Skip to content
2000
Volume 19, Issue 8
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Radiation therapy beds and radiation therapy chairs play an important role in the field of radiation therapy. Applying them to the process of proton heavy ion radiation therapy not only improves the efficiency and accuracy of the procedure, but also reduces the pressure on doctors. Before radiotherapy, the relative positions of human tissues and tumors are obtained through CT scanning and professional software is used to reconstruct them in 3D reconstruction and carry out preoperative treatment planning, planning the points of each posture for accelerator irradiation. During the treatment process, the patient lies on the treatment bed, and the radiation port of the treatment head is aimed at the lesion area of the patient, and the treatment is realized by irradiating the lesion area with rays. However, since the patient's position during treatment is not consistent with the position during CT filming, it is necessary to accurately adjust the patient's position by means of the radiation therapy beds or chairs, so that it is as consistent as possible with the position during CT filming, monitoring the patient's position in real time during the treatment. When the patient's position deviates more than a certain value in six degrees of freedom from the position in which the CT was taken, the radiation therapy beds or chairs are driven to adjust the patient's position to achieve precise radiotherapy. Currently, conventional radiation therapy beds and chairs are limited by a certain degree of spatial freedom in achieving the above characteristics, and the positioning accuracy is generally not high, which affects the realization of precise radiotherapy. Radiation therapy beds and chairs are subjected to eccentric loads in the working process, which leads to an increase in the force of each rod, so the stiffness and strength of the parts need to be strengthened in the limit cases, and the parameters of the multi-objective coordination mechanism need to be optimized. The function of the radiotherapy chair with head and neck fixation device is not perfect, and the coordination control system of the posture adjustment mechanism and head and neck fixation device is not intelligent enough. In the clinical process, if the patient suddenly moves (. epilepsy, shock) due to other conditions, there is a lack of devices to protect the patient. The research progress of radiation therapy beds and radiation therapy chairs is reviewed, and their respective characteristics and developments are described. This paper provides an review of various representative patents for radiation therapy beds and radiation therapy chairs. In this study, the patents we have selected are representative or have a clear advantage in one way or another. The application scenarios, structural characteristics, ease of maintenance, accuracy and other aspects were analyzed and compared. By investigating various patents and the main current existing problems on the different radiotherapy beds and chairs, such as fixed radiotherapy beds, parallel radiotherapy beds, serial radiotherapy beds and radiotherapy chairs are summarized and analyzed. Furthermore, the development trend of radiotherapy beds and chairs have also been discussed. Radiotherapy beds and chairs are all-important components of the radiotherapy systems and determine the efficacy of radiotherapy. Its accuracy, comfortableness, dexterity and robustness of effect need to be further improved. For some time to come, patents on radiotherapy chairs and beds need more attention.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121284495240523105841
2024-05-30
2025-12-20
Loading full text...

Full text loading...

