Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Introduction

Childhood acute lymphoblastic leukemia (cALL), the most common pediatric hematologic malignancy, arises primarily from B-cell origin and is strongly associated with immune dysfunction. This article integrated single-cell and bulk transcriptomic data to identify key B-cell subsets and cALL-related molecules as biomarkers.

Methods

Single-cell RNA sequencing (scRNA-seq) Data from 2 pre-B high hyperdiploid (HHD) ALL patients and 3 healthy pediatric bone marrow samples (GSE132509) were utilized for cell clustering using the Seurat package. Functional enrichment, pseudo-time trajectory, and cell-cell communication analyses were performed using clusterProfiler, Monocle2, and CellChat R packages, respectively. Bulk RNA-seq data of 511 cALL samples in the TARGET-ALL-P2 cohort were used to construct a prognostic model Cox and LASSO regression. Immune infiltration differences between different risk groups were analyzed using ESTIMATE, MCP-counter, and CIBERSORT algorithms.

Results

The scRNA-seq analysis identified five cell subpopulations, with B cells demonstrating significant enrichment in cALL samples. Notably, the C2 subset was associated with cell proliferation. Ligand-receptor analysis revealed key interactions involving B cell C2. Four marker genes (, , and ) were identified to build a risk model. Low-risk patients showed better survival, while high-risk patients had higher ESTIMATE scores.

Discussion

This study examined the key role of B cells in cALL, constructed a risk model with strong prognostic predictive ability applying multi-omics analysis, and primarily explored its potential mechanism in immune regulation.

Conclusion

This study revealed the critical role of B cells in cALL, and the prognostic model showed a high prediction accuracy, providing a potential target for individualized treatment of cALL.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303420113250818064855
2025-08-27
2025-12-15
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/26/1/EMIDDT-26-E18715303420113.html?itemId=/content/journals/emiddt/10.2174/0118715303420113250818064855&mimeType=html&fmt=ahah

