Skip to content
2000
Volume 19, Issue 8
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

In recent years, with the development of “smart materials”, magnetorheological fluids have been widely used in the fields of mechanical transmission, aerospace, construction, and medical treatment because of the unique rheological properties that can occur under the action of an applied magnetic field. Magnetorheological clutches with magnetorheological fluid as the working medium have the advantages of simple structure, low noise, fast response, and easy control compared with traditional clutches. In order to provide an overview of the issues encountered by magnetorheological clutches in their current applications and to summarize the optimization designs implemented to address these issues, with the aim of promoting the widespread application of magnetorheological clutches. The basic theory of magnetorheological fluid and magnetorheological clutch design method is introduced. The related patents of magnetorheological clutch structure design are reviewed. The characteristics and advantages of magnetorheological clutch in different working modes are summarized. This study introduces the basic theory of magnetorheological fluid. The problems existing in the application of magnetorheological clutch are explained. The characteristics of magnetorheological clutch based on shear mode, shear-extrusion mode and heat dissipation mode are described. The development trend of magnetorheological clutch is discussed. This paper provides an important basis for the design and application of magnetorheological clutch, offers specific guidance for improving the torque transmission capacity and heat dissipation capacity of magnetorheological clutch, and lays a theoretical foundation for the wide application of magnetorheological clutch in the future.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121304883240509064305
2024-05-20
2025-12-15
Loading full text...

Full text loading...

References

  1. ChenS. YaoB. Cylinder disc type magneto-rheological clutch based on energy reutilization.C.N. Patent 1158539252023.
    [Google Scholar]
  2. YinB.F. XuB. JiaH.K. HuN.R. KuangX. XieX. Magneto-rheological clutch driven disc with turning groove structure.C.N. Patent 1138986792022.
    [Google Scholar]
  3. JiaH.K. HuN.R. YinB.F. XuB. KuangX. Magneto-rheological clutch with driving disc of groove structure.C.N. Patent 1138831842022.
    [Google Scholar]
  4. SunB.H. JiangK.Y. GaoX.Y. Spiral flow type magnetorheological clutch.C.N. Patent 1154679102022.
    [Google Scholar]
  5. XuH.M. ZhuP. FanY.B. GengG.Q. XuX. Automobile brake-by-wire system.C.N. Patent 1131351702021.
    [Google Scholar]
  6. YanZ.F. WangS.R. WuB.B. Magneto-rheological clutch for parallel hybrid electric vehicle.C.N. Patent 1130629332022.
    [Google Scholar]
  7. ShenX.H. LaoT.S. WeiM. Magnetorheological clutch, braking and transmission assembly.W.O. Patent 20141611462014.
    [Google Scholar]
  8. WangG.P. SuJ. RenJ.H. Main driving system and grab dredger.C.N. Patent 2191961332023.
    [Google Scholar]
  9. PatrickC. PascalL. Jean-SebastienP. System and method for control of reversal events using magnetorheological fluid.W.O. Patent 20232403352023.
    [Google Scholar]
  10. GuoY.F. WangJ.S. WangM.N. ZhangH.R. XiB.C. WangZ.G. GaoY.F. Mild driving mechanical arm.C.N. Patent 1105535392019.
    [Google Scholar]
  11. LiZ.H. HanJ.D. WuZ.W. ZhaoY.W. BuC.G. Mechanical impedance parameter adjustable flexible-drive rotary joint of robot.C.N. Patent 1047233542015.
    [Google Scholar]
  12. ZhuH.R. YinH.J. HuZ.T. JinC. LiM. LiJ.L. Magnetorheological clutch applied to passive ankle joint exoskeleton.C.N. Patent 1165179752023.
    [Google Scholar]
  13. WangD.M. WangY.K. ZiB. QianS. WangZ.Y. CaoZ.X. Automatic amplitude regulation leg rehabilitation training device and control method.C.N. Patent 1080787372020.