References

  1. International agency for research on cancer.19.3 million new cancer patients worldwide in 2020 10 million deaths due to cancer [EB/OL].2020Available from: https://news.un.org/zh/story/2020/12/1073672,2020-12-15
  2. ChenC. Design and analysis of radiation therapy chair.Huazhong University of Science and Technology2021
    [Google Scholar]
  3. HaoT. Common tumour treatments.Medical and Health Science and Technology-Oncology2023415253
    [Google Scholar]
  4. KatzS.J. LantzP.M. JanzN.K. FagerlinA. SchwartzK. LiuL. DeapenD. SalemB. LakhaniI. MorrowM. Patient involvement in surgery treatment decisions for breast cancer.J. Clin. Oncol.200523245526553310.1200/JCO.2005.06.21716110013
    [Google Scholar]
  5. ZhengS.H. A study of the current status of psychological distress and related influencing factors in patients with malignant tumours and the quality of cancer care.Shandong University2014
    [Google Scholar]
  6. YangX.L. ChenH.X. ChenJ.P. Current status and development trend of medical proton heavy ion gas pedal applications.Chin. Med. Device J.2019431374230770689
    [Google Scholar]
  7. ValentiniV. CalvoF. ReniM. KrempienR. SedlmayerF. BuchlerM.W. CarloV.D. DogliettoG.B. FastnerG. Garcia-SabridoJ.L. MattiucciG. MorgantiA.G. PassoniP. RoederF. D’AgostinoG.R. Intra-operative radiotherapy (IORT) in pancreatic cancer: Joint analysis of the ISIORT-Europe experience.Radiother. Oncol.2009911545910.1016/j.radonc.2008.07.02018762346
    [Google Scholar]
  8. PaltaM. WillettC. CzitoB. The role of intraoperative radiation therapy in patients with pancreatic cancer.Semin. Radiat. Oncol.201424212613110.1016/j.semradonc.2013.11.00424635869
    [Google Scholar]
  9. ZygogianniG.A. KyrgiasG. KouvarisJ. AntypasC. SkarlatosJ. ArmpiliaC. NikiteasN. KoulouliasE.V. Intraoperative radiation therapy on pancreatic cancer patients: A review of the literature.Minerva Chir.201166436136921873971
    [Google Scholar]
  10. BaschE. DealA.M. DueckA.C. ScherH.I. KrisM.G. HudisC. SchragD. Overall survival results of a trial assessing patient-reported outcomes for symptom monitoring during routine cancer treatment.JAMA2017318219719810.1001/jama.2017.715628586821
    [Google Scholar]
  11. LinH. Advances in clinical research in radiotherapy for oncology.J Evid Based Med202362324
    [Google Scholar]
  12. TianJ. Research on the development and application of radiotherapy techniques for tumour.Chin. Med. J.20225746467
    [Google Scholar]
  13. ChenC.M. ZhouL.H. Status and development of stereotactic radiotherapy equipment in China.Chin. Med. J.200310124125
    [Google Scholar]
  14. SlaterJ.D. YonemotoL.T. MantikD.W. BushD.A. PrestonW. GroveR.I. MillerD.W. SlaterJ.M. Proton radiation for treatment of cancer of the oropharynx: Early experience at Loma Linda University Medical Center using a concomitant boost technique.Int. J. Radiat. Oncol. Biol. Phys.200562249450010.1016/j.ijrobp.2004.09.06415890592
    [Google Scholar]
  15. XiQ. TuH.Y. New advances in physics for tumour radiotherapy.Hebei North Journal201329111411710.3969/j.issn.1673‑1492.2013.01.036
    [Google Scholar]
  16. LiaoS.Q. HeX.Z. Design study of X-ray flash radiotherapy equipment for high-power petal accelerator.China Medical Equipment2024211212310.3969/j.issn.1672‑8270.2024.01.004
    [Google Scholar]
  17. MaoL.L. LiuH.D. Research progresses of MRI-guided radiotherapy equipment.China Medical Imaging Technology201935460560910.13929/j.1003‑3289.2011000164
