Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

This patent paper provides an overview of representative patents related to space docking mechanisms in terms of structural and functional optimization. The working principle and characteristics are explained. By comparing different types of space docking mechanisms, we summarized the main problems of the current space docking mechanism and proposed some improvements. They include electromagnetic docking, modularization and standardization, together with the use of advanced design optimization algorithms and intelligent drive technology.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121281570240122065836
2024-07-26
2025-01-17
Loading full text...

Full text loading...

References

  1. ZhangC. XiaoY. LiM. LiuY. YangD. Design method for buffer of aerocrafts docking mechanism.J. Harbin Inst. Technol.1998112115
    [Google Scholar]
  2. LouH. QuG. LiuJ. Space docking mechanism.BeijingAviation Industry Press1992
    [Google Scholar]
  3. ZhouJ. Space rendezvous and docking technology.BeijingNational Defense Industry Press2013322
    [Google Scholar]
  4. ZhangC. ChenB. ZhengY. LiuZ. ShiJ. WangW. Spacecraft docking mechanism.BeijingScience Press2016275
    [Google Scholar]
  5. HuangB. MaY. Space environment test technology of spacecraft.BeijingNational Defense Industry Press2002268
    [Google Scholar]
  6. ZhangX. HuangY. HanW. ChenX. Research of flexible beam impact dynamics based on space probe-cone docking mechanism.Adv. Space Res.20124961053106110.1016/j.asr.2011.12.030
    [Google Scholar]
  7. HanW. HuangY. ZhangX. ChenX. Collision simulation analysis for flexible probe-cone docking mechanism.Shanghai Hangtian201229495310.19328/j.cnki.1006‑1630.2012.03.011
    [Google Scholar]
  8. QuY. ZhaoM. ZhangC. Damping mechanism for space docking and its kinematics modeling.Aerospace Shanghai2002131610.19328/j.cnki.1006‑1630.2002.01.003
    [Google Scholar]
  9. YangF. QuG. Analysis of mechanism drive principle of differential electromechanical buffer damping system for space docking mechanism.Mech. Eng.20005154
    [Google Scholar]
  10. ZhaoY. CaoX. WangX. ShaoC. Dynamic characteristics on differential cushion damping and transmission system of space docking mechanism.Kongjian Kexue Xuebao199919217318010.11728/cjss1999.02.173
    [Google Scholar]
  11. JiangH. ChengF. YuanH. YuM. LyuW. WuD. Accelerated degradation testing study on space docking mechanism wire rope stress relaxation.Shanghai Hangtian20223910110610.19328/j.cnki.2096‑8655.2022.s2.019
    [Google Scholar]
  12. LiaoC.H. LuH.R. ChangX. SunH. FanS. WuH. Mechanical properties of silicone elastomer seals for space docking vehicles.2nd International Conference on Advanced Technologies in Design, Mechanical and Aeronautical Engineering (ATDMAE 2018) vol. 408, 2018 Dalian, China10.1088/1757‑899X/408/1/012010
    [Google Scholar]
  13. HuangT. ChenM. XiaoY. Study of kinetic synchronous theory on space docking lock system.J. Syst. Simul.201123131610.16182/j.cnki.joss.2011.01.013
    [Google Scholar]
  14. WuY. SongQ. ChenL. Dynamics analysis for structure lock of spatial docking system.J Huazhon. Uni. Sci. Technol.20012001848610.13245/j.hust.2001.09.029
    [Google Scholar]
  15. ShaC. SongX. XiongY. SuG. UoL.G. Surface strengthening and lubrication of space docking latch system.Chin. J. Vac. Sci. Technol.20143470771310.3969/j.issn.1672‑7126.2014.07.08
    [Google Scholar]