    [Google Scholar]
  14. AhamedR. ChoiS.B. FerdausM.M. A state of art on magneto-rheological materials and their potential applications.J. Intell. Mater. Syst. Struct.201829102051209510.1177/1045389X18754350
    [Google Scholar]
  15. GoncalvesF.D. CarlsonJ.D. An alternate operation mode for MR fluids—magnetic gradient pinch.J. Phys. Conf. Ser.20091490101205010.1088/1742‑6596/149/1/012050
    [Google Scholar]
  16. HuaD. LiuX. LiZ. FraczP. Hnydiuk-StefanA. LiZ. A review on structural configurations of magnetorheological fluid based devices reported in 2018–2020.Front. Mater.2021864010210.3389/fmats.2021.640102
    [Google Scholar]
  17. ElsaadyW. OyadijiS.O. NasserA. A review on multi-physics numerical modelling in different applications of magnetorheological fluids.J. Intell. Mater. Syst. Struct.202031161855189710.1177/1045389X20935632
    [Google Scholar]
  18. SarkarC. HiraniH. Design of a squeeze film magnetorheological brake considering compression enhanced shear yield stress of magnetorheological fluid.J. Phys. Conf. Ser.2013412101204510.1088/1742‑6596/412/1/012045
    [Google Scholar]
  19. GençS. PhuléP.P. Rheological properties of magnetorheological fluids.Smart Mater. Struct.200211114014610.1088/0964‑1726/11/1/316
    [Google Scholar]
  20. ChoiY.T. ChoJ.U. ChoiS.B. WereleyN.M. Constitutive models of electrorheological and magnetorheological fluids using viscometers.Smart Mater. Struct.20051451025103610.1088/0964‑1726/14/5/041
    [Google Scholar]
  21. WangD.M. HouY.F. TianZ.Z. A novel high-torque magnetorheological brake with a water cooling method for heat dissipation.Smart Mater. Struct.201322202501910.1088/0964‑1726/22/2/025019
    [Google Scholar]
  22. ReddyJ.N. MiraveteA. Practical analysis of composite laminates.CRC press201810.1201/9780203742594
    [Google Scholar]
  23. ChandrakarP. SharmaN. MaitiD.K. Damage-induced buckling characteristics of thermally loaded variable angle tow laminated plates under uncertain environment.Eur. J. Mech. A, Solids202410310518810.1016/j.euromechsol.2023.105188
    [Google Scholar]
  24. RabbaniY. AshtianiM. HashemabadiS.H. An experimental study on the effects of temperature and magnetic field strength on the magnetorheological fluid stability and MR effect.Soft Matter201511224453446010.1039/C5SM00625B25940850
    [Google Scholar]
  25. ChenS. HuangJ. JianK. DingJ. Analysis of influence of temperature on magnetorheological fluid and transmission performance.Adv. Mater. Sci. Eng.201520151710.1155/2015/583076
    [Google Scholar]
  26. SharmaN. NishadM. MaitiD.K. SunnyM.R. SinghB.N. Uncertainty quantification in buckling strength of variable stiffness laminated composite plate under thermal loading.Compos. Struct.202127511448610.1016/j.compstruct.2021.114486
    [Google Scholar]
  27. Suleiman KhayalO.E. Literature review on imperfection of composite laminated plates.J. Microsc. Ultrastruct.20175311912210.1016/j.jmau.2017.01.00130023245
    [Google Scholar]
  28. RibeiroP. AkhavanH. TeterA. WarmińskiJ. A review on the mechanical behaviour of curvilinear fibre composite laminated panels.J. Compos. Mater.201448222761277710.1177/0021998313502066
    [Google Scholar]
  29. AbdallaM.M. SetoodehS. GürdalZ. Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters.Compos. Struct.200781228329110.1016/j.compstruct.2006.08.018
    [Google Scholar]
  30. LozanoG.G. TiwariA. TurnerC. AstwoodS. A review on design for manufacture of variable stiffness composite laminates.Proc. Inst. Mech. Eng., B J. Eng. Manuf.2016230698199210.1177/0954405415600012
    [Google Scholar]
  31. AkhavanH. RibeiroP. Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers.Compos. Struct.201193113040304710.1016/j.compstruct.2011.04.027
    [Google Scholar]
  32. SharmaN. SwainP.K. MaitiD.K. SinghB.N. Stochastic aeroelastic analysis of laminated composite plate with variable fiber spacing.J. Compos. Mater.202155304527454710.1177/00219983211040860
    [Google Scholar]
  33. ChandrakarP. SharmaN. MaitiD.K. Stochastic buckling response of variable fiber spacing composite plate under thermal environment.J. Compos. Mater.202357243821383910.1177/00219983231191585
    [Google Scholar]