References

  1. ShenS. ChenX. CaiJ. YuJ. GaoJ. HuS. ZhaiX. LiangC. JuX. JiangH. JinR. WuX. WangN. TianX. PanK. JiangH. SunL. FangY. LiC. HuQ. YangM. ZhuY. ZhangH. LiC. PeiD. JehaS. YangJ.J. ChengC. TangJ. ZhuX. PuiC.H. Effect of Dasatinib vs Imatinib in the treatment of pediatric philadelphia chromosome–positive acute lymphoblastic leukemia.JAMA Oncol.20206335836610.1001/jamaoncol.2019.586831944221
    [Google Scholar]
  2. ChimgeN.O. ChenM.H. NguyenC. ZhaoY. WuX. GonzalezP.G. OganaH. HurwitzS. TeoJ.L. ChenX. DuJ. JinV. KimY.M. OnoM. ArgüelloR.J. KahnM. A deeply quiescent subset of CML LSC depend on FAO yet avoid deleterious ROS by suppressing mitochondrial complex I.Curr. Mol. Pharmacol.202317e06092322075810.2174/187446721766623090609223637691195
    [Google Scholar]
  3. UdenT. BertainaA. AbrahamssonJ. AnsariM. BalduzziA. BourquinJ.P. GerhardtC. BieringsM. HasleH. LankesterA. MischkeK. MooreA.S. Nivison-SmithI. PieczonkaA. PetersC. SedlacekP. ReinhardtD. SteinJ. VersluysB. WachowiakJ. WillemsL. ZimmermannM. LocatelliF. SauerM.G. Outcome of children relapsing after first allogeneic haematopoietic stem cell transplantation for acute myeloid leukaemia: a retrospective I-BFM analysis of 333 children.Br. J. Haematol.2020189474575010.1111/bjh.1644132012224
    [Google Scholar]
  4. TasianS.K. LohM.L. HungerS.P. Childhood acute lymphoblastic leukemia: Integrating genomics into therapy.Cancer2015121203577359010.1002/cncr.2957326194091
    [Google Scholar]
  5. RubnitzJ.E. KaspersG.J.L. How I treat pediatric acute myeloid leukemia.Blood2021138121009101810.1182/blood.202101169434115839
    [Google Scholar]
  6. CastellanosM.I. DongarwarD. WanserR. CaceresI. ParkC. RodriguezJ. SalihuH.M. In-hospital mortality and racial disparity in children and adolescents with acute myeloid leukemia: A population-based study.J. Pediatr. Hematol. Oncol.2022441e114e12210.1097/MPH.000000000000220434001781
    [Google Scholar]
  7. GuptaS. RauR.E. KairallaJ.A. RabinK.R. WangC. AngiolilloA.L. AlexanderS. CarrollA.J. ConwayS. GoreL. KirschI. KubaneyH.R. LiA.M. McNeerJ.L. MilitanoO. MillerT.P. MoyerY. O’BrienM.M. OkadaM. ReshmiS.C. ShagoM. WagnerE. WinickN. WoodB.L. Haworth-WrightT. ZamanF. ZugmaierG. ZupanecS. DevidasM. HungerS.P. TeacheyD.T. RaetzE.A. LohM.L. Blinatumomab in standard-risk B-cell acute lymphoblastic leukemia in children.N. Engl. J. Med.2025392987589110.1056/NEJMoa241168039651791
    [Google Scholar]
  8. MartinisE. TononS. ColamatteoA. La CavaA. MatareseG. PucilloC.E.M. B cell immunometabolism in health and disease.Nat. Immunol.202526336637710.1038/s41590‑025‑02102‑039984733
    [Google Scholar]
  9. KantarjianH. JabbourE. Adult acute lymphoblastic leukemia: 2025 update on diagnosis, therapy, and monitoring.Am. J. Hematol.202510071205123110.1002/ajh.2770840377367
    [Google Scholar]
  10. JardineL. WebbS. GohI. Quiroga LondoñoM. ReynoldsG. MatherM. OlabiB. StephensonE. BottingR.A. HorsfallD. EngelbertJ. MaunderD. MendeN. MurnaneC. DannE. McGrathJ. KingH. KucinskiI. QueenR. CareyC.D. ShrubsoleC. PoynerE. AcresM. JonesC. NessT. CoulthardR. ElliottN. O’ByrneS. HaltalliM.L.R. LawrenceJ.E. LisgoS. BaloghP. MeyerK.B. PrigmoreE. AmbridgeK. JainM.S. EfremovaM. PickardK. CreaseyT. BacarditJ. HendersonD. CoxheadJ. FilbyA. HussainR. DixonD. McDonaldD. PopescuD.M. KowalczykM.S. LiB. AshenbergO. TabakaM. DionneD. TickleT.L. SlyperM. Rozenblatt-RosenO. RegevA. BehjatiS. LaurentiE. WilsonN.K. RoyA. GöttgensB. RobertsI. TeichmannS.A. HaniffaM. Blood and immune development in human fetal bone marrow and Down syndrome.Nature2021598788032733110.1038/s41586‑021‑03929‑x34588693
    [Google Scholar]