    [Google Scholar]
  18. DuS.Q. Development of Gamma Knife Three-Dimensional Therapeutic Bed Equipment.Huazhong University of Science and Technology2016
    [Google Scholar]
  19. GeJ.Q. A study of target-area dose optimisation techniques in tumour radiotherapy.Chengde Medical College2021
    [Google Scholar]
  20. WanB. YaoJ. Advances in brachytherapy systems.China Medical Equipment202136715516010.3969/j.issn.1674‑1633.2021.07.035
    [Google Scholar]
  21. HuZ. YuX.E. KangL.L. Quality detection based on a body-mode pair CT energy spectroscopy technique.Chin. J. Med. Phys.2018351545910.3969/j.issn.1005‑202X.2018.01.011
    [Google Scholar]
  22. XieY.C. Ionisation Chamber Characterisation and Design Optimisation for Proton Therapy Beamlines Ionisation chamber characterisation and design optimisation.Huazhong University of Science and Technology2020
    [Google Scholar]
  23. BrahmeA. A brief introduction to the development of radiation therapy optimization.Biologically Optimized Radiation Therapy. BrahmeA. World Scientific Publishing201411510.1142/9789814277761_0001
    [Google Scholar]
  24. KesselK.A. HabermehlD. JägerA. FlocaR.O. ZhangL. BendlR. DebusJ. CombsS.E. Development and validation of automatic tools for interactive recurrence analysis in radiation therapy: optimization of treatment algorithms for locally advanced pancreatic cancer.Radiat. Oncol.20138113810.1186/1748‑717X‑8‑13824499557
    [Google Scholar]
  25. SaundersM. DischeS. BarrettA. HarveyA. GibsonD. ParmarM. CHART Steering Committee Continuous hyperfractionated accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small-cell lung cancer: A randomised multicentre trial.Lancet1997350907216116510.1016/S0140‑6736(97)06305‑89250182
    [Google Scholar]
  26. BrahmeA. Development of radiation therapy optimization.Acta Oncol.200039557959510.1080/02841860075001326711093366
    [Google Scholar]
  27. WangW.Y. Study of technologies related to coping with uncertainty in heavy ion intensity-modulated radiation therapy.University of Chinese Academy of Sciences2022
    [Google Scholar]
  28. GuoF.Z. ShiX.Q. WangR.C. Development of a small charged particle launcher. Gun school of mechanical engineering.Dalian Jiaotong University2023604293510.13385/j.cnki.vacuum.2023.04.06
    [Google Scholar]
  29. YangZ.K. Design and Analysis of Proton Heavy Ion Radiotherapy Chair.Harbin University of Science and Technology2019
    [Google Scholar]
  30. QiH. Technical study of image alignment and safety control strategies in tumour radiotherapy assisted robots.Harbin University of Science and Technology2019
    [Google Scholar]
  31. LagerwaardF.J. HaasbeekC.J.A. SmitE.F. SlotmanB.J. SenanS. Outcomes of risk-adapted fractionated stereotactic radiotherapy for stage I non-small-cell lung cancer.Int. J. Radiat. Oncol. Biol. Phys.200870368569210.1016/j.ijrobp.2007.10.05318164849
    [Google Scholar]
  32. ZelefskyM.J. LevinE.J. HuntM. YamadaY. ShippyA.M. JacksonA. AmolsH.I. Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer.Int. J. Radiat. Oncol. Biol. Phys.20087041124112910.1016/j.ijrobp.2007.11.04418313526
    [Google Scholar]
  33. ZelefskyM.J. FuksZ. HuntM. YamadaY. MarionC. LingC.C. AmolsH. VenkatramanE.S. LeibelS.A. High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients.Int. J. Radiat. Oncol. Biol. Phys.20025351111111610.1016/S0360‑3016(02)02857‑212128109