  34. SharmaN. SwainP.K. MaitiD.K. Active flutter suppression of damaged variable stiffness laminated composite rectangular plate with piezoelectric patches.Mech. Adv. Mater. Structures20243161229124910.1080/15376494.2022.2134611
    [Google Scholar]
  35. NishadM. SharmaN. SunnyM.R. SinghB.N. MaitiD.K. Stochastic critical buckling speed analysis of rim-driven rotating composite plate using NURBS-based isogeometric approach and HSDT.Mech. Based Des. Struct. Mach.202412810.1080/15397734.2023.2298738
    [Google Scholar]
  36. SharmaN. SwainP.K. MaitiD.K. Uncertainty quantification in free vibration and aeroelastic response of variable angle tow laminated composite plate.J. Compos. Mater.202357172645266810.1177/00219983231175468
    [Google Scholar]
  37. SharmaN. SwainP.K. MaitiD.K. Aeroelastic control of delaminated variable angle tow laminated composite plate using piezoelectric patches.J. Compos. Mater.202256294375440810.1177/00219983221131617
    [Google Scholar]
  38. SharmaN. SwainP.K. MaitiD.K. SinghB.N. Static and free vibration analyses and dynamic control of smart variable stiffness laminated composite plate with delamination.Compos. Struct.202228011479310.1016/j.compstruct.2021.114793
    [Google Scholar]
  39. HoumatA. Nonlinear free vibration of laminated composite rectangular plates with curvilinear fibers.Compos. Struct.201310621122410.1016/j.compstruct.2013.05.058
    [Google Scholar]
  40. SharmaN. SwainP.K. MaitiD.K. SinghB.N. Stochastic frequency analysis of laminated composite plate with curvilinear fiber.Mech. Adv. Mater. Structures202229693394810.1080/15376494.2020.1800152
    [Google Scholar]
  41. DinaC. DavidS. Magneto-rheological clutch assembly for use in an electromechanical system.U.S. Patent 20031366262003.
    [Google Scholar]
  42. SwaminathanG. LeeJ.G. Magnetorheological transmission clutch.U.S. Patent 58233091998.
    [Google Scholar]
  43. HerbertS. Magetorheologic clutch.E.P. Patent 15950862005.
    [Google Scholar]
  44. SunM. ZhouZ. LiX.D. ChenX. ZhuQ. LiuB. DengR. Double-shear magneto-rheological clutch under permanent magnet excitation.C.N. Patent 1141984252023.
    [Google Scholar]
  45. HerbertS. Magnetorheological clutch.C.N. Patent 20092059172009.
    [Google Scholar]
  46. HerbertS. Magnetorheological clutch.C.N. Patent 20082369762008.
    [Google Scholar]
  47. WuJ. LiQ.T. HuH. LuJ.Z. WangS. LiangJ. LiaoM. Multipolar stacked magnetorheological clutch.C.N. Patent 1101596722019.
    [Google Scholar]
  48. WuJ. HuangY.M. LiQ.T. WangS. LiangJ. LiaoM. LuJ.Z. HuH. Magnetorheological clutch.C.N. Patent 1115777872020.
    [Google Scholar]
  49. WuJ. LiQ.T. HuH. LuJ.Z. WangS. LiangJ. LiaoM. Self-energy-supply multipolar type magnetorheological clutch.C.N. Patent 1101076152019.
    [Google Scholar]
  50. WangK. Coil arrangement structure for increasing the dynamic controllable range of magnetorheological clutch.C.N. Patent 1092101042019.
    [Google Scholar]
  51. WuX.F. TianZ.Z. LiH.P. ChenF. Magneto-rheological clutch with multiple magnet exciting coils.C.N. Patent 1091397362019.
    [Google Scholar]
  52. HuangJ. WangX. A multi-cylinder magnetorheological clutch.C.N. Patent 2072296242018.
    [Google Scholar]
  53. Manuel-alejandroF.L. ChangJ.Y. Magnetorheological fluid clutch and operation method thereof.T.W. Patent 2020011162020.
    [Google Scholar]
  54. JosephL. MarcoP. JustinW. Magnetorheological clutch.U.S. Patent 20142994342014.
    [Google Scholar]
  55. HerbertS. Magnetorheological clutch.U.S. Patent 20090260342009.
    [Google Scholar]
  56. HerbertS. GeraldS. Magnetorhelogical clutch with pot-type disks.U.S. Patent 20090260332009.
    [Google Scholar]
  57. LorenI. WilliamK. Magnetorheological clutches for motor vehicle driveline components.E.P. Patent 09402861999.
    [Google Scholar]
  58. MykolaiovychS.S. MykolaiovychH.A. Magneto-rhelogical Clutch.U.A. Patent 377992008.
    [Google Scholar]
  59. XieF.W. TianZ.Z. LiuX.M. ShenG. DingZ.W. XuC.J. Novel magnetorheological fluid clutch.C.N. Patent 1112071592020.
    [Google Scholar]
  60. HuangJ. XiongY. Temperature-controlled circular variable wedge-shaped magnetorheological fluid clutch.C.N. Patent 1108482832021.