  16. ChenL. Spacecraft structures and mechanisms.BeijingScience and Technology of China Press2005462
    [Google Scholar]
  17. QiuH. QinY. YuanH. LiuG. Study on docking and separation test technology for space docking mechanism in thermal vacuum environment.Zairen Hangtian20162211211610.16329/j.cnki.zrht.2016.69.018
    [Google Scholar]
  18. LiP. ChengH. QinW. The numerical simulation of the on-orbit temperature of the screws in docking mechanism.J. Shangh. Jiaot. Uni.20061262127710.16183/j.cnki.jsjtu.2006.08.002
    [Google Scholar]
  19. XuS. ChuM. SunH. Design and stiffness optimization of bionic docking mechanism for space target acquisition.Appl. Sci.202111211027810.3390/app112110278
    [Google Scholar]
  20. ChuM. DongZ. RenS. JiaQ. Multi-stage damping stabilization control for a space-borne series-wound flexible capturing mechanism.J. Shock. Vib201837424910.13465/j.cnki.jvs.2018.05.007
    [Google Scholar]
  21. TangS. ChenB. BaiH. ZhaoJ. Application of genetic algorithm in the optimal design of space docking mechanism.J. Astronaut.20082008529533
    [Google Scholar]
  22. JiangJ. YangZ. WangH. Space electromagnetic flexible docking technology.J. Ordnance Equip. Eng.202142636710.11809/bqzbgcxb2021.02.012
    [Google Scholar]
  23. GaoJ. ZhouJ. YeJ. ZengL. Research of an eddy current damper design for docking mechanism.Shanghai Hangtian201633232810.19328/j.cnki.1006‑1630.2016.05.004
    [Google Scholar]
  24. UnderwoodC. PellegrinoS. LappasV.J. BridgesC.P. BakerJ. Using CubeSat/micro-satellite technology to demonstrate the Autonomous Assembly of a Reconfigurable Space Telescope (AAReST).Acta Astronaut.201511411212210.1016/j.actaastro.2015.04.008
    [Google Scholar]
  25. PorterA.K. AlingerD. SedwickR.J. MerkJ. OppermanR. BuckA. EslingerG. FisherP. MillerD. BouE. Dual-purpose resonate actuators for electromagnetic formation flight and wireless power transfer.AIAA 2014-0449201410.2514/6.2014‑0449
    [Google Scholar]
  26. BarbettaM. BoessoA. BranzF. CarronA. OlivieriL. PrendinJ. RodeghieroG. SansoneF. SavioliL. SpinelloF. Autonomous rendezvous, control and docking experiment - reflight 2.Small Satellites Systems and Services SymposiumMallorca2014
    [Google Scholar]
  27. BoessoA. FrancesconiA. ARCADE small-scale docking mechanism for micro-satellites.Acta Astronaut.201386778710.1016/j.actaastro.2013.01.006
    [Google Scholar]
  28. HoffN.R. Design and implementation of a relative state estimator for docking and formation control of modular autonomous spacecraft.Massachusetts Institute of Technology2007
    [Google Scholar]
  29. RodgersL. NoletS. MillerD.W. Development of the miniature video docking sensor.Modeling, Simulation, and Verification of Space-based Systems III.SPIE2006Vol. 622112113210.1117/12.665258
    [Google Scholar]
  30. RodgersL. HoffN. JordanE. HeimanM. MillerD. Small satellites sample paper.Proceedings of the AIAA/USU Conference on Small Satellites, Mission Lessons, SSC12-XII-12005
    [Google Scholar]
  31. ZhuR. WangH. XuY. WeiY. From ETS-VII to HTV: Study of Japanese rendezvous and docking/berthing technologies.Hangtianqi Gongcheng20112063110.3969/j.issn.1673‑8748.2011.04.002
    [Google Scholar]
  32. BranzF. OlivieriL. SansoneF. FrancesconiA. Miniature docking mechanism for CubeSats.Acta Astronaut.202017651051910.1016/j.actaastro.2020.06.042
    [Google Scholar]