    [Google Scholar]
  34. VerellenD. RidderM.D. LinthoutN. TournelK. SoeteG. StormeG. Innovations in image-guided radiotherapy.Nat. Rev. Cancer200771294996010.1038/nrc228818034185
    [Google Scholar]
  35. LeeK. LenardsN. HolsonJ. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.Med. Dosim.2016411152110.1016/j.meddos.2015.06.00326235550
    [Google Scholar]
  36. ChangS.D. MainW. MartinD.P. GibbsI.C. HeilbrunM.P. An analysis of the accuracy of the CyberKnife: A robotic frameless stereotactic radiosurgical system.Neurosurgery200352114014612493111
    [Google Scholar]
  37. KilbyW. DooleyJ.R. KuduvalliG. SayehS. MaurerC.R.Jr The cyberknife robotic radiosurgery system in 2010.Technol. Cancer Res. Treat.20109543345210.1177/15330346100090050220815415
    [Google Scholar]
  38. LangnerU. LangenK. EleyJ. ZhuM. YuJ. ChungH. PolfJ. DongL. Su-f-t- 162: Comparison of beam data for two varian probeam pencil beam scanning proton systems.Med. Phys.2016436Part153499[http://dx.doi.org/10.1118/1.4956298].10.1118/1.4956298
    [Google Scholar]
  39. DuggarW. RajaguruP. YangC. Su-e-t-204: Improving multiple isocenter coincidence: Elekta beam modulator with hexapod six degrees couchtop.Med. Phys.2014416Part14270[http://dx.doi.org/10.1118/1.4888534].10.1118/1.4888534
    [Google Scholar]
  40. ChenW.Z. Precision radiation therapy bed.Medical Equipment200610103
    [Google Scholar]
  41. Myriad ImagingThe Future Starts Now - Dual-Mode MRI System Newly Launched.10.15971/j.cnki.cmdi.2010.10.026
    [Google Scholar]
  42. BewesJ.M. SuchowerskaN. JacksonM. ZhangM. McKenzieD.R. The radiobiological effect of intra-fraction dose-rate modulation in intensity modulated radiation therapy (IMRT).Phys. Med. Biol.200853133567357810.1088/0031‑9155/53/13/01218560049
    [Google Scholar]
  43. SchmiegerH. Biologic effects of solar radiation on man. Effects on the skin.Prog. Biometeorol.197411A378380, 6744438664
    [Google Scholar]
  44. LaurenceJ.A. FrenchP.W. LindnerR.A. McKenzieD.R. Biological effects of electromagnetic fields--mechanisms for the effects of pulsed microwave radiation on protein conformation.J. Theor. Biol.2000206229129810.1006/jtbi.2000.212310966765
    [Google Scholar]
  45. GroveP. A biological effects of static magnetic fields.J. Coll. Sci. Teach.199622236237
    [Google Scholar]
  46. ZhouN.X. JiangY.Y. WenZ.M. The biologic effects of hyperthermia and radiation on gastric cancer cells(sgc-7901) in vitro - I. Influence of heating and radiation on cell growth curves, number of colonies and mitosiss.Zhonghua Zhong Liu Za Zhi198791173595419
    [Google Scholar]
  47. MohanR. PodmaniczkyK.C. CaleyR. LapidusA. LaughlinJ.S. A computerized record and verify system for radiation treatments.Int. J. Radiat. Oncol. Biol. Phys.198410101975198510.1016/0360‑3016(84)90281‑56490426
    [Google Scholar]
  48. FollettP.A. Generic radiation quarantine treatments: The next steps.J. Econ. Entomol.200910241399140610.1603/029.102.040119736749
    [Google Scholar]
  49. MackieT.R. KapatoesJ. RuchalaK. LuW. WuC. OliveraG. ForrestL. TomeW. WelshJ. JerajR. HarariP. ReckwerdtP. PaliwalB. RitterM. KellerH. FowlerJ. MehtaM. Image guidance for precise conformal radiotherapy.Int. J. Radiat. Oncol. Biol. Phys.20035618910510.1016/S0360‑3016(03)00090‑712694827
    [Google Scholar]
