Skip to content
2000
Volume 19, Issue 9
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Introduction

This patent study investigates the application of friction stir welding (FSW) to join aluminium alloy 6061 with high-strength interstitial free galvannealed steel. The effects of tool rotational speed, traverse speed, and shoulder diameter on the mechanical properties of the joints were examined.

Methods

Optimal conditions were identified, with a tool rotational speed of 1200 rpm and a traverse speed of 100 mm/min, significantly enhancing the ultimate tensile strength (UTS) and impact strength of the joints. The optimized parameters resulted in UTS values reaching up to 320 MPa. Microstructural analysis revealed substantial grain refinement in the stir zone (SZ), leading to increased micro-hardness values of up to 150 HV, compared to the base materials (BM) and heat-affected zones (HAZ).

Results

Micro-hardness often rises as a result of grain refining brought on by tool rotation in the SZ and TMAZ. However, as the indentation distance from the SZ grows, the micro-hardness declines, especially in the HAZ and the BM's grain-coarsened region. The distribution of micro-hardness also shows that dynamic recrystallization in the FSW leads to considerable grain refinement in the SZ. SZ is, hence, harder on the microscale than BM and HAZ.

Conclusion

The findings highlight the critical role of process parameter optimization in improving the mechanical performance of aluminium-steel dissimilar joints.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121309208240726073747
2024-09-04
2025-11-29
Loading full text...

Full text loading...