  11. JacksonT.R. LingR.E. RoyA. The origin of B-cells: Human fetal B cell development and implications for the pathogenesis of childhood acute lymphoblastic leukemia.Front. Immunol.20211263797510.3389/fimmu.2021.63797533679795
    [Google Scholar]
  12. LiuY. ZhangS. LiuK. HuX. GuX. Advances in drug discovery based on network pharmacology and omics technology.Curr. Pharm. Anal.2024211334310.1016/j.cpan.2024.12.002
    [Google Scholar]
  13. HattingerC.M. PatrizioM.P. FantoniL. CasottiC. RigantiC. SerraM. Drug resistance in Osteosarcoma: Emerging biomarkers, therapeutic targets and treatment strategies.Cancers (Basel)20211312287810.3390/cancers1312287834207685
    [Google Scholar]
  14. WangY. ZhangW. CaiF. TaoY. Integrated Bioinformatics Analysis Identifies Vascular Endothelial Cell-Related Biomarkers for Hypertrophic Cardiomyopathy.Congenit. Heart Dis.202419665366910.32604/chd.2025.060406
    [Google Scholar]
  15. FairfaxB.P. TaylorC.A. WatsonR.A. NassiriI. DanielliS. FangH. MahéE.A. CooperR. WoodcockV. TraillZ. Al-MossawiM.H. KnightJ.C. KlenermanP. PayneM. MiddletonM.R. Peripheral CD8+ T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma.Nat. Med.202026219319910.1038/s41591‑019‑0734‑632042196
    [Google Scholar]
  16. GribovA. SillM. LückS. RückerF. DöhnerK. BullingerL. BennerA. UnwinA. SEURAT: Visual analytics for the integrated analysis of microarray data.BMC Med. Genomics2010312110.1186/1755‑8794‑3‑2120525257
    [Google Scholar]
  17. ZulibiyaA. WenJ. YuH. ChenX. XuL. MaX. ZhangB. Single-cell RNA sequencing reveals potential for endothelial-to-mesenchymal transition in tetralogy of fallot.Congenit. Heart Dis.202318661162510.32604/chd.2023.047689
    [Google Scholar]
  18. BechtE. McInnesL. HealyJ. DutertreC.A. KwokI.W.H. NgL.G. GinhouxF. NewellE.W. Dimensionality reduction for visualizing single-cell data using UMAP.Nat. Biotechnol.2019371384430531897
    [Google Scholar]
  19. ZhangX. LanY. XuJ. QuanF. ZhaoE. DengC. LuoT. XuL. LiaoG. YanM. PingY. LiF. ShiA. BaiJ. ZhaoT. LiX. XiaoY. CellMarker: a manually curated resource of cell markers in human and mouse.Nucleic Acids Res.201947D1D721D72810.1093/nar/gky90030289549
    [Google Scholar]
  20. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: an R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  21. QiuX. HillA. PackerJ. LinD. MaY.A. TrapnellC. Single-cell mRNA quantification and differential analysis with Census.Nat. Methods201714330931510.1038/nmeth.415028114287
    [Google Scholar]
  22. EfremovaM. Vento-TormoM. TeichmannS.A. Vento-TormoR. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes.Nat. Protoc.20201541484150610.1038/s41596‑020‑0292‑x32103204
    [Google Scholar]
  23. FriedmanJ. HastieT. TibshiraniR. Regularization paths for generalized linear models via coordinate descent.J. Stat. Softw.201033112210.18637/jss.v033.i0120808728
    [Google Scholar]
  24. OzhanA. TombazM. KonuO. SmulTCan: A Shiny application for multivariable survival analysis of TCGA data with gene sets.Comput. Biol. Med.202113710479310.1016/j.compbiomed.2021.10479334488031
    [Google Scholar]
  25. BlancheP. TimeROC: Time-dependent ROC curve and AUC for censored survival data.2015 https://cran.r-project.org/web/packages/timeROC/timeROC.pdf
  26. ZhaoD. WangQ. WangJ. Mitochondrial autophagy gene signature predicts prognosis and response to immunity in esophageal cancer.Biocell202448227128110.32604/biocell.2023.029094
    [Google Scholar]
  27. BechtE. GiraldoN.A. LacroixL. ButtardB. ElarouciN. PetitprezF. SelvesJ. Laurent-PuigP. Sautès-FridmanC. FridmanW.H. de ReynièsA. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression.Genome Biol.201617121810.1186/s13059‑016‑1070‑527765066
    [Google Scholar]