  33. DuzziM. CasagrandeR. MazzucatoM. TrevisiF. VitellinoF. VitturiM. CenedeseA. FrancesconiA. Electromagnetic position and attitude control for PACMAN experiment.Proceedings of the 10th International ESA Conference on Guidance, NavigationControl Systems, Salzburg, Austria201729
    [Google Scholar]
  34. OlivieriL. FrancesconiA. Design and test of a semiandrogynous docking mechanism for small satellites.Acta Astronaut.201612221923010.1016/j.actaastro.2016.02.004
    [Google Scholar]
  35. KortmanM. RuhlS. WeiseJ. KreiselJ. SchervanT. SchmidtH. DafnisA. Building block based iBoss approach: Fully modular systems with standard interface to enhance future satellites.66th International Astronautical Congress2015111Jerusalem
    [Google Scholar]
  36. BowenJ. VillaM. WilliamsA. Cubesat based rendezvous, proximity operations, and docking in the CPOD mission.29th Annual AIAA/USU Conference on Small Satellites2015
    [Google Scholar]
  37. BarbettaM. BoessoA. BranzF. CarronA. OlivieriL. PrendinJ. RodeghieroG. SansoneF. SavioliL. SpinelloF. FrancesconiA. ARCADE-R2 experiment on board BEXUS 17 stratospheric balloon.CEAS Space J.20157334735810.1007/s12567‑015‑0083‑3
    [Google Scholar]
  38. MohanS. Saenz-OteroA. NoletS. MillerD.W. SellS. SPHERES flight operations testing and execution.Acta Astronaut.2009657-81121113210.1016/j.actaastro.2009.03.039
    [Google Scholar]
  39. TchorykP.Jr HaysA.B. PavlichJ.C. A docking solution for on-orbit satellite servicing: Part of the responsive space equation.AIAA-LA Section/SSTC2003200113
    [Google Scholar]
  40. LinL. Development course of space rendezvous and docking.Space International20183942
    [Google Scholar]
  41. ZhangC. LiuZ. Review of space docking mechanism and its technology.Shanghai Hangtian20163311110.19328/j.cnki.1006‑1630.2016.05.001
    [Google Scholar]
  42. YuZ. ChuL. WangZ. Hydraulic and pneumatic trans-mission.BeijingBeijing Institute of Technology Press2017387
    [Google Scholar]
  43. LiuZ. ZhaoG. Fluid drive and control technology.Xi'anXidian University Press2016422
    [Google Scholar]
  44. WangW. ZhuangY. ZhangX. YangF. Spacecraft docking and capture mechanisms.BeijingChina Aerospace Publishing House2022185
    [Google Scholar]
  45. XuF. YangG. WangL. LiZ. WangX. A robust game optimization for electromagnetic buffer under parameters uncertainty.Eng. Comput.2022391791180610.1007/s00366‑021‑01561‑x
    [Google Scholar]
  46. SodanoH.A. BaeJ.S. InmanD.J. BelvinW.K. Improved concept and model of eddy current damper.J Vib Acoust2006128329410.1115/1.2172256
    [Google Scholar]
  47. ZhangZ. ZhangY. YuC. LiM. JiaoZ. Study of magnetorheological fluids.J. Funct. Mater. Devices2001340344
    [Google Scholar]
  48. XiaY. HeQ. WangQ. Increasingly compelling magnetorheological fluids - in many practical applications, magnetorheological fluids are superior to galvanic fluids in terms of strength and stability.Machine Tool & Hydraulics19965253
    [Google Scholar]
  49. YoonD.S. ParkY.J. ChoiS.B. An eddy current effect on the response time of a magnetorheological damper: Analysis and experimental validation.Mech. Syst. Signal Process.201912713615810.1016/j.ymssp.2019.02.058
    [Google Scholar]
  50. Bharathi PriyaC. GopalakrishnanN. Temperature dependent modelling of magnetorheological (MR) dampers using support vector regression.Smart Mater. Struct.201928202502110.1088/1361‑665X/aae5f0
    [Google Scholar]
  51. ChengM. XingJ. ChenZ. PanZ. Design, analysis and experimental investigation on the whole-spacecraft vibration isolation platform with magnetorheological dampers.Smart Mater. Struct.201928707501610.1088/1361‑665X/ab0ebe
