Skip to content
2000
Volume 19, Issue 8
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Micro-nano robots have broad applications in sewage purification and DNA testing. Micro-nano robots have significant potential in the medical field, as they have higher therapeutic efficiency and safety than conventional treatment methods. Meanwhile, micro-nano robots provide a new method for treating many diseases. Therefore, as an emerging medical method, the development trend of micro-nano robots is receiving increasing attention. This study aims to provide a new approach to treating diseases that reduces the costs and risks of traditional medical treatments. This paper introduces the operation mechanism of micro-nano robots, summarizes representative patents of micro-nano robots in medicine, summarizes the classification according to the different driving modes, and analyzes their advantages, disadvantages, and uses. Through the investigation of many micro-nano robots, the current medical micro-nano robots are summarized and analyzed as generally challenging to prepare, difficult to control accurately, with a low degree of intelligence, and poor accuracy. Finally, the future development trend of medical micro-nano robots is overlooked. Optimizing the preparation method can significantly reduce the production cost of micro-nano robots. Mixing and driving modes can drive the micro-nano robots more efficiently. Improving the intelligence of micro-nano robots can allow them to perform more complex tasks. Improved imaging techniques allow for more precise control of the micro-nano robots. Finally, the article forecasts that micro-nano robots will develop towards the trends of non-toxic, intelligent, and controllable directions.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121296447240329131637
2024-04-08
2025-12-19
Loading full text...

Full text loading...

References

  1. PangS.Y. YanX.B. Research progress of micro-nano robots in the field of tumor therapy.Micronanoelect. Tech.2023606811819
    [Google Scholar]
  2. XuT.T. HuangC.Y. LiuJ. XuY.H. LaiZ.Y. WuX.Y. Advances in intelligent control of magnetically actuated micro-robots.ROBOT2023455603625
    [Google Scholar]
  3. HuC. PanéS. NelsonB.J. Soft micro- and nanorobotics.Annu. Rev. Control. Robot. Auton. Syst.201811537510.1146/annurev‑control‑060117‑104947
    [Google Scholar]
  4. ZhengL. ChenL. HuangH. LiX. ZhangL. An overview of magnetic micro-robot systems for biomedical applications.Microsyst. Technol.201622102371238710.1007/s00542‑016‑2948‑6
    [Google Scholar]
  5. YangL. YuJ. YangS. WangB. NelsonB.J. ZhangL. A survey on swarm microrobotics.IEEE Trans. Robot.20223831531155110.1109/TRO.2021.3111788
    [Google Scholar]
  6. HuangT.Y. YuJ. ZhangL. JinD.D. DuanH.L. Magnetic micro-/nanoscale swimmers: Current status and potential applications.Kexue Tongbao2017622-313615110.1360/N972016‑00854
    [Google Scholar]
  7. PalagiS. FischerP. Bioinspired microrobots.Nat. Rev. Mater.20183611312410.1038/s41578‑018‑0016‑9
    [Google Scholar]
  8. SittiM. Miniature soft robots — road to the clinic.Nat. Rev. Mater.201836747510.1038/s41578‑018‑0001‑3
    [Google Scholar]
  9. LiM.Y. YangJ. JiaoN.D. WangY.C. LiuL.Q. Review on the latest research progress of micro-nano robots.ROBOT2022446732749
    [Google Scholar]
  10. Jurado-SánchezB. WangJ. Micromotors for environmental applications: A review.Environ. Sci. Nano2018571530154410.1039/C8EN00299A
    [Google Scholar]
  11. ThirunavukkarasuA. NithyaR. SivashankarR. A review on the role of nanomaterials in the removal of organic pollutants from wastewater.Rev. Environ. Sci. Biotechnol.202019475177810.1007/s11157‑020‑09548‑8
    [Google Scholar]