    [Google Scholar]
  61. HuG.L. YiF. YuL.F. A magnetorheological clutch with a serpentine-shaped fluid flow channel using dual magnetic field action.C.N. Patent 2087191832019.
    [Google Scholar]
  62. HuG.L. LiL.S. YuL.F. ZhangH.M. Novel magnetic current becomes clutch with annular gap.C.N. Patent 2086195522019.
    [Google Scholar]
  63. BaiX. X. LiuY. Magnetorheological clutch with small size and large controllable range.C.N. Patent 109027046A2018.
    [Google Scholar]
  64. HuangJ. WangX. Centrifugal slider formula magnetic current becomes freewheel clutch.C.N. Patent 2074376182018.
    [Google Scholar]
  65. SebastienP.J. MarcD. GuifreJ. PatrickC. PascalL. Magnetorheological fluid clutch apparatus with cylindrical fluid gap.U.S. Patent 20181562852018.
    [Google Scholar]
  66. DaiJ. YangC. FengX. XiongS. Design and performance research on the actuator of high-speed valve based on shear working mode of magnetorheological fluid.Smart Mater. Struct.2022311111502010.1088/1361‑665X/ac993a
    [Google Scholar]
  67. TangX. ZhangX. TaoR. RongY. Structure-enhanced yield stress of magnetorheological fluids.J. Appl. Phys.20008752634263810.1063/1.372229
    [Google Scholar]
  68. TaoR. Super-strong magnetorheological fluids.J. Phys. Condens. Matter20011350R979R99910.1088/0953‑8984/13/50/202
    [Google Scholar]
  69. ChenJ.X. ZhouC.Q. ZhangL.P. GaoC.F. High-stability large-torque magnetorheological fluid clutch.W.O. Patent 20231597742023.
    [Google Scholar]
  70. ChenS. YaoB. YuH. Multi-disc magnetorheological fluid clutch based on energy reutilization.C.N. Patent 2184549122023.
    [Google Scholar]
  71. XiongY. ChenW.J. HuangJ. Magnetorheological clutch based on extrusion of shape memory alloy sliding block caused by coil heatingC.N. Patent 2138708272021.
    [Google Scholar]
  72. XiongY. HuangJ. ChenS. Multi-disc magnetorheological clutch based on electromagnetic force extrusionC.N. Patent 2123605552021.
    [Google Scholar]
  73. WuX.F. TianZ.Z. XieF.W. WangS.Y. JiJ.J. LiH.P. HuangX.K. Hydraulic extrusion type magnetorheological fluid clutchC.N. Patent 2133932362021.
    [Google Scholar]
  74. WuX.F. TianZ.Z. XieF.W. JiJ.J. Slip-difference-free double-roller type magneto-rheological stepless power transmission deviceC.N. Patent 2121556722020.
    [Google Scholar]
  75. WuX.F. TianZ.Z. XieF.W. JiJ.J. Slip-free double-roller type magnetorheological stepless speed regulation deviceC.N. Patent 1114730962020.
    [Google Scholar]
  76. TianZ.Z. XieF.W. JiJ.J. WangS.Y. LiH.P. HuangX.K. Open magnetorheological fluid power transmission deviceC.N. Patent 2129285842021.
    [Google Scholar]
  77. TianZ.Z. XieF.W. JiJ.J. WangS.Y. LiH.P. HuangX.K. Hydraulic extrusion type magnetorheological fluid clutchC.N. Patent 1118105562020.
    [Google Scholar]
  78. HuangJ. XiongY. ChenS. Electromagnetic force extrusion crossed-arc-groove magnetorheological clutchC.N. Patent 1120322162020.
    [Google Scholar]
  79. HuangJ. XiongY. Permanent magnet magneto-rheological fan clutch of internal combustion engine and fanC.N. Patent 1108867932020.
    [Google Scholar]
  80. HuangJ. XiongY. Cylinder type volume-variable magnetorheological fan automatic clutchC.N. Patent 1107786182020.
    [Google Scholar]
  81. ChenZ.Y. LiS. Disc-shaped cam extrusion type clutch based on magnetorheological liquidC.N. Patent 1096114642019.
    [Google Scholar]
  82. ChenZ.Y. LiS. Axial movable extruding type multi-layer cylinder clutch based on magnetorheological liquidC.N. Patent 1095386492019.
