Skip to content
2000
Volume 19, Issue 6
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background: Diabetes Mellitus (DM) is a multisystemic disease involving the homeostasis of insulin secretion by the pancreatic islet beta cells (β-cells). It is associated with hypertension, renal disease, and arterial and arteriolar vascular diseases. Discussion: The classification of diabetes is identified as type 1 (gene linked β-cell destruction in childhood) and type 2 (late onset associated with β-cell overload and insulin resistance in peripheral tissues. Type 1 diabetes is characterized by insulin deficiency, type 2 diabetes by both insulin deficiency and insulin resistance. The former is a genetically programmed loss of insulin secretion whereas the latter constitutes a disruption of the homeostatic relationship between the opposing activity of β- cell insulin and alpha cell (α-cell) glucagon of the Islets of Langerhans. The condition could also occur in pregnancy, as a prenatal occurring event, possibly triggered by the hormonal changes of pregnancy combined with β-cell overload. This review discusses the molecular basis of the biomolecular changes that occur with respect to glucose homeostasis and related diseases in DM. The underlying link between pancreatic, renal, and microvascular diseases in DM is based on oxidative stress and the Unfolded Protein Response (UPR). Conclusion: Studying proteome changes in diabetes can deepen our understanding of the biomolecular basis of disease and help us acquire more efficient therapies.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/1871530319666190305153810
2019-09-01
2025-09-04
Loading full text...

Full text loading...

/content/journals/emiddt/10.2174/1871530319666190305153810
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test