  12. YanL. ChenY. GuoY.H. HouM.X. LiuZ.H. Research progress of self-actuated micro/nanorobots in wastewater treatment.Environmental Engineering2023
    [Google Scholar]
  13. MooJ.G.S. Mayorga-MartinezC.C. WangH. KhezriB. TeoW.Z. PumeraM. Nano/micro robots meet electrochemistry.Adv. Funct. Mater.20172712160475910.1002/adfm.201604759
    [Google Scholar]
  14. WangW. DuanW. AhmedS. MalloukT.E. SenA. Small power: Autonomous nano- and micromotors propelled by self-generated gradients.Nano Today20138553155410.1016/j.nantod.2013.08.009
    [Google Scholar]
  15. WangH. KanJ.C. ZhangX. Pt/CNT micro-nano robots driven by glucose catalytic decomposition.Cyborg and Bionic Systems202110.34133/2021/9876064
    [Google Scholar]
  16. HuY. Self-assembly of DNA molecules: Towards DNA nanorobots for biomedical applications.Cyborg and Bionic Systems202120212021/980752010.34133/2021/980752036285141
    [Google Scholar]
  17. YanX. ZhouQ. VincentM. DengY. YuJ. XuJ. XuT. TangT. BianL. WangY.X.J. KostarelosK. ZhangL. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy.Sci. Robot.2017212eaaq115510.1126/scirobotics.aaq115533157904
    [Google Scholar]
  18. AKOLPOGLUM B. ALAPANY. Magnetically steerable bacterial microrobots moving in 3D biological matrices for stimuli-responsive cargo delivery.Science Advances2022828eabo6163-1eabo6163-14
    [Google Scholar]
  19. BUSSN. Nano erythrosomefunctionalized biohybrid micro-swimmers.APL Bioeng.202042026103-1026103-7
    [Google Scholar]
  20. AKOLPOGLUM B. High-yield production of biohybrid microalgae for on-demand cargo delivery.Advanced Science20207162001256-12001256-10
    [Google Scholar]
  21. SunL. ChenZ. BianF. ZhaoY. Bioinspired soft robotic caterpillar with cardiomyocyte drivers.Adv. Funct. Mater.2020306190782010.1002/adfm.201907820
    [Google Scholar]
  22. AlapanY. YasaO. SchauerO. GiltinanJ. TabakA.F. SourjikV. SittiM. Soft erythrocyte-based bacterial microswimmers for cargo delivery.Sci. Robot.2018317eaar442310.1126/scirobotics.aar442333141741
    [Google Scholar]
  23. Bastos-ArrietaJ. Revilla-GuarinosA. UspalW.E. SimmchenJ. Bacterial biohybrid microswimmers.Front. Robot. AI201859710.3389/frobt.2018.0009733500976
    [Google Scholar]
  24. AlapanY. YigitB. BekerO. DemirörsA.F. SittiM. Shape-encoded dynamic assembly of mobile micromachines.Nat. Mater.201918111244125110.1038/s41563‑019‑0407‑331235903
    [Google Scholar]
  25. HanM. GuoX. ChenX. LiangC. ZhaoH. ZhangQ. BaiW. ZhangF. WeiH. WuC. CuiQ. YaoS. SunB. YangY. YangQ. MaY. XueZ. KwakJ.W. JinT. TuQ. SongE. TianZ. MeiY. FangD. ZhangH. HuangY. ZhangY. RogersJ.A. Submillimeter-scale multimaterial terrestrial robots.Sci. Robot.2022766eabn060210.1126/scirobotics.abn060235613299
    [Google Scholar]
  26. AghakhaniA. YasaO. WredeP. SittiM. Acoustically powered surface-slipping mobile microrobots.Proc. Natl. Acad. Sci. USA202011773469347710.1073/pnas.192009911732015114
    [Google Scholar]
  27. FuL. ZhaoW.Q. MaJ.Y. A humidity-powered soft robot with fast rolling locomotion.Research202210.34133/2022/9832901
    [Google Scholar]
  28. HuW. LumG.Z. MastrangeliM. SittiM. Small-scale soft-bodied robot with multimodal locomotion.Nature20185547690818510.1038/nature2544329364873
    [Google Scholar]
  29. DongX. SittiM. Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms.Int. J. Robot. Res.2020395617638[J].10.1177/0278364920903107
    [Google Scholar]
  30. MaricT. NasirM.Z.M. WebsterR.D. PumeraM. Tailoring metal/TiO2 interface to influence motion of light-activated Janus micromotors.Adv. Funct. Mater.2020309190861410.1002/adfm.201908614
    [Google Scholar]
  31. Maria-HormigosR. Jurado-SánchezB. EscarpaA. Surfactantfree β-galactosidase micromotors for “on-the-move” lactose hydrolysis.Adv. Funct. Mater.201828251704256[J].10.1002/adfm.201704256
