangJ.H. HanZ. A Wrist Rehabilitation Device and Upperlimb Rehabilitation Robot.C.N. Patent 115,778,7552022
    [Google Scholar]
  50. BuongiornoD. SotgiuE. LeonardisD. MarcheschiS. SolazziM. FrisoliA. WRES: A Novel 3 DoF WRist ExoSkeleton With Tendon-Driven Differential Transmission for Neuro-Rehabilitation and Teleoperation.IEEE Robot. Autom. Lett.2018332152215910.1109/LRA.2018.2810943
    [Google Scholar]
  51. HigumaT. KiguchiK. ArataJ. Low-Profile Two-Degree-of-Freedom Wrist Exoskeleton Device Using Multiple Spring Blades.IEEE Robot. Autom. Lett.20183130531110.1109/LRA.2017.2739802
    [Google Scholar]
  52. WuQ.C. XieY.S. WuH.T. Gravity balance terminal traction upper limb rehabilitation robot and working method.C.N. Patent 108,814,8902018
    [Google Scholar]
  53. GongS. A terminal traction upper limb rehabilitation device.C.N. Patent 116,725,8182023
    [Google Scholar]
  54. HanJ.H. LiL.Y. LiX.P. A kind of terminal traction upper limb rehabilitation training device.C.N. Patent 112,022,6332020
    [Google Scholar]
  55. LiD.S. Upper limb rehabilitation training robot.C.N. Patent 117,338,5652023
    [Google Scholar]
  56. LuC. LiuC. HanX.Z. Terminal traction upper limb rehabilitation robot.C.N. Patent 109,009,8802018
    [Google Scholar]
  57. ChenY. Research on upper limb exoskeleton robot rehabilitation training system.Master's thesis, Harbin Institute of Technology2017
    [Google Scholar]
  58. CremaA. A hybrid tool for reaching and grasping rehabilitation: The ArmeoFES2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society,Boston, MA, USA, 2011, pp. 3047-3050.10.1109/IEMBS.2011.6090833
    [Google Scholar]
  59. PehlivanA.U. CelikO. O’MalleyM.K. Mechanical design of a distal arm exoskeleton for stroke and spinal cord injury rehabilitation2011 IEEE International Conference on Rehabilitation Robotics, Zurich201110.1109/ICORR.2011.5975428
    [Google Scholar]
  60. PirondiniE. CosciaM. MarcheschiS. RoasG. SalsedoF. FrisoliA. BergamascoM. MiceraS. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects.J. Neuroeng. Rehabil.2016131910.1186/s12984‑016‑0117‑x26801620
    [Google Scholar]
  61. KimB. DeshpandeA.D. Controls for the shoulder mechanism of an upper-body exoskeleton for promoting scapulohumeral rhythm2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, Singapore201510.1109/ICORR.2015.7281255
    [Google Scholar]
  62. RenY. ParkH-S. ZhangL-Q. Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation2009 IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan200910.1109/ICORR.2009.5209482
    [Google Scholar]
  63. ZhangW. Research on control system of upper limb exoskeleton rehabilitation robot.Doctoral dissertation, Shandong Jianzhu University2019
    [Google Scholar]
  64. ZhangW. LuS. WuL. ZhangX. ZhaoH. Based on fuzzy compensation master-slave upper limb exoskeleton rehabilitation robot training control method.Robotics2019411104111
    [Google Scholar]
  65. BrahmiB. BrahmiA. SaadM. GauthierG. Habibur RahmanM. Robust Adaptive Tracking Control of Uncertain Rehabilitation Exoskeleton Robot.J. Dyn. Syst. Meas. Control20191411212100710.1115/1.4044372
    [Google Scholar]
  66. HuntJ. LeeH. ArtemiadisP. A Novel Shoulder Exoskeleton Robot Using Parallel Actuation and a Passive Slip Interface.J. Mech. Robot.20179101100210.1115/1.4035087
    [Google Scholar]
  67. HuntJ. ArtemiadisP. LeeH. Optimizing Stiffness of a Novel Parallel-Actuated Robotic Shoulder Exoskeleton for a Desired Task or Workspace2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD201810.1109/ICRA.2018.8463159
    [Google Scholar]
  68. LiuC.L. TianY. ZhangJ.Q. TanY.X. ZouY.Y. ZhengJ.Y. HuangH.B. Motor control device suitable for soft rehabilitation glove.C.N. Patent 116,650,2832023
    [Google Scholar]