References

  1. ThomasW. NicholasE.D. NeedhamJ.C. MurchM.G. Temple-SmithP. DawesC.J. Friction stir welding processU.S. Patent No. 6,050,1602000
    [Google Scholar]
  2. CookR. DeanM. DawsonD. CroteauC. Method and apparatus for friction stir weldingU.S. Patent No. 8,118,1282012
    [Google Scholar]
  3. MishraR.S. Friction stir welding toolU.S. Patent No. 9,637,5212017
    [Google Scholar]
  4. TsaiH-H. DasH. ElangovanS. O’BrienJ. Techniques for friction stir welding of dissimilar materialsU.S. Patent No. 10,172,8422019
    [Google Scholar]
  5. OchiM. KondoT. HasegawaT. Friction stir welding apparatus and methodEuropean Patent No. 2,346,8592013
    [Google Scholar]
  6. KhodirS.A. ShibayanagiT. Friction stir welding of dissimilar AA2024 and AA7075 aluminum alloys.Mater. Sci. Eng. B20081481-3828710.1016/j.mseb.2007.09.024
    [Google Scholar]
  7. UzunH. Dalle DonneC. ArgagnottoA. GhidiniT. GambaroC. Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel.Mater. Des.2005261414610.1016/j.matdes.2004.04.002
    [Google Scholar]
  8. GuoJ.F. ChenH.C. SunC.N. BiG. SunZ. WeiJ. Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters.Mater. Design201456185192
    [Google Scholar]
  9. Aghajani DerazkolaH. EyvazianA. SimchiA. Submerged friction stir welding of dissimilar joints between an Al-Mg alloy and low carbon steel: Thermo-mechanical modeling, microstructural features, and mechanical properties.J. Manuf. Process.202050687910.1016/j.jmapro.2019.12.035
    [Google Scholar]
  10. PatelN.P. ParlikarP. Singh DhariR. MehtaK. PandyaM. Numerical modelling on cooling assisted friction stir welding of dissimilar Al-Cu joint.J. Manuf. Process.2019479810910.1016/j.jmapro.2019.09.020
    [Google Scholar]
  11. MahdianikhotbesaraA. SehhatM.H. HadadM. Experimental study on micro-friction stir welding of dissimilar butt joints between Al 1050 and pure copper.Metallography, Microstructure, and Analysis202110445847310.1007/s13632‑021‑00771‑5
    [Google Scholar]
  12. CaoF. LiJ. HouW. ShenY. NiR. Microstructural evolution and mechanical properties of the friction stir welded Al Cu dissimilar joint enhanced by post-weld heat treatment.Mater. Charact.1742021.11099810.1016/j.matchar.2021.110998
    [Google Scholar]
  13. RanjithR. Senthil KumarB. Joining of dissimilar aluminium alloys AA2014 T651 and AA6063 T651 by friction stir welding process.W. Trans. App. Theo. Mech20149179186
    [Google Scholar]
  14. WanL. HuangY. Friction stir welding of dissimilar aluminum alloys and steels: a review.Int. J. Adv. Manuf. Technol.2018995-81781181110.1007/s00170‑018‑2601‑x
    [Google Scholar]
  15. Rajesh Jesudoss HynesN. Vivek PrabhuM. Shenbaga VeluP. KumarR. TharmarajR. FarooqM.U. PruncuC.I. An experimental insight of friction stir welding of dissimilar AA 6061/Mg AZ 31 B joints.Proc. Inst. Mech. Eng., B J. Eng. Manuf.20222366-778779710.1177/09544054211043474
    [Google Scholar]
  16. VermaS. MisraJ.P. Experimental investigation on friction stir welding of dissimilar aluminium alloys.Proc. Inst. Mech. Eng., E J. Process Mech. Eng.202123551545155410.1177/09544089211008694
    [Google Scholar]
  17. Abd ElazizM. ShehabeldeenT.A. ElsheikhA.H. ZhouJ. EweesA.A. Al-qanessM.A.A. Utilization of Random Vector Functional Link integrated with Marine Predators Algorithm for tensile behavior prediction of dissimilar friction stir welded aluminum alloy joints.J. Mater. Res. Technol.202095113701138110.1016/j.jmrt.2020.08.022
    [Google Scholar]
  18. SahuS.K. PalK. MahtoR.P. DashP. Monitoring of friction stir welding for dissimilar Al 6063 alloy to polypropylene using sensor signals.Int. J. Adv. Manuf. Technol.20191041-415917710.1007/s00170‑019‑03855‑3
    [Google Scholar]
  19. ZhaoH. YuM. JiangZ. ZhouL. SongX. Interfacial microstructure and mechanical properties of Al/Ti dissimilar joints fabricated via friction stir welding.J. Alloys Compd.201978913914910.1016/j.jallcom.2019.03.043
    [Google Scholar]
  20. KumarS. WuC. ShiL. Intermetallic diminution during friction stir welding of dissimilar Al/Mg alloys in lap configuration via ultrasonic assistance.Metall. Mater. Trans., A Phys. Metall. Mater. Sci.202051115725574210.1007/s11661‑020‑05982‑z
    [Google Scholar]