    [Google Scholar]
  32. WangL. HortelãoA.C. HuangX. SánchezS. Lipase-powered mesoporous silica nanomotors for triglyceride degradation.Angew. Chem. Int. Ed.201958247992799610.1002/anie.20190069730990243
    [Google Scholar]
  33. Mundaca-UribeR. Esteban-Fernández de ÁvilaB. HolayM. Lekshmy VenugopalanP. NguyenB. ZhouJ. AbbasA. FangR.H. ZhangL. WangJ. Zinc microrocket pills: Fabrication and characterization toward active oral delivery.Adv. Healthc. Mater.2020918200090010.1002/adhm.20200090032743976
    [Google Scholar]
  34. StriggowF. Medina-SánchezM. AuernhammerG.K. MagdanzV. FriedrichB.M. SchmidtO.G. Sperm-driven micromotors moving in oviduct fluid and viscoelastic media.Small20201624200021310.1002/smll.20200021332431083
    [Google Scholar]
  35. LiuT. PangS.X. YanX.H. Micro-/Nanorobots for enhanced antibacterial treatment.Micronanoelectronic Technology20239971004
    [Google Scholar]
  36. ChenC-Y. WangC-F. Microrobot and manufacturing method thereofUS Patent 2023257259A1
    [Google Scholar]
  37. ChangQ. J. XuZ. R. ShenT. SongL. Q. CuiS. J. A magnetic micro robot and its preparation method.CN Patent 116749151A
    [Google Scholar]
  38. SooC.H. MinN.S. YoungK.J. EonP.J. Microrobot controlling drug release by sound waves and method of manufacturing the microrobot.US Patent 2022126075A1
    [Google Scholar]
  39. WangY. H. SongX. X. ZhengJ. Y. A biocompatible magnetic controlled micro/nano robot and its production method and application.CN Patent 115651451A
    [Google Scholar]
  40. OhP.J. SeiK.C. PyoC.E. JunG.G. WooS.H. JunC.Y. Chitosan porous structure-based magnetically actuated microrobot.US Patent 2022305243A1
    [Google Scholar]
  41. ZhaoA. J. Micro nano drug multi load transportation and time-sharing release robot, preparation method and control method.CN Patent 115721840A
    [Google Scholar]
  42. OhPark Jong SeiKim Chang PyoChoi Eun JunGo Gwang WooSong Hyeong JunChang Yeong Magnetically driven microrobot based on chitosan porous structure.KR Patent 20220055223A
    [Google Scholar]
  43. ZhengJ. Y. JiangT. MuL. X. ZhongK. Y. SongX. X. A magnetic micro nano robot and its preparation method and application.CN Patent 113401863A
    [Google Scholar]
  44. JongohPark EunpyoChoi Chang-SeiKim JiwonHan Hyun-KiMin Van DuNguyen Immunocyte-based medical microrobotWO Patent 2020171439A1
    [Google Scholar]
  45. ZhangY. ZuoY. NanorobotUS Patent 2018074083A1
    [Google Scholar]
  46. EunpyoChoi OhPark Jong SeiKim Chang SukhoPark ByungjeonKang JunGo Gwang Remote-control actuation nanorobot system for delivery and controlled release of drug and control method thereofKR Patent 20190042305A
    [Google Scholar]
  47. ZhengJ. Y. GengR. X. GuoY. Q. XiongF. J. CaiZ. Y. A polymer micro robot and its preparation method and applicationCN Patent 113440472A
    [Google Scholar]
  48. PhilippePouletty MaëlleBruneau PierrePouponneau A medical device, a method for controlling a device, a system comprising a device, and a method of producing a deviceWO Patent 2021198411A1
    [Google Scholar]
  49. NiJ. TongC. K. LiY. ZhengQ. J. Targeted drug delivery micro magnetic controlled robot mimicking T4 bacteriophage and its control methodCN Patent 111921072A
    [Google Scholar]
  50. SooChoi Hong EunLee Ji YoungKim Jin Microrobot for hyperthermia and medical treatment material deliveryKR Patent 20180116969A
    [Google Scholar]
  51. SunD. LiY. J. WeiY. T. High mechanical strength degradable magnetic controlled micro robot and its preparation method and application.CN Patent 115554400A
    [Google Scholar]
  52. Cappelleri DavidJ. Light responsive polymer magnetic microrobots.US Patent 2022038035A1
    [Google Scholar]