  50. FassnachtM HahnerS PolatB KoschkerAC KennW FlentjeM Efficacy of adjuvant radiotherapy of the tumor bed on local recurrence of adrenocortical carcinoma.. J Clin Endocrinol Me\tab 200691114501450410.1210/jc.2006‑1007
    [Google Scholar]
  51. AhmadS.C. SpencerK. BrahmavarS. HyderJ. SaleebyJ. BornsteinL. Su-d-213cd-04: Dosimetric evaluation of hexapod as a tool for patient setup verification accuracy.Med. Phys.2012396Part3361810.1118/1.473468928517387
    [Google Scholar]
  52. FanC. New type of multifunctional radiotherapy bed for tumorC.N. Patent 204193316.2015
    [Google Scholar]
  53. WangF. Radiation therapy bed.C.N. Patent 205460523.2016
    [Google Scholar]
  54. ZhouS.J. Treatment bed for medical radiology.C.N. Patent 206597229.2017
    [Google Scholar]
  55. ZhangP.Q. Radiation therapy bed with radiation prevention headC.N. Patent 204219616.2015
    [Google Scholar]
  56. ZhouJ.J. Bed for radiotherapy of cervical cancer.C.N. Patent 104511095.2015
    [Google Scholar]
  57. GuoQ. Research on 6-DOF parallel radiotherapy bed for radiation therapy.MSc DissertationHarbin Institute of Technology.Harbin, China2015
    [Google Scholar]
  58. KimS.H. JeongK.M. BaeY.G. NaH.S. Smart bed for radiation therapy.U.S. Patent 20170128743.2017
    [Google Scholar]
  59. XiongJ. LiuY.X. XiaY.X. XieY.Q. Radiation therapy bed with multiple degrees of freedom.W.O. Patent 2017092105.2017
    [Google Scholar]
  60. SunY.N. ZhaoM.Q. An accurate pendulum treatment bed.C.N. Patent 204709657.2015
    [Google Scholar]
  61. LanP.Q. Radiotherapy bedC.N. Patent 108031016.2018
    [Google Scholar]
  62. DuoS.Q. Design of the three-dimensional gamma knifetherapy device.MSc DissertationHuazhong University of Science and TechnologyWuhan, China2016
    [Google Scholar]
  63. YouC.Z. Proton radiotherapy bed for breast cancer.C.N. Patent 106456430.2017
    [Google Scholar]
  64. TianC.G. Radiotherapy bed.C.N. Patent 206434723.2017
    [Google Scholar]
  65. YaoY. Patient location equipment and radiological equipment.C.N. Patent 105411619.2016
    [Google Scholar]
  66. ZhangG.H. Innovative extracorporeal radiotherapy instrument.C.N. Patent 106730417.2017
    [Google Scholar]
  67. LiJ. Radiation therapy system.U.S. Patent 20170189720.2017
    [Google Scholar]
  68. TobyD.H. Patient positioner system.U.S. Patent 20090070936.2009
    [Google Scholar]
  69. BergfjordP.H. Patient support system for radiation therapy.U.S. Patent 9610205.2017
    [Google Scholar]
  70. KevinB. TarunK.P. YanY. . Treatment table for radiation. U.S. Patent 20140107390.2014
    [Google Scholar]
  71. StephanE. StephanF. Patient positioning system for radiotherapyU.S. Patent 8789223.2014
    [Google Scholar]
  72. EijiT. Real-time three-dimensional radiation therapy apparatus and method.U.S. Patent 9149656.2015
    [Google Scholar]
  73. ZhaoX.F. A multi-angle exercise treatment bed.C.N. Patent 1041002445 .2015
    [Google Scholar]
  74. LongX.D. ZhaoQ.J. ZhaoX.M. Three dimensional bed and radiation therapy device.C.N. Patent 204447005.2015
    [Google Scholar]
  75. YaoJ. WuD.K. ZhangB. ZhouF.G. LiC. SunH. LiaoH.X. WeiC.G. Linear swinging arm robot treatment bed.C.N. Patent 204522032.2015
    [Google Scholar]
  76. XiongR.P. Treatment bed based on six degrees of freedom industrial manipulator.C.N. Patent 105920739.2018
    [Google Scholar]
  77. TangL SCARA structure for radiation therapy for robot treatment bed.C.N. Patent 107854779.2018