  69. ChenC.T. LienW.Y. ChenC.T. WuY.C. Implementation of an Upper-Limb Exoskeleton Robot Driven by Pneumatic Muscle Actuators for Rehabilitation.Actuators20209410610.3390/act9040106
    [Google Scholar]
  70. LiX.H. QiuX. WangC.J. LingL.Y. DuP.F. CaiY. A seven-degree-of-freedom exoskeleton upper limb rehabilitation robot.C.N. Patent 116,763,5952023
    [Google Scholar]
  71. WangH. HuangZ. LuJ. Fractional-order modeling and control of pneumatic-hydraulic upper limb rehabilitation training system.J. Intel. Fuzzy Syst.202039576397651
    [Google Scholar]
  72. PanL.Z. TangZ.Q. MinY.X. LiuX. YaoJ.W. ZhaoH.F. TangW. A seven degree of freedom upper limb rehabilitation robot with mixed series and driving.C.N. Patent 116,459,1172023
    [Google Scholar]
  73. NamC. RongW. LiW. CheungC. NgaiW. CheungT. PangM. LiL. HuJ. WaiH. HuX. An Exoneuromusculoskeleton for Self-Help Upper Limb Rehabilitation After Stroke.Soft Robot.202291143510.1089/soro.2020.009033271057
    [Google Scholar]
  74. ZhangZ.J. JiangT. ZhangD.B. JinH.Z. WangY.L. LiL.Y. MengF.S. WangQ.G. CaoP.Z. A seven-degree-of-freedom exoskeleton-type upper limb rehabilitation robot.C.N. Patent 116,473,8032023
    [Google Scholar]
  75. SuY-Y. WuK-Y. LinC-H. YuY-L. LanC-C. Design of a Lightweight Forearm Exoskeleton for Fine-Motion Rehabilitation2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Auckland201810.1109/AIM.2018.8452243
    [Google Scholar]
  76. IslamM.R. Assad-Uz-ZamanM. BrahmiB. BouteraaY. WangI. RahmanM.H. Design and Development of an Upper Limb Rehabilitative Robot with Dual Functionality.Micromachines202112887010.3390/mi1208087034442492
    [Google Scholar]
  77. LinK. ChuangL. WuC. HsiehY. ChangW. Responsiveness and validity of three dexterous function measures in stroke rehabilitation.J. Rehabil. Res. Dev.201047656357110.1682/JRRD.2009.09.015520848369
    [Google Scholar]
  78. FeysH. De WeerdtW. VerbekeG. SteckG.C. CapiauC. KiekensC. DejaegerE. Van HoydonckG. VermeerschG. CrasP. Early and repetitive stimulation of the arm can substantially improve the long-term outcome after stroke: A 5-year follow-up study of a randomized trial.Stroke200435492492910.1161/01.STR.0000121645.44752.f715001789
    [Google Scholar]
  79. KimG.J. RiveraL. SteinJ. Combined Clinic-Home Approach for Upper Limb Robotic Therapy After Stroke: A Pilot Study.Arch. Phys. Med. Rehabil.201596122243224810.1016/j.apmr.2015.06.01926189202
    [Google Scholar]
  80. DingQ. XiongA. ZhaoX. A review of research and application of surface electromyography-based motion intention recognition method.Acta Automatica Sinica20164211325
    [Google Scholar]
  81. JunkaiS. YafengN. ChengqiX. Single-Channel sEMG Using Wavelet Deep Belief Networks for Upper Limb Motion Recognition.Int. J. Ind. Ergon.202076C102905102905
    [Google Scholar]
  82. MulderT. Motor imagery and action observation: Cognitive tools for rehabilitation.J. Neural Transm. (Vienna)2007114101265127810.1007/s00702‑007‑0763‑z17579805
    [Google Scholar]
  83. ParkW. KwonG.H. KimD.H. KimY.H. KimS.P. KimL. Assessment of cognitive engagement in stroke patients from single-trial EEG during motor rehabilitation.IEEE Trans. Neural Syst. Rehabil. Eng.201523335136210.1109/TNSRE.2014.235647225248189
    [Google Scholar]
  84. RosenfeldJ.V. WongY.T. Neurobionics and the brain–computer interface: current applications and future horizons.Med. J. Aust.2017206836336810.5694/mja16.0101128446119
    [Google Scholar]
  85. MattiaD. PichiorriF. ColamarinoE. The Promoter, a Brain-Computer Interface-Assisted Intervention to Promote Upper Limb Functional Motor Recovery After Stroke: A Study Protocol for a Randomized Controlled Trial to Test Early and Long Term Efficacy and to Identify Determinants of Response.BMC Neurology2020201
    [Google Scholar]