  53. LinQ. J. ZhuY. Z. JingX. SiF. W. DongB. J. ZhuX. R. Design, preparation method, and driving method of a magnetic driven micro nano robotCN Patent 114601509A
    [Google Scholar]
  54. DongS. WeiT. WangL. LiD. ZhangY. ChenS. Magnetically-drivable microrobotUS Patent 2022024121A1
    [Google Scholar]
  55. WangZ. J. GaoX. Y. LiD. A micro-nano robot based on mis solar cell structure and its preparation method and applicationCN Patent 114759112A
    [Google Scholar]
  56. WooramPark Microrobot including anti-cancer bacteria and magnetic nanoparticles and manufacturing method thereforWO Patent 2023128566A1
    [Google Scholar]
  57. JingP. Z. ZhangL. ZhouJ. PeiF. Y. LiangP. T. XiaoY. A bionanorobot for the treatment of aortic dissectionCN Patent 111493946A
    [Google Scholar]
  58. LuoH. H. CuiG. W. ChenG. DengF. L. ZhangF. HuangL. C. Photocontrolled particle size variable nanorobot and its preparation method and application in tumor suppressionCN Patent 112957311A
    [Google Scholar]
  59. SumD. Magnetic field-controlled microrobot for carrying and delivering targeted cellsUS Patent 2019076371A1
    [Google Scholar]
  60. KongL. ZhengM. Z. A nanorobot, its preparation method and applicationCN Patent 114796484A
    [Google Scholar]
  61. SunQ. Y. YangZ. Nanorobots and nanorobot motion control systems.CN Patent 111333019A
    [Google Scholar]
  62. LiL. T. LiK. L. LiuL. C. WangC. H. ZhangX. Z. WangL. A seed mother micro nano robot.CN Patent 116270530A
    [Google Scholar]
  63. HeQ. WuJ. Y. ZhangX. YangL. Preparation method of a magnetic driven hammer like swimming nanorobot.CN Patent 116551653A
    [Google Scholar]
  64. ZhaoS. Q. LiK. L. YangP. X. DuL. L. SunX. J. FanL. L. A micro/nano robot targeted for dissolving gout stones.CN Patent 116350922A
    [Google Scholar]
  65. KongB. YanM. XieL. CengJ. Biomimetic nanorobots loaded with drugs with near-infrared response and their preparation methodCN Patent 116077677A
    [Google Scholar]
  66. WangP. H. HouZ. Y. SunW. L. WangL. M. ZhongH. S. QiuK. Y. Double spiral magnetic controlled micro robot and its processing method and application.CN Patent 114681007A
    [Google Scholar]
  67. LiuJ. X. LiK. L. WangL. LiM. YuM. S. SongP. W. A micro/nano robot for magnetic resonance targeted imaging.CN Patent 115316975A
    [Google Scholar]
  68. Steigerwald MichaelL. Sunlight-powered rolling crystals.US Patent 2023192724A1
    [Google Scholar]
  69. HeQ. LinK. X. YangS. KeC. C. A glucose oxidase driven swimming nanorobot and its preparation method.CN Patent 116675180A
    [Google Scholar]
  70. HaoYan QiaoJiang LiSuping DingBaoquan NieGuangjun Dna nanorobot and methods of use thereofWO Patent 2019109707A1
    [Google Scholar]
  71. LuoC. ZhangY. H. ZhaoQ. Z. SunN. S. ZhangW. S. HeG. Z. A carrier free self-driving nanorobot powered by nitric oxide and its preparation method and applicationCN Patent 116421737A
    [Google Scholar]
  72. WangT. ChenX. LianL. M. A hollow nanorobot and its preparation method and application as an antioxidantCN Patent 109967123A
    [Google Scholar]
  73. CaiT. L. ZhangZ. B. ZhengB. M. PanH. MaQ. A. ChenZ. A yeast micro nano robot sugar pill loaded with trace elements and its preparation method.CN Patent 114404386A
    [Google Scholar]
  74. KwangH.S. SikC.H. BaieS.S. Method for preparing polydopamine nanomotor using urease, and use of sameUS Patent 2023122688A1
    [Google Scholar]
  75. KongB. CengJ. ZhangW. ZhaoY. D. Intelligent pH catalytic responsive micro/nano robots, their assembly methods and applications.CN Patent 109663133A
    [Google Scholar]
  76. SunW. R. SunQ. Y. A nano engine driven by chemical energy and a method for providing power, as well as a nano robot.CN Patent 111663995A
    [Google Scholar]