    [Google Scholar]
  83. HuangJ. WangX. Blade wedge extrusion magnetic current becomes clutchC.N. Patent 2074706422018.
    [Google Scholar]
  84. ChenZ.Y. WangJ.X. Hydraulic control self-adjusting rectangular clutch based on magnetorheological fluidC.N. Patent 1132028842021.
    [Google Scholar]
  85. LiY.J. XieF.W. ZhuH.Q. DingW.J. YuX.S. ZhouR. LiZ.B. Magnetorheological fluid clutch with air bag pressurization functionC.N. Patent 1105003662019.
    [Google Scholar]
  86. LiuJ.G. MaoX.Z. ZhengJ.Y. Extrusion type torque-increasing magnetorheological ClutchC.N. Patent 1068848982017.
    [Google Scholar]
  87. WangD. ZiB. ZengY. HouY. MengQ. Temperature-dependent material properties of the components of magnetorheological fluids.J. Mater. Sci.201449248459847010.1007/s10853‑014‑8556‑x
    [Google Scholar]
  88. YildirimG. GencS. Experimental study on heat transfer of the magnetorheological fluids.Smart Mater. Struct.201322808500110.1088/0964‑1726/22/8/085001
    [Google Scholar]
  89. ShindeV.V. DeshmukhB.B. Thermal analysis of magneto-rheological brake for two wheelers.Techno-SocietalSpringer, Cham.2020275176110.1007/978‑3‑030‑16962‑6_75
    [Google Scholar]
  90. WuT.T. Heat dissipation friction disc for magneto-rheological transmission device based on centrifugal force effect.C.N. Patent 2119513782020.
    [Google Scholar]
  91. WangS.Y. ChenF. TianZ.Z. ZhangG.X. Water cooling type magneto-rheological clutch based on extrusion-shearing mode and control method.C.N. Patent 1116922342020.
    [Google Scholar]
  92. ShiW.K. DingX. WangX.K. ChenZ.Y. Spacing-adjustable liquid cooling magneto-rheological double clutch.C.N. Patent 2110394622020.
    [Google Scholar]
  93. ShiW.K. DingX. WangX.K. ChenZ.Y. Disc type magnetorheological dual clutch.C.N. Patent 1108640552020.
    [Google Scholar]
  94. HuangJ. WangX. Temperature ball control shape magnetic current becomes clutch.C.N. Patent 2074376162018.
    [Google Scholar]
  95. HuangJ. WangX. High temperature compensation formula magnetic current becomes clutch.C.N. Patent 2074376172018.
    [Google Scholar]
  96. QiuR. HuangJ. LiuL.W. Hot extrusion magneto-rheological and centrifugal sliding block friction clutch.C.N. Patent 2140927962021.
    [Google Scholar]
  97. HuangJ. WangX. WangY. Temperature control magnet rheology fan clutch.C.N. Patent 2068016782017.
    [Google Scholar]
  98. HuangJ. WangX. WangY. Magnetorheological fluid clutch of shape memory alloy ring compensation.C.N. Patent 2066474492017.
    [Google Scholar]
  99. WuJ. LiuY. XieH. Experimental measurement of a multi-pole magnetorheological fluid clutch under air cooling.Rev. Sci. Instrum.202495303510910.1063/5.019068238445996
    [Google Scholar]
  100. HuangJ. YuanF.P. Shape memory alloy-driven permanent magnet type magnetorheological clutch.C.N. Patent 1064021952017.
    [Google Scholar]
  101. TianZ.Z. WuX.F. ChenF. Cooling type large-power magnetorheological clutch in disc.C.N. Patent 1034530492017.
    [Google Scholar]
  102. TianZ.Z. Water -cooled polydisc magnetic current becomes clutch.C.N. Patent 2051364212016.
    [Google Scholar]
  103. TianZ.Z. Water cooling type multi-plate magneto-rheological clutch.C.N. Patent 1052990862016.
    [Google Scholar]
  104. BaoT.T. WangJ.H. Magnetorheological fluid circulation clutch.C.N. Patent 2037432372014.
    [Google Scholar]
  105. WuX.F. TianZ.Z. XieF.W. A hollow cylinder magnetorheological fluid transmission device.C.N. Patent 1149349632014.
    [Google Scholar]
/content/journals/eng/10.2174/0118722121304883240509064305
Loading
/content/journals/eng/10.2174/0118722121304883240509064305
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test