    [Google Scholar]
  78. LiT. WangY.X. LiJ.Y. LiH.Y. Mechanical arm treatment bedC.N. Patent 207401025.2018
    [Google Scholar]
  79. WiernikG. A new radiotherapy treatment chair.Br. J. Radiol.19613440667667810.1259/0007‑1285‑34‑406‑67614006824
    [Google Scholar]
  80. BoagJ.W. HodtH.J. Adjustable chair for radiotherapy of head and neck cancer.Br. J. Radiol.19714452031631710.1259/0007‑1285‑44‑520‑3165552152
    [Google Scholar]
  81. KarzmarkC.J. BagshawM.A. HuismanP.A. LawsonJ. A versatile radiotherapy treatment chair.Br. J. Radiol.1980536361190119410.1259/0007‑1285‑53‑636‑11907437733
    [Google Scholar]
  82. HortonJ.L.Jr Modular radiotherapy treatment chair and methods of treatmentU.S. Patent 5168514.1992
    [Google Scholar]
  83. SchardtD. HeegP. Device for positioning a tumour patient with a tumour in the head or neck region in a heavy-ion theraphy chamberU.S. Patent 10296011.2003
    [Google Scholar]
  84. BehrL V Patient positioning deviceU.S. Patent 4446587.2012
    [Google Scholar]
  85. ShenH. ZhangQ.H. Therapeutic bed with rotary sitting functionC.N. Patent 2766885.2006
    [Google Scholar]
  86. YeZ.W. 360-degree treatment device for hand-fixed hadron beamsC.N. Patent 203379503U.2014
    [Google Scholar]
  87. McCarrollR.E. BeadleB.M. FullenD. BalterP.A. FollowillD.S. StingoF.C. YangJ. CourtL.E. Reproducibility of patient setup in the seated treatment position: A novel treatment chair design.J. Appl. Clin. Med. Phys.201718122322910.1002/acm2.1202428291911
    [Google Scholar]
  88. LiuS.Y. Proton and heavy ion therapy and devices thereof.Science Publishing House2012
    [Google Scholar]
  89. ZhouR. XuW.J. LiL. Mechanical treatment chair and its control system.C.N. Patent 106512235A.2017
    [Google Scholar]
  90. ZhuR.X. WuX.F. Seated radiotherapy chair.C.N. Patent 201631924U.2010
    [Google Scholar]
  91. WangZ.H. An automated chair for proton and heavy ion treatment of head and neck cancer.C.N. Patent 107007946A.2017
    [Google Scholar]
  92. QiuW.Q. A sitting immobilization device for particle radiotherapy.C.N. Patent 106512238A.2017
    [Google Scholar]
  93. DengQ.Q. LanP.Q. HeH.Y. A robot for radiotherapy.C.N. Patent 206934454U.2018
    [Google Scholar]
  94. SunH.Y. Rotating chairs for medical radiology.C.N. Patent 110101976A.2019
    [Google Scholar]
  95. ZhangY.D. YangZ.K. A head immobilization device for seated radiation therapy.C.N. Patent 109107054A.2018
    [Google Scholar]
  96. ShengY. SunJ. WangW. StuartB. KongL. GaoJ. YouD. WuX. Performance of a 6D treatment chair for patient positioning in an upright posture for fixed ion beam lines.Front. Oncol.20201012210.3389/fonc.2020.0012232117769
    [Google Scholar]
  97. ZhangX. HsiW.C. YangF. WangZ. ShengY. SunJ. YangC. ZhouR. Development of an isocentric rotating chair positioner to treat patients of head and neck cancer at upright seated position with multiple nonplanar fields in a fixed carbon‐ion beamline.Med. Phys.20204762450246010.1002/mp.1411532141079
    [Google Scholar]
  98. ZhangY.D. DaiX.S. JianJ.G. Recent Patents on Radiotherapy BedRecent Patents on Mechanical Engineering 20191229031210.2174/2212797612666190917152437
    [Google Scholar]
/content/journals/eng/10.2174/0118722121284495240523105841
Loading
/content/journals/eng/10.2174/0118722121284495240523105841
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test