    [Google Scholar]
  52. LuoM. YangJ. HanF. Design and test verification of energy absorption material in the soft landing gear for tianwen-1 mars probe.J. Deep Space Explor.2021847247710.15982/j.issn.2096‑9287.2021.20210044
    [Google Scholar]
  53. HuangJ. Manj. YangJ. YeY. LiuR. ZhengZ. Experimental research on thermal environment adaptability of aluminum honeycomb”.Zairen Hangtian20162231331610.16329/j.cnki.zrht.2016.03.007
    [Google Scholar]
  54. ChenJ. NieH. BaiH. ZhaoQ. Review of the development of soft-landing buffer for lunar explorations.The third academic conference of the deep space exploration technology committee of the Chinese academy of astronauticsXi'an, Shaanxi, China20066064
    [Google Scholar]
  55. LuoC. LiuR. ZhengZ. LiM. ShenJ. Experimental investigations of an energy Absorber based on thin-walled metal tube's plastic deformation.Shock. Vib.20102810263010.13465/j.cnki.jvs.2010.04.022
    [Google Scholar]
  56. ShenT. ZhangC. WangW. FenW. QiuH. Dynamic simulation analysis of capture and buffer system based on claw-type docking mechanism.Chin. J. Theor. Appl. Mech.2020521590159810.6052/0459‑1879‑20‑108
    [Google Scholar]
  57. McLaughlinR.J. WarrW.H. The Common Berthing Mechanism (CBM) for international space station.Society of Automotive Engineers2001200101
    [Google Scholar]
  58. JAXAKibo HANDBOOK.Available from: https://iss.jaxa.jp/kibouser/library/item/kibo_handbook_en.pdf
  59. CookJ. AksamentovV. HoffmanT. BrunerW. ISS interface mechanisms and their heritage.AIAA SPACE 2011 Conference & Exposition27 September 2011 - 29 September 20112011 Long Beach, California 10.2514/6.2011‑7150
    [Google Scholar]
  60. JAXAKibo Exposed Facility User Handbook.Available from: https://iss.jaxa.jp/kibo/library/fact/data/JFE_HDBK_all_E.pdf
  61. YangJ. QiY. LouH. Unlockable attachment and detachment devices used on spacecraft.Spacecraft Engineering200312
    [Google Scholar]
  62. Structural design of O-shaped rubber sealing rings commonly used in the aviation industry.Available from: http://www.dshmfq.com/articles/hkgyzc.html
  63. Satellite vacuum thermal test contamination control methodQJ199223211992
    [Google Scholar]
  64. MengT. LiuW. LiuD. ZhuangM. The effect of thickener on low temperature performance of grease.Pet. Process. Petrochemical.202051710
    [Google Scholar]
  65. GonçalvesD. GraçaB. CamposA.V. SeabraJ. Film thickness and friction behaviour of thermally aged lubricating greases.Tribol. Int.201610023124110.1016/j.triboint.2016.01.044
    [Google Scholar]
  66. LiuH. WangZ. Overview of solid lubricants and solid lubricating film.Synth. Lubr.202249273010.3969/j.issn.1672‑4364.2022.02.008
    [Google Scholar]
  67. WenS. HuangP. Principles of Tribology.2nd edBeijingTsinghua University Press201753810.1002/9781119214908
    [Google Scholar]
  68. HuC. GaoS. XiongM. TangZ. WangY. LiangC. LiD. ZhangW. ChenL. ZengL. LiuX. WangR. WeiQ. ZhuC. PanD. XinP. YangH. LuoW. LiuD. ZhouJ. DongN. Key technologies of the China space station core module manipulator.Sci. Sin. Technol.20225291299133110.1360/SST‑2021‑0507
    [Google Scholar]
  69. YoungK.S. HoP.S. OhP.J. AnS.J. WooJ.J. DeriW. A spacecraft docking system using a cable-driven parallel robot structure.K.R. Patent 101808553B12017
    [Google Scholar]
  70. VladimirovichY.A. NikolaevichP.V. AlekseevichS.N. AleksandrovichB.M. EvgenevichC.I. VladimirovichR.Y. Space craft docking mechanism.R.U. Patent 2662605C22018