  21. RanjithR. GiridharanP.K. SenthilK.B. Predicting the tensile strength of friction stir welded dissimilar aluminum alloy using ann.Int. J. Civil. Eng. Tech.201789345353
    [Google Scholar]
  22. YinK. CaoL. WangN. Mechanical properties and residual stresses of 5083 to AM60B dissimilar friction stir welding with different process parameters.J. Adhes. Sci. Technol.201933232615262910.1080/01694243.2019.1653593
    [Google Scholar]
  23. ShivaKumarG.N. RajamuruganG. Friction stir welding of dissimilar alloy combinations—a reviewProceed. Instit. Mechan. Engin.20222361266886705
    [Google Scholar]
  24. SinghU.K. DubeyA.K. Study of weld characteristics in friction stir welding of dissimilar Mg-Al-Zn magnesium alloys under varying welding conditions.J. Mater. Eng. Perform.202130107690770310.1007/s11665‑021‑05893‑z
    [Google Scholar]
  25. WuC. WangT. SuH. Material flow velocity, strain and strain rate in ultrasonic vibration enhanced friction stir welding of dissimilar Al/Mg alloys.J. Manuf. Process.202275132210.1016/j.jmapro.2021.12.055
    [Google Scholar]
  26. GargA. RaturiM. BhattacharyaA. Influence of additional heating in friction stir welding of dissimilar aluminum alloys with different tool pin profiles.Int. J. Adv. Manuf. Technol.20191051-415517510.1007/s00170‑019‑04186‑z
    [Google Scholar]
  27. DongJ. ZhangD. LuoX. ZhangW. ZhangW. QiuC. EBSD study of underwater friction stir welded AA7003-T4 and AA6060-T4 dissimilar joint.J. Mater. Res. Technol.2020934309431810.1016/j.jmrt.2020.02.056
    [Google Scholar]
  28. ChenW. WangW. LiuZ. ZhaiX. BianG. ZhangT. DongP. Improvement in tensile strength of Mg/Al alloy dissimilar friction stir welding joints by reducing intermetallic compounds.J. Alloys Compd.8612021.15794210.1016/j.jallcom.2020.157942
    [Google Scholar]
  29. AryaP.K. JainN.K. MurugesanJ. PatelV.K. Developments in friction stir welding of aluminium to magnesium alloy.J. Adhes. Sci. Technol.202236131365140210.1080/01694243.2021.1975614
    [Google Scholar]
  30. ThomäM. GesterA. WagnerG. StraßB. WolterB. BenferS. GowdaD.K. FürbethW. Application of the hybrid process ultrasound enhanced friction stir welding on dissimilar aluminum/dual‐phase steel and aluminum/magnesium joints.Materialwiss. Werkstofftech.201950889391210.1002/mawe.201900028
    [Google Scholar]
  31. YangY. BiJ. LiuH. LiY. LiM. AoS. LuoZ. Research progress on the microstructure and mechanical properties of friction stir welded Al Li alloy joints.J. Manuf. Process.20228223024410.1016/j.jmapro.2022.07.067
    [Google Scholar]
  32. NandanR. DebroyT. BhadeshiaH. Recent advances in friction-stir welding – Process, weldment structure and properties.Prog. Mater. Sci.2008536980102310.1016/j.pmatsci.2008.05.001
    [Google Scholar]
  33. ThreadgillP.L. LeonardA.J. ShercliffH.R. WithersP.J. Friction stir welding of aluminium alloys.Int. Mater. Rev.2009542499310.1179/174328009X411136
    [Google Scholar]
  34. ÇamG. Friction stir welded structural materials: beyond Al-alloys.Int. Mater. Rev.201156114810.1179/095066010X12777205875750
    [Google Scholar]
  35. ChaoY.J. QiX. Thermal and thermo-mechanical modeling of friction stir welding of aluminum alloy 6061-T6.J. Mater. Process. Manuf. Sci.19987221523310.1106/LTKR‑JFBM‑RGMV‑WVCF
    [Google Scholar]
  36. LockwoodW.D. TomazB. ReynoldsA.P. Mechanical response of friction stir welded AA2024: experiment and modeling.Mater. Sci. Eng. A20023231-234835310.1016/S0921‑5093(01)01385‑5
    [Google Scholar]
  37. LockwoodW.D. ReynoldsA.P. Simulation of the global response of a friction stir weld using local constitutive behavior.Mater. Sci. Eng. A20033391-2354210.1016/S0921‑5093(02)00116‑8
    [Google Scholar]
  38. ZhuX.K. ChaoY.J. Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel.J. Mater. Process. Technol.2004146226327210.1016/j.jmatprotec.2003.10.025
    [Google Scholar]
  39. KhandkarM.Z.H. KhanJ.A. ReynoldsA.P. SuttonM.A. Predicting residual thermal stresses in friction stir welded metals.J. Mater. Process. Technol.20061741-319520310.1016/j.jmatprotec.2005.12.013
    [Google Scholar]
  40. FratiniL. BuffaG. CDRX modelling in friction stir welding of aluminium alloys.Int. J. Mach. Tools Manuf.200545101188119410.1016/j.ijmachtools.2004.12.001
    [Google Scholar]