  28. GentlesA.J. NewmanA.M. LiuC.L. BratmanS.V. FengW. KimD. NairV.S. XuY. KhuongA. HoangC.D. DiehnM. WestR.B. PlevritisS.K. AlizadehA.A. The prognostic landscape of genes and infiltrating immune cells across human cancers.Nat. Med.201521893894510.1038/nm.390926193342
    [Google Scholar]
  29. PastorczakA. DomkaK. FidytK. PoprzeczkoM. FirczukM. Mechanisms of immune evasion in acute lymphoblastic leukemia.Cancers (Basel)2021137153610.3390/cancers1307153633810515
    [Google Scholar]
  30. MullighanC.G. GoorhaS. RadtkeI. MillerC.B. Coustan-SmithE. DaltonJ.D. GirtmanK. MathewS. MaJ. PoundsS.B. SuX. PuiC.H. RellingM.V. EvansW.E. ShurtleffS.A. DowningJ.R. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia.Nature2007446713775876410.1038/nature0569017344859
    [Google Scholar]
  31. KuiperR.P. SchoenmakersE F P.M. van ReijmersdalS.V. Hehir-KwaJ.Y. van KesselA.G. van LeeuwenF.N. HoogerbruggeP.M. High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression.Leukemia20072161258126610.1038/sj.leu.240469117443227
    [Google Scholar]
  32. PapaemmanuilE. RapadoI. LiY. PotterN.E. WedgeD.C. TubioJ. AlexandrovL.B. Van LooP. CookeS.L. MarshallJ. MartincorenaI. HintonJ. GundemG. van DelftF.W. Nik-ZainalS. JonesD.R. RamakrishnaM. TitleyI. StebbingsL. LeroyC. MenziesA. GambleJ. RobinsonB. MudieL. RaineK. O’MearaS. TeagueJ.W. ButlerA.P. CazzanigaG. BiondiA. ZunaJ. KempskiH. MuschenM. FordA.M. StrattonM.R. GreavesM. CampbellP.J. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia.Nat. Genet.201446211612510.1038/ng.287424413735
    [Google Scholar]
  33. BarrientosA. LopezM. SotomayorC. PilleuxL. CalderónS. NavarreteM. OtthC. Prevalence of human T-Cell lymphotropic virus type 1 and 2 among patients with malignant hematological diseases in South Chile.J. Med. Virol.201183474574810.1002/jmv.2201521328393
    [Google Scholar]
  34. JayadevS. YusuffI. Robust U-HPLC method development of desonide and its application to in vitro Release Testing (IVRT) of topical cream products.Curr. Pharm. Anal.202420532734410.2174/0115734129298659240606103013
    [Google Scholar]
  35. PermatasariH.K. NakahataS. IchikawaT. MorishitaK. BCL11B is frequently downregulated in HTLV-1-infected T-cells through Tax-mediated proteasomal degradation.Biochem. Biophys. Res. Commun.201749031086109210.1016/j.bbrc.2017.06.17228669733
    [Google Scholar]
  36. CaronM. St-OngeP. SontagT. WangY.C. RicherC. RagoussisI. SinnettD. BourqueG. Single-cell analysis of childhood leukemia reveals a link between developmental states and ribosomal protein expression as a source of intra-individual heterogeneity.Sci. Rep.2020101807910.1038/s41598‑020‑64929‑x32415257
    [Google Scholar]
  37. BrownL.M. Hediyeh-zadehS. SadrasT. HuckstepH. SandowJ.J. BartoloR.C. KosasihH.J. DavidsonN.M. SchmidtB. BjelosevicS. JohnstoneR. WebbA.I. KhawS.L. OshlackA. DavisM.J. EkertP.G. SFPQ-ABL1 and BCR-ABL1 use different signaling networks to drive B-cell acute lymphoblastic leukemia.Blood Adv.2022672373238710.1182/bloodadvances.202100607635061886
    [Google Scholar]
  38. WangD. XuW. HuangM. MaW. LiuY. ZhouX. YangQ. MuK. CENPF knockdown inhibits adriamycin chemoresistance in triple-negative breast cancer via the Rb-E2F1 axis.Sci. Rep.2023131180310.1038/s41598‑023‑28355‑z36720923
    [Google Scholar]
  39. SoomannM. BilyV. ElgizouliM. KraemerD. AkgülG. von BernuthH. BloomfieldM. BrodszkiN. CandottiF. Förster-WaldlE. FreibergerT. GiżewskaM. KlocperkA. KölschU. NicholsK.E. KrügerR. OakN. PacM. PraderS. SchmiegelowK. ŠediváA. SogkasG. StittrichA. StoltzeU.K. TheodoropoulouK. WadtK. WongM. ZeydaM. Pachlopnik SchmidJ. TrückJ. Variants in IGLL1 cause a broad phenotype from agammaglobulinemia to transient hypogammaglobulinemia.J. Allergy Clin. Immunol.2024154513131324.e710.1016/j.jaci.2024.08.00239147326