    [Google Scholar]
  71. IsayamaM. OkudaK. Docking device.J.P. Patent 2018172025A2018
    [Google Scholar]
  72. HalsbandA. Docking system and method forsatellites.U.S. Patent 10611504B22020
    [Google Scholar]
  73. HalsbandA. Docking system and method for satellites.WO Patent 2016030890A12016
    [Google Scholar]
  74. DmitrievichZ.V. AleksandrovichZ.D. Docking-mounting module.W.O. Patent 2021126010A12020
    [Google Scholar]
  75. MiguelA.M.J. IoritzB.E. Docking system for spacecraft and spacecraft comprising the same.W.O. Patent 2022195137A12022
    [Google Scholar]
  76. QiuH. ZhangC. YuanH. YaoJ. DingL. GaoJ. LiuZ. ShiJ. Docking mechanism driving and buffering system with controllable damping.C.N. Patent 108860665A2018
    [Google Scholar]
  77. VladimirovichY.A. NikolaevichP.V. EvgenevichC.I. VladimirovichR.Y. AleksandrovichZ.G. AleksandrovichK.A. Peripheral docking adapter.R.U. Patent 2657623C12018
    [Google Scholar]
  78. XingnianX. HaoW. LongC. Space electromagnetic docking mechanism capable of repeatedly achieving locking/unlocking, and docking method thereof.C.N. Patent 108639389A2018
    [Google Scholar]
  79. ZhiL. ChongfengZ. ZongxiangJ. JunweiS. ZheX. XuepingH. Spacecraft docking system and method.W.O. Patent 2018014676A12018
    [Google Scholar]
  80. DengS. WangY. CaiH. ChengY. YangZ. Multi-sensing force control space soft butt joint mechanism.C.N. Patent 109533399A2019
    [Google Scholar]
  81. DmitrievichZ.V. AleksandrovichZ.D. Spacecraft docking device.W.O. Patent 2021126009A12021
    [Google Scholar]
  82. TajanF. BlaisT. Device for damping docking to a satellite.W.O. Patent 2021123632A12021
    [Google Scholar]
  83. VladimirovichY.A. NikolaevichP.V. VladimirovichR.Y. EvgenevichC.I. Peripheral docking mechanism tightening device.R.U. Patent 2706741C12019
    [Google Scholar]
  84. YangF. ZhuangY. WangB. LiW. WangW. YeY. LiuW. SunK. YueH. Rotary T-shaped head type space docking locking and release mechanism.C.N. Patent 111688955A2020
    [Google Scholar]
  85. HanR. WangB. ZhuangY. LiuP. WangY. LiW. SunG. PanB. LiL. YeY. ZhaoZ. High-precision electromagnetic butt joint mechanism with large-angle tolerance.C.N. Patent 111994306A2020
    [Google Scholar]
  86. SorensenP.O. MicheM.A. LlorensW.A. MurphyD.M. BradenJ. Systems for capturing a client vehicle.U.S. Patent 11104459B22021
    [Google Scholar]
  87. KongN. WangB. MaS. HanR. ZhuangY. NiuZ. GengZ. Space docking mechanism based on electromagnetic ball lock structure.C.N. Patent 113277126A2021
    [Google Scholar]
  88. UlrichE.R. ShimoharaS.T. Omni-directional extensible grasp mechanisms.U.S. Patent 11518552B22022
    [Google Scholar]
  89. AleksandrovichB.M. PavlovichD.V. AleksandrovnaM.I. NikolaevichR.E. Sealing mechanism of the joint of the docking assembly of spacecraft.R.U. Patent 2648662C22018
    [Google Scholar]
  90. KonstantinovichK.K. Sealing mechanism of joint of docking units.R.U. Patent 2717287C12020
    [Google Scholar]
  91. HejmanowskiN. GhoshA. CarrollD.L. Guideless resilient androgynous serial port docking mechanism.U.S. Patent 11401054B22022
    [Google Scholar]
/content/journals/eng/10.2174/0118722121281570240122065836
Loading
/content/journals/eng/10.2174/0118722121281570240122065836
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): capture; cushioning; docking lock; optimized and reliable design; sealing; Space docking
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test