  41. FratiniL. BeccariS. BuffaG. Friction stir welding fem model improvement through inverse thermal characterization.Trans. North Am. Manuf. Res. Inst. SME200533259266
    [Google Scholar]
  42. BuffaG. DonatiL. FratiniL. TomesaniL. Solid state bonding in extrusion and FSW: Process mechanics and analogies.J. Mater. Process. Technol.20061771-334434710.1016/j.jmatprotec.2006.04.042
    [Google Scholar]
  43. FratiniL. BuffaG. ShivpuriR. Improving friction stir welding of blanks of different thicknesses.Mater. Sci. Eng. A20074591-220921510.1016/j.msea.2007.01.041
    [Google Scholar]
  44. BuffaG. FratiniL. ShivpuriR. CDRX modelling in friction stir welding of AA7075-T6 aluminum alloy: Analytical approaches.J. Mater. Process. Technol.20071911-335635910.1016/j.jmatprotec.2007.03.033
    [Google Scholar]
  45. ZhangZ. ZhangH.W. Mechanical analysis of pin in friction stir welding process.J Mech Strength200628857862[in Chinese
    [Google Scholar]
  46. ZhangZ. ZhangH.W. Numerical simulation of dynamic recrystallization and hardness distribution in friction stir welding process.Chin Shu Hsueh Pao2006429981002
    [Google Scholar]
  47. ZhangH. ZhangZ. BieJ. ZhouL. ChenJ. Effect of viscosity on material behavior in friction stir welding process.10.1016/S1003‑6326(06)60375‑0
    [Google Scholar]
  48. ZhangH.W. ZhangZ. Numerical modeling of friction stir welding process by using rate-dependent constitutive model.J. Mater. Sci. Technol.2007237380
    [Google Scholar]
  49. ZhangZ. ZhangH.W. Material behaviors and mechanical features in friction stir welding process.Int. J. Adv. Manuf. Technol.2007351-28610010.1007/s00170‑006‑0707‑z
    [Google Scholar]
  50. AzimzadeganT. SerajzadehS. Thermo-mechanical modeling of friction stir welding.Int. J. Mater. Res.2010101339039710.3139/146.110281
    [Google Scholar]
  51. AvalH.J. SerajzadehS. KokabiA.H. The influence of tool geometry on the thermo-mechanical and microstructural behaviour in friction stir welding of AA5086.Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci.2011225111610.1243/09544062JMES2267
    [Google Scholar]
  52. Jamshidi AvalH. SerajzadehS. KokabiA.H. Thermo-mechanical and microstructural issues in dissimilar friction stir welding of AA5086–AA6061.J. Mater. Sci.201146103258326810.1007/s10853‑010‑5213‑x
    [Google Scholar]
  53. Jamshidi AvalH. SerajzadehS. KokabiA.H. Evolution of microstructures and mechanical properties in similar and dissimilar friction stir welding of AA5086 and AA6061.Mater. Sci. Eng. A2011528288071808310.1016/j.msea.2011.07.056
    [Google Scholar]
  54. Jamshidi AvalH. SerajzadehS. KokabiA.H. Experimental and theoretical evaluations of thermal histories and residual stresses in dissimilar friction stir welding of AA5086-AA6061.Int. J. Adv. Manuf. Technol.2012611-414916010.1007/s00170‑011‑3713‑8
    [Google Scholar]
  55. HeX.C. Numerical studies on friction stir welding of lightweight materials.Adv. Mat. Res.201374311812210.4028/www.scientific.net/AMR.743.118
    [Google Scholar]
  56. NetoD.M. NetoP. Numerical modeling of friction stir welding process: a literature review.Int. J. Adv. Manuf. Technol.2013651-411512610.1007/s00170‑012‑4154‑8
    [Google Scholar]
  57. TutumC.C. HattelJ.H. Numerical optimisation of friction stir welding: Review of future challenges.Sci. Technol. Weld. Join.201116431832410.1179/1362171811Y.0000000011
    [Google Scholar]
  58. GouldJ. FengZ. Heat flow model for friction stir welding of aluminum alloys.J. Mater. Process. Manuf. Sci.19987218519410.1106/648R‑2CNE‑2PD0‑45L6
    [Google Scholar]
  59. SchmidtH. HattelJ. WertJ. An analytical model for the heat generation in friction stir welding.Model. Simul. Mater. Sci. Eng.200412114315710.1088/0965‑0393/12/1/013
    [Google Scholar]
  60. ColliganK. Material flow behavior during friction stir welding of aluminum.Weld J (Miami, Fla)199978229s237s
    [Google Scholar]
  61. XuS. dengX. ReynoldsA.P. SeidelT.U. Finite element simulation of material flow in friction stir welding.Sci. Technol. Weld. Join.20016319119310.1179/136217101101538640
    [Google Scholar]
  62. SeidelT.U. ReynoldsA.P. Two-dimensional friction stir welding process model based on fluid mechanics.Sci. Technol. Weld. Join.20038317518310.1179/136217103225010952