    [Google Scholar]
  40. ZhangK. LuJ. FangF. ZhangY. YuJ. TaoY. liuW. LuL. ZhangZ. ChuX. WangJ. LiX. TianY. LiZ. LiQ. SangX. MaL. WangN. PanJ. HuS. liu, W.; Lu, L.; Zhang, Z.; Chu, X.; Wang, J.; Li, X.; Tian, Y.; Li, Z.; Li, Q.; Sang, X.; Ma, L.; Wang, N.; Pan, J.; Hu, S. Super enhancer regulatory gene FYB1 promotes the progression of T cell acute lymphoblastic leukemia by activating IGLL1.J. Immunol. Res.2023202311610.1155/2023/380460537767202
    [Google Scholar]
  41. SunL.Y. KeS.B. LiB.X. ChenF.S. HuangZ.Q. LiL. ZhangJ.F. CaiY.X. ZhuH.J. ZhangX.D. DuR.L. LiuY. ChenY.S. ANP32E promotes esophageal cancer progression and paclitaxel resistance via P53/SLC7A11 axis-regulated ferroptosis.Int. Immunopharmacol.202514411343610.1016/j.intimp.2024.11343639566382
    [Google Scholar]
  42. YangQ. LiuH.R. YangS. WeiY.S. ZhuX.N. ZhiZ. ZhuD. ChenG.Q. YuY. ANP32B suppresses B-cell acute lymphoblastic leukemia through activation of PU. 1 in mice.Cancer Sci.202311472882289410.1111/cas.1582237137487
    [Google Scholar]
  43. PanagopoulosI. GorunovaL. AndersenH.K. BergremA. DahmA. AndersenK. MicciF. HeimS. PAN3PSMA2 fusion resulting from a novel t(7;13)(p14;q12) chromosome translocation in a myelodysplastic syndrome that evolved into acute myeloid leukemia.Exp. Hematol. Oncol.201871710.1186/s40164‑018‑0099‑429560286
    [Google Scholar]
  44. ZhaoX. ShanQ. XueH.H. TCF1 in T cell immunity: a broadened frontier.Nat. Rev. Immunol.202222314715710.1038/s41577‑021‑00563‑634127847
    [Google Scholar]
  45. WangT.W. NakanishiM. Immune surveillance of senescence: potential application to age-related diseases.Trends Cell Biol.202535324825710.1016/j.tcb.2024.06.00739025762
    [Google Scholar]
  46. ZentC.S. Ibrutinib restores tumor-specific adaptive immunity in chronic lymphocytic leukemia.Clin. Cancer Res.202127164465446710.1158/1078‑0432.CCR‑21‑158934108178
    [Google Scholar]
  47. LocatelliF. ZugmaierG. RizzariC. MorrisJ.D. GruhnB. KlingebielT. ParasoleR. LinderkampC. FlothoC. PetitA. MicalizziC. MergenN. MohammadA. KormanyW.N. EckertC. MörickeA. SartorM. HrusakO. PetersC. SahaV. VintiL. von StackelbergA. Effect of Blinatumomab vs chemotherapy on event-free survival among children with high-risk first-relapse B-cell acute lymphoblastic leukemia.JAMA2021325984385410.1001/jama.2021.098733651091
    [Google Scholar]
  48. RadpourR. StuckiM. RietherC. OchsenbeinA.F. Epigenetic silencing of immune-checkpoint receptors in bone marrow- infiltrating T cells in acute myeloid leukemia.Front. Oncol.20211166340610.3389/fonc.2021.66340634017684
    [Google Scholar]
  49. LiY. YangX. SunY. LiZ. YangW. JuB. EastonJ. PeiD. ChengC. LeeS. PuiC.H. YuJ. ChiH. YangJ.J. Impact of T-cell immunity on chemotherapy response in childhood acute lymphoblastic leukemia.Blood2022140131507152110.1182/blood.202101449535675514
    [Google Scholar]
  50. WeischendorffS. De PietriS. RatheM. FrandsenT.L. HasleH. NielsenC.H. MoserC. MüllerK. Markers of neutrophil chemotaxis for identification of blood stream infections in children with acute lymphoblastic leukemia undergoing induction treatment.Eur. J. Haematol.2023110676277110.1111/ejh.1396236950865
    [Google Scholar]
  51. RothschildS.C. LaiG. TombesR.M. ClementsW.K. Constitutively active CaMKII Drives B lineage acute lymphoblastic leukemia/lymphoma in tp53 mutant zebrafish.PLoS Genet.20231912e101110210.1371/journal.pgen.101110238117861
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303420113250818064855
Loading
/content/journals/emiddt/10.2174/0118715303420113250818064855
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test