  77. SamuelSánchez Ordóñez TaniaPatiño Padial LopesHortelão Ana Candida Functionalized enzyme-powered nanomotorsEP Patent 3891094A1
    [Google Scholar]
  78. ChaoJ. GaoY. WangH. L. YinJ. WangY. S. A DNA nanomachine responsive to thrombin and its preparation method and applicationCN Patent 114099694A
    [Google Scholar]
  79. LiuM. An artificial micro nano robot and its preparation method.CN Patent 111575267A
    [Google Scholar]
  80. YuanL. X. LiuL. G. ShengL. A self-driving micro drug loading robot based on liquid metal.CN Patent 217067095U
    [Google Scholar]
  81. CaiLintao ZhangBaozhen ZhengMingbin MaAiqing ZhangLishan HuangGuojun Mineralized drug-loaded yeast bionic micro-nano robot, and preparation method therefor and use thereofWO Patent 2023104024A1
    [Google Scholar]
  82. HuangR. H. WangF. A nanorobot and its control method.CN Patent 115869070A
    [Google Scholar]
  83. WangY. TengG. Z. DangM. TaoJ. ShiZ. X. A flexible nanomotor constructed from mesoporous organic silicon oxide material and its preparation method and application.CN Patent 116350792A
    [Google Scholar]
  84. CaiLintao ZhangBaozhen ZhengMingbin HongPan TangXiaofan Macrophage-based living cell drug-loading system, preparation method therefor and use thereof.WO Patent 2023104058A1
    [Google Scholar]
  85. ZhaoL. ShaoC. J. LiY. J. WeiJ. J. A biomimetic nanomotor for targeted drug delivery and its preparation method and application.CN Patent 114366811A
    [Google Scholar]
  86. HeQ. ChengF. Y. ZhuN. K. A liposome/cell membrane hybrid swimming nanorobot and its preparation method.CN Patent 116531493A
    [Google Scholar]
  87. ZhengC. ChenL. DaiQ. P. HuangJ. Y. WuK. X. A multi-layer self-driving tubular micro nano motor constructed of kapok fiber/manganese dioxide and its preparation method.CN Patent 109576986A
    [Google Scholar]
  88. WangR. ChengG. QianC. Supramolecular cell-based carrier, drug loading system and its preparation method.US Patent 2023149559A1
    [Google Scholar]
  89. DuZ. J. HuangY. Q. LiX. J. ZhangR. Y. A self-driving manganese dioxide nanomotor and its preparation method and application.CN Patent 110755383A
    [Google Scholar]
  90. WangY. ZhaoB. T. A thrombus cleaning nanorobot.CN Patent 215534798U
    [Google Scholar]
  91. SooC.H. MinN.S. YuongK.J. SungwongJ. Microrobot and method of manufacturing the microrobotUS Patent 2022127559A1
    [Google Scholar]
  92. LiJ. ZhangL. X. XingN. N. YangP. ZuoM. MaW. R. PH responsive dual drive Pt/ FePc@Mn-MOF Janus type nanomotor and its preparation method and application.CN Patent 116350591A
    [Google Scholar]
  93. WangF. WangF. Z. YuY. A controllable assembly of liposome nanomotor and its preparation method.CN Patent 114288247A
    [Google Scholar]
  94. TongH. BaiY. X. LinC. J. LiY. HouY. B. A magnetic field controlled spiral nanorobot for targeted drug delivery.CN Patent 112791064A
    [Google Scholar]
  95. CaiLintao TangXiaofan HongPan ZhengMingbin HuangGuojun JianhongLiao Immune cell modification method, immune cell robot, and systemWO Patent 2023104050A1
    [Google Scholar]
  96. FanH. C. WangH. L. ZhaoY. LiF. A preparation method for DNA nanorobot drug delivery system and the resulting DNA nanorobot drug delivery system.CN Patent 110124047A
    [Google Scholar]
  97. ZhangB. Y. XiaoL. LiQ. G. CaiY. YangY. A functionalized bio hybrid micro-nano motor and its preparation method.CN Patent 112375560A
    [Google Scholar]
  98. HoPark Suk InKim Dong RyongLee Hyo Magnetically actuated microrobot using bio-based organism.WO Patent 2021025302A1
    [Google Scholar]
/content/journals/eng/10.2174/0118722121296447240329131637
Loading
/content/journals/eng/10.2174/0118722121296447240329131637
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test