    [Google Scholar]
  63. SchmidtH.N.B. DickersonT.L. HattelJ.H. Material flow in butt friction stir welds in AA2024-T3.Acta Mater.20065441199120910.1016/j.actamat.2005.10.052
    [Google Scholar]
  64. KhandkarMZH. KhanJA. ReynoldsAP. Prediction of temperature distribution and thermal history during friction stir welding: input torque based model.Sci. Technol. Weld Join20148165174
    [Google Scholar]
  65. NandanR. RoyG.G. LienertT.J. DebRoyT. Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel.Sci. Technol. Weld. Join.200611552653710.1179/174329306X107692
    [Google Scholar]
  66. KangS.W. JangB.S. "A study on computational fluid dynamics simulation of friction stir welding", MARSTRUCT 2013Espoo, Finland43343910.1201/b15120‑59
    [Google Scholar]
  67. DongP. LuF. HongJ.K. CaoZ. Coupled thermomechanical analysis of friction stir welding process using simplified models.Sci. Technol. Weld. Join.20016528128710.1179/136217101101538884
    [Google Scholar]
  68. ShercliffH.R. ColegroveP.A. Modelling of friction stir welding.Mathematical modeling of weld phenomena.LondonManey2002Vol. 6927974
    [Google Scholar]
  69. ColegroveP.A. ShercliffH.R. Development of Trivex friction stir welding tool Part 1 – two-dimensional flow modelling and experimental validation.Sci. Technol. Weld. Join.20049434535110.1179/136217104225021670
    [Google Scholar]
  70. ColegroveP.A. ShercliffH.R. Development of Trivex friction stir welding tool Part 2 – three-dimensional flow modelling.Sci. Technol. Weld. Join.20049435236110.1179/136217104225021661
    [Google Scholar]
  71. TelloK. DumanU. MendezP. Scaling laws for the welding arc, weld penetration and friction stir welding.Heal. Environ. Res. Online20092009172182
    [Google Scholar]
  72. TelloK. DumanU. MendezP. Advanced scaling techniques for the modeling of materials processingProceed. ASME summer heat transfer conf.2009360761610.1115/HT2009‑88142
    [Google Scholar]
  73. TelloK.E. GerlichA.P. MendezP.F. Constants for hot deformation constitutive models for recent experimental data.Sci. Technol. Weld. Join.201015326026610.1179/136217110X12665778348380
    [Google Scholar]
  74. MendezP.F. TelloK.E. LienertT.J. Scaling of coupled heat transfer and plastic deformation around the pin in friction stir welding.Acta Mater.201058186012602610.1016/j.actamat.2010.07.019
    [Google Scholar]
  75. RoyG.G. NandanR. DebRoyT. Dimensionless correlation to estimate peak temperature during friction stir welding.Sci. Technol. Weld. Join.200611560660810.1179/174329306X122811
    [Google Scholar]
  76. ReynoldsA.P. TangW. KhandkarZ. KhanJ.A. LindnerK. Relationships between weld parameters, hardness distribution and temperature history in alloy 7050 friction stir welds.Sci. Technol. Weld. Join.200510219019910.1179/174329305X37024
    [Google Scholar]
  77. BuckG.A. LangermanM. Non-Dimensional Characterization of the Friction Stir/Spot Welding Process Using a Simple Couette Flow Model Part I: Constant Property Bingham Plastic SolutionMaterials Processing and Design: Modeling, Simulation and Applications NUMIFORM 2004Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes 13-17 June, 2004 Columbus12831288
    [Google Scholar]
  78. KrzyzanowskiM. DaviesP.S. RainforthW.M. WynneB.P. Combined discrete/finite element multiscale approach for modelling of the tool/workpiece interface during high shear processing: hot rolling and friction stir welding applications.Mater. Sci. Forum2010638-6422622262710.4028/www.scientific.net/MSF.638‑642.2622
    [Google Scholar]
  79. KrzyzanowskiM. RainforthW.M. Advances on modelling of the tool/workpiece interface during high shear processing.Mater. Sci. Forum2010654-6561634163710.4028/www.scientific.net/MSF.654‑656.1634
    [Google Scholar]
  80. Avettand-FènoëlM.N. TaillardR. HerbelotC. ImadA. Structure and mechanical properties of friction stirred beads of 6082- T6 Al alloy and pure copper.Mater. Sci. Forum2010638-6421209121410.4028/www.scientific.net/MSF.638‑642.1209
    [Google Scholar]
/content/journals/eng/10.2174/0118722121309208240726073747
Loading
/content/journals/eng/10.2174/0118722121309208240726073747
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test