  86. SongJ. YoungB.M. NigogosyanZ. Characterizing Relationships of DTI, fMRI, and Motor Recovery in Stroke Rehabilitation Utilizing Brain-Computer Interface Technology.Frontiers in Neuroengineering20147
    [Google Scholar]
  87. NojimaI. SugataH. TakeuchiH. Brain-Computer Interface Training Based on Brain Activity Can Induce Motor Recovery in Patients With Stroke: A Meta-Analysis.Neurorehabil Neural Repair20223628396
    [Google Scholar]
  88. ChenJ.M. LiX.L. PanQ.H. YangY. XuS.M. XuJ.W. Effects of non-invasive brain stimulation on motor function after spinal cord injury: a systematic review and meta-analysis.J. Neuroeng. Rehabil.2023201310.1186/s12984‑023‑01129‑436635693
    [Google Scholar]
  89. LorachH. GalvezA. SpagnoloV. MartelF. KarakasS. InteringN. VatM. FaivreO. HarteC. KomiS. RavierJ. CollinT. CoquozL. SakrI. BaakliniE. Hernandez-CharpakS.D. DumontG. BuschmanR. BuseN. DenisonT. van NesI. AsbothL. WatrinA. StruberL. Sauter-StaraceF. LangarL. AuboirouxV. CardaS. ChabardesS. AksenovaT. DemesmaekerR. CharvetG. BlochJ. CourtineG. Walking naturally after spinal cord injury using a brain–spine interface.Nature2023618796312613310.1038/s41586‑023‑06094‑537225984
    [Google Scholar]
  90. BaekH. SarievA. LeeS. DongS.Y. RoyerS. KimH. Deep Cerebellar Low-Intensity Focused Ultrasound Stimulation Restores Interhemispheric Balance after Ischemic Stroke in Mice.IEEE Trans. Neural Syst. Rehabil. Eng.20202892073207910.1109/TNSRE.2020.300220732746292
    [Google Scholar]
  91. AmbrosiniE. ZajcJ. FerranteS. FerrignoG. Dalla GasperinaS. BulgheroniM. BaccinelliW. SchauerT. WiesenerC. RussoldM. GfoehlerM. PuchingerM. WeberM. BeckerS. KrakowK. ImmickN. AugstenA. RossiniM. ProserpioD. GasperiniG. MolteniF. PedrocchiA. A Hybrid Robotic System for Arm Training of Stroke Survivors: Concept and First Evaluation.IEEE Trans. Biomed. Eng.201966123290330010.1109/TBME.2019.290052531180833
    [Google Scholar]
  92. DoleM. AuboirouxV. LangarL. MitrofanisJ. A systematic review of the effects of transcranial photobiomodulation on brain activity in humans.Rev. Neurosci.202334667169310.1515/revneuro‑2023‑000336927734
    [Google Scholar]
  93. LeeM. KwonO. KimY. EEG Dataset and OpenBMI Toolbox for Three BCI Paradigms: An Investigation into BCI Illiteracy.Gigascience201985
    [Google Scholar]
  94. SimmonsL. SharmaN. BaronJ.C. PomeroyV.M. Motor imagery to enhance recovery after subcortical stroke: who might benefit, daily dose, and potential effects.Neurorehabil. Neural Repair200822545846710.1177/154596830831559718780881
    [Google Scholar]
  95. LiepertJ. BüschingI. SehleA. Mental Chronometry and Mental Rotation Abilities in Stroke Patients with Different Degrees of Sensory Deficit.Restor. Neurol. Neurosci.2016346907914
    [Google Scholar]
  96. KoppS.L. RathmellJ.P. Acquiring New Technical Skills and Aptitude for Mental Rotation.Anesthesiology2015123599399410.1097/ALN.000000000000087126389553
    [Google Scholar]
  97. ZejianC. ChunW. NanX. Research progress on the application of upper limb robots in the assessment of upper limb proprioception in stroke patients.Chinese J. Phys. Med. Rehabil.20203280284
    [Google Scholar]
  98. ChenZ.J. GuM.H. HeC. XiongC.H. XuJ. HuangX.L. Robot-Assisted Arm Training in Stroke Individuals With Unilateral Spatial Neglect: A Pilot Study.Front. Neurol.20211269144410.3389/fneur.2021.69144434305798
    [Google Scholar]
  99. VaraltaV. PicelliA. FonteC. MontemezziG. La MarchinaE. SmaniaN. Effects of contralesional robot-assisted hand training in patients with unilateral spatial neglect following stroke: A case series study.J. Neuroeng. Rehabil.201411116010.1186/1743‑0003‑11‑16025476507
    [Google Scholar]
/content/journals/eng/10.2174/0118722121317025240913071318
Loading
/content/journals/eng/10.2174/0118722121317025240913071318
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test